Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrs0 Structured version   Visualization version   GIF version

Theorem xrs0 32973
Description: The zero of the extended real numbers. The extended real is not a group, as its addition is not associative. (cf. xaddass 13169 and df-xrs 17424), however it has a zero. (Contributed by Thierry Arnoux, 13-Jun-2017.)
Assertion
Ref Expression
xrs0 0 = (0g‘ℝ*𝑠)

Proof of Theorem xrs0
StepHypRef Expression
1 xrsbas 17528 . . . 4 * = (Base‘ℝ*𝑠)
21a1i 11 . . 3 (⊤ → ℝ* = (Base‘ℝ*𝑠))
3 xrsadd 21310 . . . 4 +𝑒 = (+g‘ℝ*𝑠)
43a1i 11 . . 3 (⊤ → +𝑒 = (+g‘ℝ*𝑠))
5 0xr 11181 . . . 4 0 ∈ ℝ*
65a1i 11 . . 3 (⊤ → 0 ∈ ℝ*)
7 xaddlid 13162 . . . 4 (𝑥 ∈ ℝ* → (0 +𝑒 𝑥) = 𝑥)
87adantl 481 . . 3 ((⊤ ∧ 𝑥 ∈ ℝ*) → (0 +𝑒 𝑥) = 𝑥)
9 xaddrid 13161 . . . 4 (𝑥 ∈ ℝ* → (𝑥 +𝑒 0) = 𝑥)
109adantl 481 . . 3 ((⊤ ∧ 𝑥 ∈ ℝ*) → (𝑥 +𝑒 0) = 𝑥)
112, 4, 6, 8, 10grpidd 18563 . 2 (⊤ → 0 = (0g‘ℝ*𝑠))
1211mptru 1547 1 0 = (0g‘ℝ*𝑠)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wtru 1541  wcel 2109  cfv 6486  (class class class)co 7353  0cc0 11028  *cxr 11167   +𝑒 cxad 13030  Basecbs 17138  +gcplusg 17179  0gc0g 17361  *𝑠cxrs 17422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-xadd 13033  df-fz 13429  df-struct 17076  df-slot 17111  df-ndx 17123  df-base 17139  df-plusg 17192  df-mulr 17193  df-tset 17198  df-ple 17199  df-ds 17201  df-0g 17363  df-xrs 17424
This theorem is referenced by:  xrsinvgval  32975  xrsmulgzz  32976  xrge0mulgnn0  32982  pnfinf  33135  xrnarchi  33136
  Copyright terms: Public domain W3C validator