MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ress0g Structured version   Visualization version   GIF version

Theorem ress0g 18689
Description: 0g is unaffected by restriction. This is a bit more generic than submnd0 18690. (Contributed by Thierry Arnoux, 23-Oct-2017.)
Hypotheses
Ref Expression
ress0g.s 𝑆 = (𝑅s 𝐴)
ress0g.b 𝐵 = (Base‘𝑅)
ress0g.0 0 = (0g𝑅)
Assertion
Ref Expression
ress0g ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 0 = (0g𝑆))

Proof of Theorem ress0g
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ress0g.s . . . 4 𝑆 = (𝑅s 𝐴)
2 ress0g.b . . . 4 𝐵 = (Base‘𝑅)
31, 2ressbas2 17188 . . 3 (𝐴𝐵𝐴 = (Base‘𝑆))
433ad2ant3 1133 . 2 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 𝐴 = (Base‘𝑆))
5 simp3 1136 . . . 4 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 𝐴𝐵)
62fvexi 6906 . . . 4 𝐵 ∈ V
7 ssexg 5324 . . . 4 ((𝐴𝐵𝐵 ∈ V) → 𝐴 ∈ V)
85, 6, 7sylancl 584 . . 3 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 𝐴 ∈ V)
9 eqid 2730 . . . 4 (+g𝑅) = (+g𝑅)
101, 9ressplusg 17241 . . 3 (𝐴 ∈ V → (+g𝑅) = (+g𝑆))
118, 10syl 17 . 2 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → (+g𝑅) = (+g𝑆))
12 simp2 1135 . 2 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 0𝐴)
13 simpl1 1189 . . 3 (((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) ∧ 𝑥𝐴) → 𝑅 ∈ Mnd)
145sselda 3983 . . 3 (((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) ∧ 𝑥𝐴) → 𝑥𝐵)
15 ress0g.0 . . . 4 0 = (0g𝑅)
162, 9, 15mndlid 18681 . . 3 ((𝑅 ∈ Mnd ∧ 𝑥𝐵) → ( 0 (+g𝑅)𝑥) = 𝑥)
1713, 14, 16syl2anc 582 . 2 (((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) ∧ 𝑥𝐴) → ( 0 (+g𝑅)𝑥) = 𝑥)
182, 9, 15mndrid 18682 . . 3 ((𝑅 ∈ Mnd ∧ 𝑥𝐵) → (𝑥(+g𝑅) 0 ) = 𝑥)
1913, 14, 18syl2anc 582 . 2 (((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) ∧ 𝑥𝐴) → (𝑥(+g𝑅) 0 ) = 𝑥)
204, 11, 12, 17, 19grpidd 18598 1 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 0 = (0g𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1085   = wceq 1539  wcel 2104  Vcvv 3472  wss 3949  cfv 6544  (class class class)co 7413  Basecbs 17150  s cress 17179  +gcplusg 17203  0gc0g 17391  Mndcmnd 18661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190  ax-pre-mulgt0 11191
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7860  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-pnf 11256  df-mnf 11257  df-xr 11258  df-ltxr 11259  df-le 11260  df-sub 11452  df-neg 11453  df-nn 12219  df-2 12281  df-sets 17103  df-slot 17121  df-ndx 17133  df-base 17151  df-ress 17180  df-plusg 17216  df-0g 17393  df-mgm 18567  df-sgrp 18646  df-mnd 18662
This theorem is referenced by:  rngqiprngimf1  21061  nn0srg  21217  rge0srg  21218  zring0  21231  re0g  21386  ressnm  32393  psgnid  32524  cnmsgn0g  32573  altgnsg  32576  xrge0slmod  32731  fermltlchr  32750  znfermltl  32751  ressply1invg  32930  drgext0gsca  32964  lbslsat  32987  ply1degltdimlem  32993  dimkerim  32998  fedgmullem2  33001  evls1fldgencl  33031  algextdeglem4  33063  algextdeglem5  33064  2zrng0  46926
  Copyright terms: Public domain W3C validator