Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > smndex1id | Structured version Visualization version GIF version |
Description: The modulo function 𝐼 is the identity of the monoid of endofunctions on ℕ0 restricted to the modulo function 𝐼 and the constant functions (𝐺‘𝐾). (Contributed by AV, 16-Feb-2024.) |
Ref | Expression |
---|---|
smndex1ibas.m | ⊢ 𝑀 = (EndoFMnd‘ℕ0) |
smndex1ibas.n | ⊢ 𝑁 ∈ ℕ |
smndex1ibas.i | ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) |
smndex1ibas.g | ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) |
smndex1mgm.b | ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) |
smndex1mgm.s | ⊢ 𝑆 = (𝑀 ↾s 𝐵) |
Ref | Expression |
---|---|
smndex1id | ⊢ 𝐼 = (0g‘𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smndex1ibas.i | . . . . . 6 ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) | |
2 | nn0ex 12169 | . . . . . . 7 ⊢ ℕ0 ∈ V | |
3 | 2 | mptex 7081 | . . . . . 6 ⊢ (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) ∈ V |
4 | 1, 3 | eqeltri 2835 | . . . . 5 ⊢ 𝐼 ∈ V |
5 | 4 | snid 4594 | . . . 4 ⊢ 𝐼 ∈ {𝐼} |
6 | elun1 4106 | . . . 4 ⊢ (𝐼 ∈ {𝐼} → 𝐼 ∈ ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)})) | |
7 | 5, 6 | ax-mp 5 | . . 3 ⊢ 𝐼 ∈ ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) |
8 | smndex1mgm.b | . . 3 ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) | |
9 | 7, 8 | eleqtrri 2838 | . 2 ⊢ 𝐼 ∈ 𝐵 |
10 | smndex1ibas.m | . . . . . 6 ⊢ 𝑀 = (EndoFMnd‘ℕ0) | |
11 | smndex1ibas.n | . . . . . 6 ⊢ 𝑁 ∈ ℕ | |
12 | smndex1ibas.g | . . . . . 6 ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) | |
13 | smndex1mgm.s | . . . . . 6 ⊢ 𝑆 = (𝑀 ↾s 𝐵) | |
14 | 10, 11, 1, 12, 8, 13 | smndex1bas 18460 | . . . . 5 ⊢ (Base‘𝑆) = 𝐵 |
15 | 14 | eqcomi 2747 | . . . 4 ⊢ 𝐵 = (Base‘𝑆) |
16 | 15 | a1i 11 | . . 3 ⊢ (𝐼 ∈ 𝐵 → 𝐵 = (Base‘𝑆)) |
17 | snex 5349 | . . . . . 6 ⊢ {𝐼} ∈ V | |
18 | ovex 7288 | . . . . . . 7 ⊢ (0..^𝑁) ∈ V | |
19 | snex 5349 | . . . . . . 7 ⊢ {(𝐺‘𝑛)} ∈ V | |
20 | 18, 19 | iunex 7784 | . . . . . 6 ⊢ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)} ∈ V |
21 | 17, 20 | unex 7574 | . . . . 5 ⊢ ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) ∈ V |
22 | 8, 21 | eqeltri 2835 | . . . 4 ⊢ 𝐵 ∈ V |
23 | eqid 2738 | . . . . 5 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
24 | 13, 23 | ressplusg 16926 | . . . 4 ⊢ (𝐵 ∈ V → (+g‘𝑀) = (+g‘𝑆)) |
25 | 22, 24 | mp1i 13 | . . 3 ⊢ (𝐼 ∈ 𝐵 → (+g‘𝑀) = (+g‘𝑆)) |
26 | id 22 | . . 3 ⊢ (𝐼 ∈ 𝐵 → 𝐼 ∈ 𝐵) | |
27 | 10, 11, 1 | smndex1ibas 18454 | . . . . . 6 ⊢ 𝐼 ∈ (Base‘𝑀) |
28 | 27 | a1i 11 | . . . . 5 ⊢ (𝐼 ∈ 𝐵 → 𝐼 ∈ (Base‘𝑀)) |
29 | 10, 11, 1, 12, 8 | smndex1basss 18459 | . . . . . 6 ⊢ 𝐵 ⊆ (Base‘𝑀) |
30 | 29 | sseli 3913 | . . . . 5 ⊢ (𝑎 ∈ 𝐵 → 𝑎 ∈ (Base‘𝑀)) |
31 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
32 | 10, 31, 23 | efmndov 18435 | . . . . 5 ⊢ ((𝐼 ∈ (Base‘𝑀) ∧ 𝑎 ∈ (Base‘𝑀)) → (𝐼(+g‘𝑀)𝑎) = (𝐼 ∘ 𝑎)) |
33 | 28, 30, 32 | syl2an 595 | . . . 4 ⊢ ((𝐼 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) → (𝐼(+g‘𝑀)𝑎) = (𝐼 ∘ 𝑎)) |
34 | 10, 11, 1, 12, 8, 13 | smndex1mndlem 18463 | . . . . . 6 ⊢ (𝑎 ∈ 𝐵 → ((𝐼 ∘ 𝑎) = 𝑎 ∧ (𝑎 ∘ 𝐼) = 𝑎)) |
35 | 34 | simpld 494 | . . . . 5 ⊢ (𝑎 ∈ 𝐵 → (𝐼 ∘ 𝑎) = 𝑎) |
36 | 35 | adantl 481 | . . . 4 ⊢ ((𝐼 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) → (𝐼 ∘ 𝑎) = 𝑎) |
37 | 33, 36 | eqtrd 2778 | . . 3 ⊢ ((𝐼 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) → (𝐼(+g‘𝑀)𝑎) = 𝑎) |
38 | 10, 31, 23 | efmndov 18435 | . . . . 5 ⊢ ((𝑎 ∈ (Base‘𝑀) ∧ 𝐼 ∈ (Base‘𝑀)) → (𝑎(+g‘𝑀)𝐼) = (𝑎 ∘ 𝐼)) |
39 | 30, 28, 38 | syl2anr 596 | . . . 4 ⊢ ((𝐼 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) → (𝑎(+g‘𝑀)𝐼) = (𝑎 ∘ 𝐼)) |
40 | 34 | simprd 495 | . . . . 5 ⊢ (𝑎 ∈ 𝐵 → (𝑎 ∘ 𝐼) = 𝑎) |
41 | 40 | adantl 481 | . . . 4 ⊢ ((𝐼 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) → (𝑎 ∘ 𝐼) = 𝑎) |
42 | 39, 41 | eqtrd 2778 | . . 3 ⊢ ((𝐼 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) → (𝑎(+g‘𝑀)𝐼) = 𝑎) |
43 | 16, 25, 26, 37, 42 | grpidd 18270 | . 2 ⊢ (𝐼 ∈ 𝐵 → 𝐼 = (0g‘𝑆)) |
44 | 9, 43 | ax-mp 5 | 1 ⊢ 𝐼 = (0g‘𝑆) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ∪ cun 3881 {csn 4558 ∪ ciun 4921 ↦ cmpt 5153 ∘ ccom 5584 ‘cfv 6418 (class class class)co 7255 0cc0 10802 ℕcn 11903 ℕ0cn0 12163 ..^cfzo 13311 mod cmo 13517 Basecbs 16840 ↾s cress 16867 +gcplusg 16888 0gc0g 17067 EndoFMndcefmnd 18422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-uz 12512 df-rp 12660 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-tset 16907 df-0g 17069 df-efmnd 18423 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |