| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > smndex1id | Structured version Visualization version GIF version | ||
| Description: The modulo function 𝐼 is the identity of the monoid of endofunctions on ℕ0 restricted to the modulo function 𝐼 and the constant functions (𝐺‘𝐾). (Contributed by AV, 16-Feb-2024.) |
| Ref | Expression |
|---|---|
| smndex1ibas.m | ⊢ 𝑀 = (EndoFMnd‘ℕ0) |
| smndex1ibas.n | ⊢ 𝑁 ∈ ℕ |
| smndex1ibas.i | ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) |
| smndex1ibas.g | ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) |
| smndex1mgm.b | ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) |
| smndex1mgm.s | ⊢ 𝑆 = (𝑀 ↾s 𝐵) |
| Ref | Expression |
|---|---|
| smndex1id | ⊢ 𝐼 = (0g‘𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smndex1ibas.i | . . . . . 6 ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) | |
| 2 | nn0ex 12396 | . . . . . . 7 ⊢ ℕ0 ∈ V | |
| 3 | 2 | mptex 7165 | . . . . . 6 ⊢ (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) ∈ V |
| 4 | 1, 3 | eqeltri 2829 | . . . . 5 ⊢ 𝐼 ∈ V |
| 5 | 4 | snid 4616 | . . . 4 ⊢ 𝐼 ∈ {𝐼} |
| 6 | elun1 4131 | . . . 4 ⊢ (𝐼 ∈ {𝐼} → 𝐼 ∈ ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)})) | |
| 7 | 5, 6 | ax-mp 5 | . . 3 ⊢ 𝐼 ∈ ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) |
| 8 | smndex1mgm.b | . . 3 ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) | |
| 9 | 7, 8 | eleqtrri 2832 | . 2 ⊢ 𝐼 ∈ 𝐵 |
| 10 | smndex1ibas.m | . . . . . 6 ⊢ 𝑀 = (EndoFMnd‘ℕ0) | |
| 11 | smndex1ibas.n | . . . . . 6 ⊢ 𝑁 ∈ ℕ | |
| 12 | smndex1ibas.g | . . . . . 6 ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) | |
| 13 | smndex1mgm.s | . . . . . 6 ⊢ 𝑆 = (𝑀 ↾s 𝐵) | |
| 14 | 10, 11, 1, 12, 8, 13 | smndex1bas 18818 | . . . . 5 ⊢ (Base‘𝑆) = 𝐵 |
| 15 | 14 | eqcomi 2742 | . . . 4 ⊢ 𝐵 = (Base‘𝑆) |
| 16 | 15 | a1i 11 | . . 3 ⊢ (𝐼 ∈ 𝐵 → 𝐵 = (Base‘𝑆)) |
| 17 | snex 5378 | . . . . . 6 ⊢ {𝐼} ∈ V | |
| 18 | ovex 7387 | . . . . . . 7 ⊢ (0..^𝑁) ∈ V | |
| 19 | snex 5378 | . . . . . . 7 ⊢ {(𝐺‘𝑛)} ∈ V | |
| 20 | 18, 19 | iunex 7908 | . . . . . 6 ⊢ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)} ∈ V |
| 21 | 17, 20 | unex 7685 | . . . . 5 ⊢ ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) ∈ V |
| 22 | 8, 21 | eqeltri 2829 | . . . 4 ⊢ 𝐵 ∈ V |
| 23 | eqid 2733 | . . . . 5 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 24 | 13, 23 | ressplusg 17199 | . . . 4 ⊢ (𝐵 ∈ V → (+g‘𝑀) = (+g‘𝑆)) |
| 25 | 22, 24 | mp1i 13 | . . 3 ⊢ (𝐼 ∈ 𝐵 → (+g‘𝑀) = (+g‘𝑆)) |
| 26 | id 22 | . . 3 ⊢ (𝐼 ∈ 𝐵 → 𝐼 ∈ 𝐵) | |
