![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ress0g | Structured version Visualization version GIF version |
Description: 0g is unaffected by restriction. This is a bit more generic than submnd0 18690. (Contributed by Thierry Arnoux, 23-Oct-2017.) |
Ref | Expression |
---|---|
ress0g.s | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
ress0g.b | ⊢ 𝐵 = (Base‘𝑅) |
ress0g.0 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
ress0g | ⊢ ((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 0 = (0g‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ress0g.s | . . . 4 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
2 | ress0g.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
3 | 1, 2 | ressbas2 17188 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → 𝐴 = (Base‘𝑆)) |
4 | 3 | 3ad2ant3 1133 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 𝐴 = (Base‘𝑆)) |
5 | simp3 1136 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 𝐴 ⊆ 𝐵) | |
6 | 2 | fvexi 6906 | . . . 4 ⊢ 𝐵 ∈ V |
7 | ssexg 5324 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ V) → 𝐴 ∈ V) | |
8 | 5, 6, 7 | sylancl 584 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 𝐴 ∈ V) |
9 | eqid 2730 | . . . 4 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
10 | 1, 9 | ressplusg 17241 | . . 3 ⊢ (𝐴 ∈ V → (+g‘𝑅) = (+g‘𝑆)) |
11 | 8, 10 | syl 17 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → (+g‘𝑅) = (+g‘𝑆)) |
12 | simp2 1135 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 0 ∈ 𝐴) | |
13 | simpl1 1189 | . . 3 ⊢ (((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑅 ∈ Mnd) | |
14 | 5 | sselda 3983 | . . 3 ⊢ (((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) |
15 | ress0g.0 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
16 | 2, 9, 15 | mndlid 18681 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → ( 0 (+g‘𝑅)𝑥) = 𝑥) |
17 | 13, 14, 16 | syl2anc 582 | . 2 ⊢ (((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ 𝐴) → ( 0 (+g‘𝑅)𝑥) = 𝑥) |
18 | 2, 9, 15 | mndrid 18682 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝑥 ∈ 𝐵) → (𝑥(+g‘𝑅) 0 ) = 𝑥) |
19 | 13, 14, 18 | syl2anc 582 | . 2 ⊢ (((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) ∧ 𝑥 ∈ 𝐴) → (𝑥(+g‘𝑅) 0 ) = 𝑥) |
20 | 4, 11, 12, 17, 19 | grpidd 18598 | 1 ⊢ ((𝑅 ∈ Mnd ∧ 0 ∈ 𝐴 ∧ 𝐴 ⊆ 𝐵) → 0 = (0g‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1085 = wceq 1539 ∈ wcel 2104 Vcvv 3472 ⊆ wss 3949 ‘cfv 6544 (class class class)co 7413 Basecbs 17150 ↾s cress 17179 +gcplusg 17203 0gc0g 17391 Mndcmnd 18661 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-nn 12219 df-2 12281 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-ress 17180 df-plusg 17216 df-0g 17393 df-mgm 18567 df-sgrp 18646 df-mnd 18662 |
This theorem is referenced by: rngqiprngimf1 21061 nn0srg 21217 rge0srg 21218 zring0 21231 re0g 21386 ressnm 32393 psgnid 32524 cnmsgn0g 32573 altgnsg 32576 xrge0slmod 32731 fermltlchr 32750 znfermltl 32751 ressply1invg 32930 drgext0gsca 32964 lbslsat 32987 ply1degltdimlem 32993 dimkerim 32998 fedgmullem2 33001 evls1fldgencl 33031 algextdeglem4 33063 algextdeglem5 33064 2zrng0 46926 |
Copyright terms: Public domain | W3C validator |