Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > smndex1id | Structured version Visualization version GIF version |
Description: The modulo function 𝐼 is the identity of the monoid of endofunctions on ℕ0 restricted to the modulo function 𝐼 and the constant functions (𝐺‘𝐾). (Contributed by AV, 16-Feb-2024.) |
Ref | Expression |
---|---|
smndex1ibas.m | ⊢ 𝑀 = (EndoFMnd‘ℕ0) |
smndex1ibas.n | ⊢ 𝑁 ∈ ℕ |
smndex1ibas.i | ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) |
smndex1ibas.g | ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) |
smndex1mgm.b | ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) |
smndex1mgm.s | ⊢ 𝑆 = (𝑀 ↾s 𝐵) |
Ref | Expression |
---|---|
smndex1id | ⊢ 𝐼 = (0g‘𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smndex1ibas.i | . . . . . 6 ⊢ 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) | |
2 | nn0ex 12239 | . . . . . . 7 ⊢ ℕ0 ∈ V | |
3 | 2 | mptex 7099 | . . . . . 6 ⊢ (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) ∈ V |
4 | 1, 3 | eqeltri 2835 | . . . . 5 ⊢ 𝐼 ∈ V |
5 | 4 | snid 4597 | . . . 4 ⊢ 𝐼 ∈ {𝐼} |
6 | elun1 4110 | . . . 4 ⊢ (𝐼 ∈ {𝐼} → 𝐼 ∈ ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)})) | |
7 | 5, 6 | ax-mp 5 | . . 3 ⊢ 𝐼 ∈ ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) |
8 | smndex1mgm.b | . . 3 ⊢ 𝐵 = ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) | |
9 | 7, 8 | eleqtrri 2838 | . 2 ⊢ 𝐼 ∈ 𝐵 |
10 | smndex1ibas.m | . . . . . 6 ⊢ 𝑀 = (EndoFMnd‘ℕ0) | |
11 | smndex1ibas.n | . . . . . 6 ⊢ 𝑁 ∈ ℕ | |
12 | smndex1ibas.g | . . . . . 6 ⊢ 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0 ↦ 𝑛)) | |
13 | smndex1mgm.s | . . . . . 6 ⊢ 𝑆 = (𝑀 ↾s 𝐵) | |
14 | 10, 11, 1, 12, 8, 13 | smndex1bas 18545 | . . . . 5 ⊢ (Base‘𝑆) = 𝐵 |
15 | 14 | eqcomi 2747 | . . . 4 ⊢ 𝐵 = (Base‘𝑆) |
16 | 15 | a1i 11 | . . 3 ⊢ (𝐼 ∈ 𝐵 → 𝐵 = (Base‘𝑆)) |
17 | snex 5354 | . . . . . 6 ⊢ {𝐼} ∈ V | |
18 | ovex 7308 | . . . . . . 7 ⊢ (0..^𝑁) ∈ V | |
19 | snex 5354 | . . . . . . 7 ⊢ {(𝐺‘𝑛)} ∈ V | |
20 | 18, 19 | iunex 7811 | . . . . . 6 ⊢ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)} ∈ V |
21 | 17, 20 | unex 7596 | . . . . 5 ⊢ ({𝐼} ∪ ∪ 𝑛 ∈ (0..^𝑁){(𝐺‘𝑛)}) ∈ V |
22 | 8, 21 | eqeltri 2835 | . . . 4 ⊢ 𝐵 ∈ V |
23 | eqid 2738 | . . . . 5 ⊢ (+g‘𝑀) = (+g‘𝑀) | |