| 27 | 10, 11, 1 | smndex1ibas 18812 | . . . . . 6 ⊢ 𝐼 ∈ (Base‘𝑀) |
| 28 | 27 | a1i 11 | . . . . 5 ⊢ (𝐼 ∈ 𝐵 → 𝐼 ∈ (Base‘𝑀)) |
| 29 | 10, 11, 1, 12, 8 | smndex1basss 18817 | . . . . . 6 ⊢ 𝐵 ⊆ (Base‘𝑀) |
| 30 | 29 | sseli 3926 | . . . . 5 ⊢ (𝑎 ∈ 𝐵 → 𝑎 ∈ (Base‘𝑀)) |
| 31 | eqid 2733 | . . . . . 6 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 32 | 10, 31, 23 | efmndov 18793 | . . . . 5 ⊢ ((𝐼 ∈ (Base‘𝑀) ∧ 𝑎 ∈ (Base‘𝑀)) → (𝐼(+g‘𝑀)𝑎) = (𝐼 ∘ 𝑎)) |
| 33 | 28, 30, 32 | syl2an 596 | . . . 4 ⊢ ((𝐼 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) → (𝐼(+g‘𝑀)𝑎) = (𝐼 ∘ 𝑎)) |
| 34 | 10, 11, 1, 12, 8, 13 | smndex1mndlem 18821 | . . . . . 6 ⊢ (𝑎 ∈ 𝐵 → ((𝐼 ∘ 𝑎) = 𝑎 ∧ (𝑎 ∘ 𝐼) = 𝑎)) |
| 35 | 34 | simpld 494 | . . . . 5 ⊢ (𝑎 ∈ 𝐵 → (𝐼 ∘ 𝑎) = 𝑎) |
| 36 | 35 | adantl 481 | . . . 4 ⊢ ((𝐼 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) → (𝐼 ∘ 𝑎) = 𝑎) |
| 37 | 33, 36 | eqtrd 2768 | . . 3 ⊢ ((𝐼 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) → (𝐼(+g‘𝑀)𝑎) = 𝑎) |
| 38 | 10, 31, 23 | efmndov 18793 | . . . . 5 ⊢ ((𝑎 ∈ (Base‘𝑀) ∧ 𝐼 ∈ (Base‘𝑀)) → (𝑎(+g‘𝑀)𝐼) = (𝑎 ∘ 𝐼)) |
| 39 | 30, 28, 38 | syl2anr 597 | . . . 4 ⊢ ((𝐼 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) → (𝑎(+g‘𝑀)𝐼) = (𝑎 ∘ 𝐼)) |
| 40 | 34 | simprd 495 | . . . . 5 ⊢ (𝑎 ∈ 𝐵 → (𝑎 ∘ 𝐼) = 𝑎) |
| 41 | 40 | adantl 481 | . . . 4 ⊢ ((𝐼 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) → (𝑎 ∘ 𝐼) = 𝑎) |
| 42 | 39, 41 | eqtrd 2768 | . . 3 ⊢ ((𝐼 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) → (𝑎(+g‘𝑀)𝐼) = 𝑎) |
| 43 | 16, 25, 26, 37, 42 | grpidd 18583 | . 2 ⊢ (𝐼 ∈ 𝐵 → 𝐼 = (0g‘𝑆)) |
| 44 | 9, 43 | ax-mp 5 | 1 ⊢ 𝐼 = (0g‘𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∪ cun 3896 {csn 4577 ∪ ciun 4943 ↦ cmpt 5176 ∘ ccom 5625 ‘cfv 6488 (class class class)co 7354 0cc0 11015 ℕcn 12134 ℕ0cn0 12390 ..^cfzo 13558 mod cmo 13777 Basecbs 17124 ↾s cress 17145 +gcplusg 17165 0gc0g 17347 EndoFMndcefmnd 18780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 ax-pre-sup 11093 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-map 8760 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-sup 9335 df-inf 9336 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-div 11784 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-7 12202 df-8 12203 df-9 12204 df-n0 12391 df-z 12478 df-uz 12741 df-rp 12895 df-fz 13412 df-fzo 13559 df-fl 13700 df-mod 13778 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17125 df-ress 17146 df-plusg 17178 df-tset 17184 df-0g 17349 df-efmnd 18781 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |