| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > smndex1id | Structured version Visualization version GIF version | ||
| Description: The modulo function 𝐼 is the identity of the monoid of endofunctions on ℕ0 restricted to the modulo function 𝐼 and the constant functions (𝐺‘𝐾). (Contributed by AV, 16-Feb-2024.) |
| Ref | Expression |
|---|---|
| smndex1ibas.m | ⊢ 𝑀 = (EndoFMnd‘ℕ0) |
| smndex1ibas.n | ⊢ 𝑁 ∈ ℕ |
| smndex1ibas.i | ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) |
| smndex1ibas.g | ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) |
| smndex1mgm.b | ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) |
| smndex1mgm.s | ⊢ 𝑆 = (𝑀 ↾s 𝐵) |
| Ref | Expression |
|---|---|
| smndex1id | ⊢ 𝐼 = (0g‘𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smndex1ibas.i | . . . . . 6 ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) | |
| 2 | nn0ex 12448 | . . . . . . 7 ⊢ ℕ0 ∈ V | |
| 3 | 2 | mptex 7197 | . . . . . 6 ⊢ (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) ∈ V |
| 4 | 1, 3 | eqeltri 2824 | . . . . 5 ⊢ 𝐼 ∈ V |
| 5 | 4 | snid 4626 | . . . 4 ⊢ 𝐼 ∈ {𝐼} |
| 6 | elun1 4145 | . . . 4 ⊢ (𝐼 ∈ {𝐼} → 𝐼 ∈ ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)})) | |
| 7 | 5, 6 | ax-mp 5 | . . 3 ⊢ 𝐼 ∈ ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) |
| 8 | smndex1mgm.b | . . 3 ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) | |
| 9 | 7, 8 | eleqtrri 2827 | . 2 ⊢ 𝐼 ∈ 𝐵 |
| 10 | smndex1ibas.m | . . . . . 6 ⊢ 𝑀 = (EndoFMnd‘ℕ0) | |
| 11 | smndex1ibas.n | . . . . . 6 ⊢ 𝑁 ∈ ℕ | |
| 12 | smndex1ibas.g | . . . . . 6 ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) | |
| 13 | smndex1mgm.s | . . . . . 6 ⊢ 𝑆 = (𝑀 ↾s 𝐵) | |
| 14 | 10, 11, 1, 12, 8, 13 | smndex1bas 18833 | . . . . 5 ⊢ (Base‘𝑆) = 𝐵 |
| 15 | 14 | eqcomi 2738 | . . . 4 ⊢ 𝐵 = (Base‘𝑆) |
| 16 | 15 | a1i 11 | . . 3 ⊢ (𝐼 ∈ 𝐵 → 𝐵 = (Base‘𝑆)) |
| 17 | snex 5391 | . . . . . 6 ⊢ {𝐼} ∈ V | |
| 18 | ovex 7420 | . . . . . . 7 ⊢ (0..^𝑁) ∈ V | |
| 19 | snex 5391 | . . . . . . 7 ⊢ {(𝐺‘𝑛)} ∈ V | |
| 20 | 18, 19 | iunex 7947 | . . . . . 6 ⊢ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)} ∈ V |
| 21 | 17, 20 | unex 7720 | . . . . 5 ⊢ ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) ∈ V |
| 22 | 8, 21 | eqeltri 2824 | . . . 4 ⊢ 𝐵 ∈ V |
| 23 | eqid 2729 | . . . . 5 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