24 | 13, 23 | ressplusg 17000 | . . . 4 ⊢ (𝐵 ∈ V → (+g‘𝑀) = (+g‘𝑆)) |
25 | 22, 24 | mp1i 13 | . . 3 ⊢ (𝐼 ∈ 𝐵 → (+g‘𝑀) = (+g‘𝑆)) |
26 | id 22 | . . 3 ⊢ (𝐼 ∈ 𝐵 → 𝐼 ∈ 𝐵) | |
27 | 10, 11, 1 | smndex1ibas 18539 | . . . . . 6 ⊢ 𝐼 ∈ (Base‘𝑀) |
28 | 27 | a1i 11 | . . . . 5 ⊢ (𝐼 ∈ 𝐵 → 𝐼 ∈ (Base‘𝑀)) |
29 | 10, 11, 1, 12, 8 | smndex1basss 18544 | . . . . . 6 ⊢ 𝐵 ⊆ (Base‘𝑀) |
30 | 29 | sseli 3917 | . . . . 5 ⊢ (𝑎 ∈ 𝐵 → 𝑎 ∈ (Base‘𝑀)) |
31 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
32 | 10, 31, 23 | efmndov 18520 | . . . . 5 ⊢ ((𝐼 ∈ (Base‘𝑀) ∧ 𝑎 ∈ (Base‘𝑀)) → (𝐼(+g‘𝑀)𝑎) = (𝐼 ∘ 𝑎)) |
33 | 28, 30, 32 | syl2an 596 | . . . 4 ⊢ ((𝐼 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) → (𝐼(+g‘𝑀)𝑎) = (𝐼 ∘ 𝑎)) |
34 | 10, 11, 1, 12, 8, 13 | smndex1mndlem 18548 | . . . . . 6 ⊢ (𝑎 ∈ 𝐵 → ((𝐼 ∘ 𝑎) = 𝑎 ∧ (𝑎 ∘ 𝐼) = 𝑎)) |
35 | 34 | simpld 495 | . . . . 5 ⊢ (𝑎 ∈ 𝐵 → (𝐼 ∘ 𝑎) = 𝑎) |
36 | 35 | adantl 482 | . . . 4 ⊢ ((𝐼 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) → (𝐼 ∘ 𝑎) = 𝑎) |
37 | 33, 36 | eqtrd 2778 | . . 3 ⊢ ((𝐼 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) → (𝐼(+g‘𝑀)𝑎) = 𝑎) |
38 | 10, 31, 23 | efmndov 18520 | . . . . 5 ⊢ ((𝑎 ∈ (Base‘𝑀) ∧ 𝐼 ∈ (Base‘𝑀)) → (𝑎(+g‘𝑀)𝐼) = (𝑎 ∘ 𝐼)) |
39 | 30, 28, 38 | syl2anr 597 | . . . 4 ⊢ ((𝐼 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) → (𝑎(+g‘𝑀)𝐼) = (𝑎 ∘ 𝐼)) |
40 | 34 | simprd 496 | . . . . 5 ⊢ (𝑎 ∈ 𝐵 → (𝑎 ∘ 𝐼) = 𝑎) |
41 | 40 | adantl 482 | . . . 4 ⊢ ((𝐼 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) → (𝑎 ∘ 𝐼) = 𝑎) |
42 | 39, 41 | eqtrd 2778 | . . 3 ⊢ ((𝐼 ∈ 𝐵 ∧ 𝑎 ∈ 𝐵) → (𝑎(+g‘𝑀)𝐼) = 𝑎) |
43 | 16, 25, 26, 37, 42 | grpidd 18355 | . 2 ⊢ (𝐼 ∈ 𝐵 → 𝐼 = (0g‘𝑆)) |
44 | 9, 43 | ax-mp 5 | 1 ⊢ 𝐼 = (0g‘𝑆) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∪ cun 3885 {csn 4561 ∪ ciun 4924 ↦ cmpt 5157 ∘ ccom 5593 ‘cfv 6433 (class class class)co 7275 0cc0 10871 ℕcn 11973 ℕ0cn0 12233 ..^cfzo 13382 mod cmo 13589 Basecbs 16912 ↾s cress 16941 +gcplusg 16962 0gc0g 17150 EndoFMndcefmnd 18507 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-fz 13240 df-fzo 13383 df-fl 13512 df-mod 13590 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-tset 16981 df-0g 17152 df-efmnd 18508 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |