| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ress0g | Structured version Visualization version GIF version | ||
| Description: 0g is unaffected by restriction. This is a bit more generic than submnd0 18671. (Contributed by Thierry Arnoux, 23-Oct-2017.) |
| Ref | Expression |
|---|---|
| ress0g.s | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
| ress0g.b | ⊢ 𝐵 = (Base‘𝑅) |
| ress0g.0 | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| ress0g | ⊢ ((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 0 = (0g‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ress0g.s | . . . 4 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
| 2 | ress0g.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | 1, 2 | ressbas2 17149 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 = (Base‘𝑆)) |
| 4 | 3 | 3ad2ant3 1135 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 𝐴 = (Base‘𝑆)) |
| 5 | simp3 1138 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 𝐴 ⊆ 𝐵) | |
| 6 | 2 | fvexi 6836 | . . . 4 ⊢ 𝐵 ∈ V |
| 7 | ssexg 5259 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ V) → 𝐴 ∈ V) | |
| 8 | 5, 6, 7 | sylancl 586 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 𝐴 ∈ V) |
| 9 | eqid 2731 | . . . 4 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 10 | 1, 9 | ressplusg 17195 | . . 3 ⊢ (𝐴 ∈ V → (+g‘𝑅) = (+g‘𝑆)) |
| 11 | 8, 10 | syl 17 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → (+g‘𝑅) = (+g‘𝑆)) |
| 12 | simp2 1137 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 0 ∈ 𝐴) | |
| 13 | simpl1 1192 | . . 3 ⊢ (((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑅 ∈ Mnd) | |
| 14 | 5 | sselda 3929 | . . 3 ⊢ (((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
| 15 | ress0g.0 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 16 | 2, 9, 15 | mndlid 18662 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → ( 0 (+g‘𝑅)𝑥) = 𝑥) |
| 17 | 13, 14, 16 | syl2anc 584 | . 2 ⊢ (((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ 𝐴) → ( 0 (+g‘𝑅)𝑥) = 𝑥) |
| 18 | 2, 9, 15 | mndrid 18663 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → (𝑥(+g‘𝑅) 0 ) = 𝑥) |
| 19 | 13, 14, 18 | syl2anc 584 | . 2 ⊢ (((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝑥(+g‘𝑅) 0 ) = 𝑥) |
| 20 | 4, 11, 12, 17, 19 | grpidd 18579 | 1 ⊢ ((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 0 = (0g‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 ↾s cress 17141 +gcplusg 17161 0gc0g 17343 Mndcmnd 18642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 |
| This theorem is referenced by: rngqiprngimf1 21237 nn0srg 21374 rge0srg 21375 zring0 21395 fermltlchr 21466 re0g 21549 ressnm 32945 psgnid 33066 cnmsgn0g 33115 altgnsg 33118 subrdom 33251 xrge0slmod 33313 znfermltl 33331 ressply1invg 33532 vr1nz 33554 drgext0gsca 33604 lbslsat 33629 ply1degltdimlem 33635 dimkerim 33640 fedgmullem2 33643 lvecendof1f1o 33646 evls1fldgencl 33683 fldextrspunlsplem 33686 fldextrspunlsp 33687 extdgfialglem1 33705 extdgfialglem2 33706 algextdeglem4 33733 algextdeglem5 33734 rtelextdg2lem 33739 primrootsunit1 42200 aks6d1c6lem5 42280 unitscyglem5 42302 2zrng0 48354 |
| Copyright terms: Public domain | W3C validator |