![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > smndex1id | Structured version Visualization version GIF version |
Description: The modulo function πΌ is the identity of the monoid of endofunctions on β0 restricted to the modulo function πΌ and the constant functions (πΊβπΎ). (Contributed by AV, 16-Feb-2024.) |
Ref | Expression |
---|---|
smndex1ibas.m | β’ π = (EndoFMndββ0) |
smndex1ibas.n | β’ π β β |
smndex1ibas.i | β’ πΌ = (π₯ β β0 β¦ (π₯ mod π)) |
smndex1ibas.g | β’ πΊ = (π β (0..^π) β¦ (π₯ β β0 β¦ π)) |
smndex1mgm.b | β’ π΅ = ({πΌ} βͺ βͺ π β (0..^π){(πΊβπ)}) |
smndex1mgm.s | β’ π = (π βΎs π΅) |
Ref | Expression |
---|---|
smndex1id | β’ πΌ = (0gβπ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smndex1ibas.i | . . . . . 6 β’ πΌ = (π₯ β β0 β¦ (π₯ mod π)) | |
2 | nn0ex 12474 | . . . . . . 7 β’ β0 β V | |
3 | 2 | mptex 7221 | . . . . . 6 β’ (π₯ β β0 β¦ (π₯ mod π)) β V |
4 | 1, 3 | eqeltri 2829 | . . . . 5 β’ πΌ β V |
5 | 4 | snid 4663 | . . . 4 β’ πΌ β {πΌ} |
6 | elun1 4175 | . . . 4 β’ (πΌ β {πΌ} β πΌ β ({πΌ} βͺ βͺ π β (0..^π){(πΊβπ)})) | |
7 | 5, 6 | ax-mp 5 | . . 3 β’ πΌ β ({πΌ} βͺ βͺ π β (0..^π){(πΊβπ)}) |
8 | smndex1mgm.b | . . 3 β’ π΅ = ({πΌ} βͺ βͺ π β (0..^π){(πΊβπ)}) | |
9 | 7, 8 | eleqtrri 2832 | . 2 β’ πΌ β π΅ |
10 | smndex1ibas.m | . . . . . 6 β’ π = (EndoFMndββ0) | |
11 | smndex1ibas.n | . . . . . 6 β’ π β β | |
12 | smndex1ibas.g | . . . . . 6 β’ πΊ = (π β (0..^π) β¦ (π₯ β β0 β¦ π)) | |
13 | smndex1mgm.s | . . . . . 6 β’ π = (π βΎs π΅) | |
14 | 10, 11, 1, 12, 8, 13 | smndex1bas 18783 | . . . . 5 β’ (Baseβπ) = π΅ |
15 | 14 | eqcomi 2741 | . . . 4 β’ π΅ = (Baseβπ) |
16 | 15 | a1i 11 | . . 3 β’ (πΌ β π΅ β π΅ = (Baseβπ)) |
17 | snex 5430 | . . . . . 6 β’ {πΌ} β V | |
18 | ovex 7438 | . . . . . . 7 β’ (0..^π) β V | |
19 | snex 5430 | . . . . . . 7 β’ {(πΊβπ)} β V | |
20 | 18, 19 | iunex 7951 | . . . . . 6 β’ βͺ π β (0..^π){(πΊβπ)} β V |
21 | 17, 20 | unex 7729 | . . . . 5 β’ ({πΌ} βͺ βͺ π β (0..^π){(πΊβπ)}) β V |
22 | 8, 21 | eqeltri 2829 | . . . 4 β’ π΅ β V |
23 | eqid 2732 | . . . . 5 β’ (+gβπ) = (+gβπ) | |
24 | 13, 23 | ressplusg 17231 | . . . 4 β’ (π΅ β V β (+gβπ) = (+gβπ)) |
25 | 22, 24 | mp1i 13 | . . 3 β’ (πΌ β π΅ β (+gβπ) = (+gβπ)) |
26 | id 22 | . . 3 β’ (πΌ β π΅ β πΌ β π΅) | |
27 | 10, 11, 1 | smndex1ibas 18777 | . . . . . 6 β’ πΌ β (Baseβπ) |
28 | 27 | a1i 11 | . . . . 5 β’ (πΌ β π΅ β πΌ β (Baseβπ)) |
29 | 10, 11, 1, 12, 8 | smndex1basss 18782 | . . . . . 6 β’ π΅ β (Baseβπ) |
30 | 29 | sseli 3977 | . . . . 5 β’ (π β π΅ β π β (Baseβπ)) |
31 | eqid 2732 | . . . . . 6 β’ (Baseβπ) = (Baseβπ) | |
32 | 10, 31, 23 | efmndov 18758 | . . . . 5 β’ ((πΌ β (Baseβπ) β§ π β (Baseβπ)) β (πΌ(+gβπ)π) = (πΌ β π)) |
33 | 28, 30, 32 | syl2an 596 | . . . 4 β’ ((πΌ β π΅ β§ π β π΅) β (πΌ(+gβπ)π) = (πΌ β π)) |
34 | 10, 11, 1, 12, 8, 13 | smndex1mndlem 18786 | . . . . . 6 β’ (π β π΅ β ((πΌ β π) = π β§ (π β πΌ) = π)) |
35 | 34 | simpld 495 | . . . . 5 β’ (π β π΅ β (πΌ β π) = π) |
36 | 35 | adantl 482 | . . . 4 β’ ((πΌ β π΅ β§ π β π΅) β (πΌ β π) = π) |
37 | 33, 36 | eqtrd 2772 | . . 3 β’ ((πΌ β π΅ β§ π β π΅) β (πΌ(+gβπ)π) = π) |
38 | 10, 31, 23 | efmndov 18758 | . . . . 5 β’ ((π β (Baseβπ) β§ πΌ β (Baseβπ)) β (π(+gβπ)πΌ) = (π β πΌ)) |
39 | 30, 28, 38 | syl2anr 597 | . . . 4 β’ ((πΌ β π΅ β§ π β π΅) β (π(+gβπ)πΌ) = (π β πΌ)) |
40 | 34 | simprd 496 | . . . . 5 β’ (π β π΅ β (π β πΌ) = π) |
41 | 40 | adantl 482 | . . . 4 β’ ((πΌ β π΅ β§ π β π΅) β (π β πΌ) = π) |
42 | 39, 41 | eqtrd 2772 | . . 3 β’ ((πΌ β π΅ β§ π β π΅) β (π(+gβπ)πΌ) = π) |
43 | 16, 25, 26, 37, 42 | grpidd 18586 | . 2 β’ (πΌ β π΅ β πΌ = (0gβπ)) |
44 | 9, 43 | ax-mp 5 | 1 β’ πΌ = (0gβπ) |
Colors of variables: wff setvar class |
Syntax hints: β§ wa 396 = wceq 1541 β wcel 2106 Vcvv 3474 βͺ cun 3945 {csn 4627 βͺ ciun 4996 β¦ cmpt 5230 β ccom 5679 βcfv 6540 (class class class)co 7405 0cc0 11106 βcn 12208 β0cn0 12468 ..^cfzo 13623 mod cmo 13830 Basecbs 17140 βΎs cress 17169 +gcplusg 17193 0gc0g 17381 EndoFMndcefmnd 18745 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-uz 12819 df-rp 12971 df-fz 13481 df-fzo 13624 df-fl 13753 df-mod 13831 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-tset 17212 df-0g 17383 df-efmnd 18746 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |