| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ress0g | Structured version Visualization version GIF version | ||
| Description: 0g is unaffected by restriction. This is a bit more generic than submnd0 18697. (Contributed by Thierry Arnoux, 23-Oct-2017.) |
| Ref | Expression |
|---|---|
| ress0g.s | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
| ress0g.b | ⊢ 𝐵 = (Base‘𝑅) |
| ress0g.0 | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| ress0g | ⊢ ((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 0 = (0g‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ress0g.s | . . . 4 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
| 2 | ress0g.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | 1, 2 | ressbas2 17215 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 = (Base‘𝑆)) |
| 4 | 3 | 3ad2ant3 1135 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 𝐴 = (Base‘𝑆)) |
| 5 | simp3 1138 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 𝐴 ⊆ 𝐵) | |
| 6 | 2 | fvexi 6875 | . . . 4 ⊢ 𝐵 ∈ V |
| 7 | ssexg 5281 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ V) → 𝐴 ∈ V) | |
| 8 | 5, 6, 7 | sylancl 586 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 𝐴 ∈ V) |
| 9 | eqid 2730 | . . . 4 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 10 | 1, 9 | ressplusg 17261 | . . 3 ⊢ (𝐴 ∈ V → (+g‘𝑅) = (+g‘𝑆)) |
| 11 | 8, 10 | syl 17 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → (+g‘𝑅) = (+g‘𝑆)) |
| 12 | simp2 1137 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 0 ∈ 𝐴) | |
| 13 | simpl1 1192 | . . 3 ⊢ (((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑅 ∈ Mnd) | |
| 14 | 5 | sselda 3949 | . . 3 ⊢ (((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
| 15 | ress0g.0 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 16 | 2, 9, 15 | mndlid 18688 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → ( 0 (+g‘𝑅)𝑥) = 𝑥) |
| 17 | 13, 14, 16 | syl2anc 584 | . 2 ⊢ (((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ 𝐴) → ( 0 (+g‘𝑅)𝑥) = 𝑥) |
| 18 | 2, 9, 15 | mndrid 18689 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → (𝑥(+g‘𝑅) 0 ) = 𝑥) |
| 19 | 13, 14, 18 | syl2anc 584 | . 2 ⊢ (((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝑥(+g‘𝑅) 0 ) = 𝑥) |
| 20 | 4, 11, 12, 17, 19 | grpidd 18605 | 1 ⊢ ((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 0 = (0g‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 ↾s cress 17207 +gcplusg 17227 0gc0g 17409 Mndcmnd 18668 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-0g 17411 df-mgm 18574 df-sgrp 18653 df-mnd 18669 |
| This theorem is referenced by: rngqiprngimf1 21217 nn0srg 21361 rge0srg 21362 zring0 21375 fermltlchr 21446 re0g 21528 ressnm 32893 psgnid 33061 cnmsgn0g 33110 altgnsg 33113 subrdom 33242 xrge0slmod 33326 znfermltl 33344 ressply1invg 33545 vr1nz 33566 drgext0gsca 33594 lbslsat 33619 ply1degltdimlem 33625 dimkerim 33630 fedgmullem2 33633 lvecendof1f1o 33636 evls1fldgencl 33672 fldextrspunlsplem 33675 fldextrspunlsp 33676 algextdeglem4 33717 algextdeglem5 33718 rtelextdg2lem 33723 primrootsunit1 42092 aks6d1c6lem5 42172 unitscyglem5 42194 2zrng0 48236 |
| Copyright terms: Public domain | W3C validator |