MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ress0g Structured version   Visualization version   GIF version

Theorem ress0g 18670
Description: 0g is unaffected by restriction. This is a bit more generic than submnd0 18671. (Contributed by Thierry Arnoux, 23-Oct-2017.)
Hypotheses
Ref Expression
ress0g.s 𝑆 = (𝑅s 𝐴)
ress0g.b 𝐵 = (Base‘𝑅)
ress0g.0 0 = (0g𝑅)
Assertion
Ref Expression
ress0g ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 0 = (0g𝑆))

Proof of Theorem ress0g
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ress0g.s . . . 4 𝑆 = (𝑅s 𝐴)
2 ress0g.b . . . 4 𝐵 = (Base‘𝑅)
31, 2ressbas2 17149 . . 3 (𝐴𝐵𝐴 = (Base‘𝑆))
433ad2ant3 1135 . 2 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 𝐴 = (Base‘𝑆))
5 simp3 1138 . . . 4 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 𝐴𝐵)
62fvexi 6836 . . . 4 𝐵 ∈ V
7 ssexg 5259 . . . 4 ((𝐴𝐵𝐵 ∈ V) → 𝐴 ∈ V)
85, 6, 7sylancl 586 . . 3 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 𝐴 ∈ V)
9 eqid 2731 . . . 4 (+g𝑅) = (+g𝑅)
101, 9ressplusg 17195 . . 3 (𝐴 ∈ V → (+g𝑅) = (+g𝑆))
118, 10syl 17 . 2 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → (+g𝑅) = (+g𝑆))
12 simp2 1137 . 2 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 0𝐴)
13 simpl1 1192 . . 3 (((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) ∧ 𝑥𝐴) → 𝑅 ∈ Mnd)
145sselda 3929 . . 3 (((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) ∧ 𝑥𝐴) → 𝑥𝐵)
15 ress0g.0 . . . 4 0 = (0g𝑅)
162, 9, 15mndlid 18662 . . 3 ((𝑅 ∈ Mnd ∧ 𝑥𝐵) → ( 0 (+g𝑅)𝑥) = 𝑥)
1713, 14, 16syl2anc 584 . 2 (((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) ∧ 𝑥𝐴) → ( 0 (+g𝑅)𝑥) = 𝑥)
182, 9, 15mndrid 18663 . . 3 ((𝑅 ∈ Mnd ∧ 𝑥𝐵) → (𝑥(+g𝑅) 0 ) = 𝑥)
1913, 14, 18syl2anc 584 . 2 (((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) ∧ 𝑥𝐴) → (𝑥(+g𝑅) 0 ) = 𝑥)
204, 11, 12, 17, 19grpidd 18579 1 ((𝑅 ∈ Mnd ∧ 0𝐴𝐴𝐵) → 0 = (0g𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  Vcvv 3436  wss 3897  cfv 6481  (class class class)co 7346  Basecbs 17120  s cress 17141  +gcplusg 17161  0gc0g 17343  Mndcmnd 18642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643
This theorem is referenced by:  rngqiprngimf1  21237  nn0srg  21374  rge0srg  21375  zring0  21395  fermltlchr  21466  re0g  21549  ressnm  32945  psgnid  33066  cnmsgn0g  33115  altgnsg  33118  subrdom  33251  xrge0slmod  33313  znfermltl  33331  ressply1invg  33532  vr1nz  33554  drgext0gsca  33604  lbslsat  33629  ply1degltdimlem  33635  dimkerim  33640  fedgmullem2  33643  lvecendof1f1o  33646  evls1fldgencl  33683  fldextrspunlsplem  33686  fldextrspunlsp  33687  extdgfialglem1  33705  extdgfialglem2  33706  algextdeglem4  33733  algextdeglem5  33734  rtelextdg2lem  33739  primrootsunit1  42200  aks6d1c6lem5  42280  unitscyglem5  42302  2zrng0  48354
  Copyright terms: Public domain W3C validator