| 24 | 13, 23 | ressplusg 17254 | . . . 4 ⊢ (𝐵 ∈ V → (+g‘𝑀) = (+g‘𝑆)) |
| 25 | 22, 24 | mp1i 13 | . . 3 ⊢ (𝐼 ∈ 𝐵 → (+g‘𝑀) = (+g‘𝑆)) |
| 26 | id 22 | . . 3 ⊢ (𝐼 ∈ 𝐵 → 𝐼 ∈ 𝐵) | |
| 27 | 10, 11, 1 | smndex1ibas 18827 | . . . . . 6 ⊢ 𝐼 ∈ (Base‘𝑀) |
| 28 | 27 | a1i 11 | . . . . 5 ⊢ (𝐼 ∈ 𝐵 → 𝐼 ∈ (Base‘𝑀)) |
| 29 | 10, 11, 1, 12, 8 | smndex1basss 18832 | . . . . . 6 ⊢ 𝐵 ⊆ (Base‘𝑀) |
| 30 | 29 | sseli 3942 | . . . . 5 ⊢ (𝑎 ∈ 𝐵 → 𝑎 ∈ (Base‘𝑀)) |
| 31 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
| 32 | 10, 31, 23 | efmndov 18808 | . . . . 5 ⊢ ((𝐼 ∈ (Base‘𝑀) ∧ 𝑎 ∈ (Base‘𝑀)) → (𝐼(+g‘𝑀)𝑎) = (𝐼 ∘ 𝑎)) |
| 33 | 28, 30, 32 | syl2an 596 | . . . 4 ⊢ ((𝐼 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) → (𝐼(+g‘𝑀)𝑎) = (𝐼 ∘ 𝑎)) |
| 34 | 10, 11, 1, 12, 8, 13 | smndex1mndlem 18836 | . . . . . 6 ⊢ (𝑎 ∈ 𝐵 → ((𝐼 ∘ 𝑎) = 𝑎 ∧ (𝑎 ∘ 𝐼) = 𝑎)) |
| 35 | 34 | simpld 494 | . . . . 5 ⊢ (𝑎 ∈ 𝐵 → (𝐼 ∘ 𝑎) = 𝑎) |
| 36 | 35 | adantl 481 | . . . 4 ⊢ ((𝐼 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) → (𝐼 ∘ 𝑎) = 𝑎) |
| 37 | 33, 36 | eqtrd 2764 | . . 3 ⊢ ((𝐼 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) → (𝐼(+g‘𝑀)𝑎) = 𝑎) |
| 38 | 10, 31, 23 | efmndov 18808 | . . . . 5 ⊢ ((𝑎 ∈ (Base‘𝑀) ∧ 𝐼 ∈ (Base‘𝑀)) → (𝑎(+g‘𝑀)𝐼) = (𝑎 ∘ 𝐼)) |
| 39 | 30, 28, 38 | syl2anr 597 | . . . 4 ⊢ ((𝐼 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) → (𝑎(+g‘𝑀)𝐼) = (𝑎 ∘ 𝐼)) |
| 40 | 34 | simprd 495 | . . . . 5 ⊢ (𝑎 ∈ 𝐵 → (𝑎 ∘ 𝐼) = 𝑎) |
| 41 | 40 | adantl 481 | . . . 4 ⊢ ((𝐼 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) → (𝑎 ∘ 𝐼) = 𝑎) |
| 42 | 39, 41 | eqtrd 2764 | . . 3 ⊢ ((𝐼 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) → (𝑎(+g‘𝑀)𝐼) = 𝑎) |
| 43 | 16, 25, 26, 37, 42 | grpidd 18598 | . 2 ⊢ (𝐼 ∈ 𝐵 → 𝐼 = (0g‘𝑆)) |
| 44 | 9, 43 | ax-mp 5 | 1 ⊢ 𝐼 = (0g‘𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∪ cun 3912 {csn 4589 ∪ ciun 4955 ↦ cmpt 5188 ∘ ccom 5642 ‘cfv 6511 (class class class)co 7387 0cc0 11068 ℕcn 12186 ℕ0cn0 12442 ..^cfzo 13615 mod cmo 13831 Basecbs 17179 ↾s cress 17200 +gcplusg 17220 0gc0g 17402 EndoFMndcefmnd 18795 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-uz 12794 df-rp 12952 df-fz 13469 df-fzo 13616 df-fl 13754 df-mod 13832 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-tset 17239 df-0g 17404 df-efmnd 18796 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |