MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndex1id Structured version   Visualization version   GIF version

Theorem smndex1id 18803
Description: The modulo function 𝐼 is the identity of the monoid of endofunctions on 0 restricted to the modulo function 𝐼 and the constant functions (𝐺𝐾). (Contributed by AV, 16-Feb-2024.)
Hypotheses
Ref Expression
smndex1ibas.m 𝑀 = (EndoFMnd‘ℕ0)
smndex1ibas.n 𝑁 ∈ ℕ
smndex1ibas.i 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
smndex1ibas.g 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
smndex1mgm.b 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
smndex1mgm.s 𝑆 = (𝑀s 𝐵)
Assertion
Ref Expression
smndex1id 𝐼 = (0g𝑆)
Distinct variable groups:   𝑥,𝑁,𝑛   𝑥,𝑀   𝑛,𝐺   𝑛,𝑀   𝑥,𝐺   𝑛,𝐼,𝑥   𝑥,𝑆
Allowed substitution hints:   𝐵(𝑥,𝑛)   𝑆(𝑛)

Proof of Theorem smndex1id
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 smndex1ibas.i . . . . . 6 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
2 nn0ex 12408 . . . . . . 7 0 ∈ V
32mptex 7163 . . . . . 6 (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) ∈ V
41, 3eqeltri 2824 . . . . 5 𝐼 ∈ V
54snid 4616 . . . 4 𝐼 ∈ {𝐼}
6 elun1 4135 . . . 4 (𝐼 ∈ {𝐼} → 𝐼 ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}))
75, 6ax-mp 5 . . 3 𝐼 ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
8 smndex1mgm.b . . 3 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
97, 8eleqtrri 2827 . 2 𝐼𝐵
10 smndex1ibas.m . . . . . 6 𝑀 = (EndoFMnd‘ℕ0)
11 smndex1ibas.n . . . . . 6 𝑁 ∈ ℕ
12 smndex1ibas.g . . . . . 6 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
13 smndex1mgm.s . . . . . 6 𝑆 = (𝑀s 𝐵)
1410, 11, 1, 12, 8, 13smndex1bas 18798 . . . . 5 (Base‘𝑆) = 𝐵
1514eqcomi 2738 . . . 4 𝐵 = (Base‘𝑆)
1615a1i 11 . . 3 (𝐼𝐵𝐵 = (Base‘𝑆))
17 snex 5378 . . . . . 6 {𝐼} ∈ V
18 ovex 7386 . . . . . . 7 (0..^𝑁) ∈ V
19 snex 5378 . . . . . . 7 {(𝐺𝑛)} ∈ V
2018, 19iunex 7910 . . . . . 6 𝑛 ∈ (0..^𝑁){(𝐺𝑛)} ∈ V
2117, 20unex 7684 . . . . 5 ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) ∈ V
228, 21eqeltri 2824 . . . 4 𝐵 ∈ V
23 eqid 2729 . . . . 5 (+g𝑀) = (+g𝑀)
2413, 23ressplusg 17213 . . . 4 (𝐵 ∈ V → (+g𝑀) = (+g𝑆))
2522, 24mp1i 13 . . 3 (𝐼𝐵 → (+g𝑀) = (+g𝑆))
26 id 22 . . 3 (𝐼𝐵𝐼𝐵)
2710, 11, 1smndex1ibas 18792 . . . . . 6 𝐼 ∈ (Base‘𝑀)
2827a1i 11 . . . . 5 (𝐼𝐵𝐼 ∈ (Base‘𝑀))
2910, 11, 1, 12, 8smndex1basss 18797 . . . . . 6 𝐵 ⊆ (Base‘𝑀)
3029sseli 3933 . . . . 5 (𝑎𝐵𝑎 ∈ (Base‘𝑀))
31 eqid 2729 . . . . . 6 (Base‘𝑀) = (Base‘𝑀)
3210, 31, 23efmndov 18773 . . . . 5 ((𝐼 ∈ (Base‘𝑀) ∧ 𝑎 ∈ (Base‘𝑀)) → (𝐼(+g𝑀)𝑎) = (𝐼𝑎))
3328, 30, 32syl2an 596 . . . 4 ((𝐼𝐵𝑎𝐵) → (𝐼(+g𝑀)𝑎) = (𝐼𝑎))
3410, 11, 1, 12, 8, 13smndex1mndlem 18801 . . . . . 6 (𝑎𝐵 → ((𝐼𝑎) = 𝑎 ∧ (𝑎𝐼) = 𝑎))
3534simpld 494 . . . . 5 (𝑎𝐵 → (𝐼𝑎) = 𝑎)
3635adantl 481 . . . 4 ((𝐼𝐵𝑎𝐵) → (𝐼𝑎) = 𝑎)
3733, 36eqtrd 2764 . . 3 ((𝐼𝐵𝑎𝐵) → (𝐼(+g𝑀)𝑎) = 𝑎)
3810, 31, 23efmndov 18773 . . . . 5 ((𝑎 ∈ (Base‘𝑀) ∧ 𝐼 ∈ (Base‘𝑀)) → (𝑎(+g𝑀)𝐼) = (𝑎𝐼))
3930, 28, 38syl2anr 597 . . . 4 ((𝐼𝐵𝑎𝐵) → (𝑎(+g𝑀)𝐼) = (𝑎𝐼))
4034simprd 495 . . . . 5 (𝑎𝐵 → (𝑎𝐼) = 𝑎)
4140adantl 481 . . . 4 ((𝐼𝐵𝑎𝐵) → (𝑎𝐼) = 𝑎)
4239, 41eqtrd 2764 . . 3 ((𝐼𝐵𝑎𝐵) → (𝑎(+g𝑀)𝐼) = 𝑎)
4316, 25, 26, 37, 42grpidd 18563 . 2 (𝐼𝐵𝐼 = (0g𝑆))
449, 43ax-mp 5 1 𝐼 = (0g𝑆)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  cun 3903  {csn 4579   ciun 4944  cmpt 5176  ccom 5627  cfv 6486  (class class class)co 7353  0cc0 11028  cn 12146  0cn0 12402  ..^cfzo 13575   mod cmo 13791  Basecbs 17138  s cress 17159  +gcplusg 17179  0gc0g 17361  EndoFMndcefmnd 18760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-tset 17198  df-0g 17363  df-efmnd 18761
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator