MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smndex1id Structured version   Visualization version   GIF version

Theorem smndex1id 18896
Description: The modulo function 𝐼 is the identity of the monoid of endofunctions on 0 restricted to the modulo function 𝐼 and the constant functions (𝐺𝐾). (Contributed by AV, 16-Feb-2024.)
Hypotheses
Ref Expression
smndex1ibas.m 𝑀 = (EndoFMnd‘ℕ0)
smndex1ibas.n 𝑁 ∈ ℕ
smndex1ibas.i 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
smndex1ibas.g 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
smndex1mgm.b 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
smndex1mgm.s 𝑆 = (𝑀s 𝐵)
Assertion
Ref Expression
smndex1id 𝐼 = (0g𝑆)
Distinct variable groups:   𝑥,𝑁,𝑛   𝑥,𝑀   𝑛,𝐺   𝑛,𝑀   𝑥,𝐺   𝑛,𝐼,𝑥   𝑥,𝑆
Allowed substitution hints:   𝐵(𝑥,𝑛)   𝑆(𝑛)

Proof of Theorem smndex1id
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 smndex1ibas.i . . . . . 6 𝐼 = (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁))
2 nn0ex 12524 . . . . . . 7 0 ∈ V
32mptex 7232 . . . . . 6 (𝑥 ∈ ℕ0 ↦ (𝑥 mod 𝑁)) ∈ V
41, 3eqeltri 2822 . . . . 5 𝐼 ∈ V
54snid 4659 . . . 4 𝐼 ∈ {𝐼}
6 elun1 4174 . . . 4 (𝐼 ∈ {𝐼} → 𝐼 ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}))
75, 6ax-mp 5 . . 3 𝐼 ∈ ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
8 smndex1mgm.b . . 3 𝐵 = ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)})
97, 8eleqtrri 2825 . 2 𝐼𝐵
10 smndex1ibas.m . . . . . 6 𝑀 = (EndoFMnd‘ℕ0)
11 smndex1ibas.n . . . . . 6 𝑁 ∈ ℕ
12 smndex1ibas.g . . . . . 6 𝐺 = (𝑛 ∈ (0..^𝑁) ↦ (𝑥 ∈ ℕ0𝑛))
13 smndex1mgm.s . . . . . 6 𝑆 = (𝑀s 𝐵)
1410, 11, 1, 12, 8, 13smndex1bas 18891 . . . . 5 (Base‘𝑆) = 𝐵
1514eqcomi 2735 . . . 4 𝐵 = (Base‘𝑆)
1615a1i 11 . . 3 (𝐼𝐵𝐵 = (Base‘𝑆))
17 snex 5429 . . . . . 6 {𝐼} ∈ V
18 ovex 7449 . . . . . . 7 (0..^𝑁) ∈ V
19 snex 5429 . . . . . . 7 {(𝐺𝑛)} ∈ V
2018, 19iunex 7974 . . . . . 6 𝑛 ∈ (0..^𝑁){(𝐺𝑛)} ∈ V
2117, 20unex 7746 . . . . 5 ({𝐼} ∪ 𝑛 ∈ (0..^𝑁){(𝐺𝑛)}) ∈ V
228, 21eqeltri 2822 . . . 4 𝐵 ∈ V
23 eqid 2726 . . . . 5 (+g𝑀) = (+g𝑀)
2413, 23ressplusg 17299 . . . 4 (𝐵 ∈ V → (+g𝑀) = (+g𝑆))
2522, 24mp1i 13 . . 3 (𝐼𝐵 → (+g𝑀) = (+g𝑆))
26 id 22 . . 3 (𝐼𝐵𝐼𝐵)
2710, 11, 1smndex1ibas 18885 . . . . . 6 𝐼 ∈ (Base‘𝑀)
2827a1i 11 . . . . 5 (𝐼𝐵𝐼 ∈ (Base‘𝑀))
2910, 11, 1, 12, 8smndex1basss 18890 . . . . . 6 𝐵 ⊆ (Base‘𝑀)
3029sseli 3974 . . . . 5 (𝑎𝐵𝑎 ∈ (Base‘𝑀))
31 eqid 2726 . . . . . 6 (Base‘𝑀) = (Base‘𝑀)
3210, 31, 23efmndov 18866 . . . . 5 ((𝐼 ∈ (Base‘𝑀) ∧ 𝑎 ∈ (Base‘𝑀)) → (𝐼(+g𝑀)𝑎) = (𝐼𝑎))
3328, 30, 32syl2an 594 . . . 4 ((𝐼𝐵𝑎𝐵) → (𝐼(+g𝑀)𝑎) = (𝐼𝑎))
3410, 11, 1, 12, 8, 13smndex1mndlem 18894 . . . . . 6 (𝑎𝐵 → ((𝐼𝑎) = 𝑎 ∧ (𝑎𝐼) = 𝑎))
3534simpld 493 . . . . 5 (𝑎𝐵 → (𝐼𝑎) = 𝑎)
3635adantl 480 . . . 4 ((𝐼𝐵𝑎𝐵) → (𝐼𝑎) = 𝑎)
3733, 36eqtrd 2766 . . 3 ((𝐼𝐵𝑎𝐵) → (𝐼(+g𝑀)𝑎) = 𝑎)
3810, 31, 23efmndov 18866 . . . . 5 ((𝑎 ∈ (Base‘𝑀) ∧ 𝐼 ∈ (Base‘𝑀)) → (𝑎(+g𝑀)𝐼) = (𝑎𝐼))
3930, 28, 38syl2anr 595 . . . 4 ((𝐼𝐵𝑎𝐵) → (𝑎(+g𝑀)𝐼) = (𝑎𝐼))
4034simprd 494 . . . . 5 (𝑎𝐵 → (𝑎𝐼) = 𝑎)
4140adantl 480 . . . 4 ((𝐼𝐵𝑎𝐵) → (𝑎𝐼) = 𝑎)
4239, 41eqtrd 2766 . . 3 ((𝐼𝐵𝑎𝐵) → (𝑎(+g𝑀)𝐼) = 𝑎)
4316, 25, 26, 37, 42grpidd 18659 . 2 (𝐼𝐵𝐼 = (0g𝑆))
449, 43ax-mp 5 1 𝐼 = (0g𝑆)
Colors of variables: wff setvar class
Syntax hints:  wa 394   = wceq 1534  wcel 2099  Vcvv 3462  cun 3944  {csn 4623   ciun 4993  cmpt 5228  ccom 5678  cfv 6546  (class class class)co 7416  0cc0 11149  cn 12258  0cn0 12518  ..^cfzo 13675   mod cmo 13883  Basecbs 17208  s cress 17237  +gcplusg 17261  0gc0g 17449  EndoFMndcefmnd 18853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226  ax-pre-sup 11227
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8726  df-map 8849  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-sup 9478  df-inf 9479  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-div 11913  df-nn 12259  df-2 12321  df-3 12322  df-4 12323  df-5 12324  df-6 12325  df-7 12326  df-8 12327  df-9 12328  df-n0 12519  df-z 12605  df-uz 12869  df-rp 13023  df-fz 13533  df-fzo 13676  df-fl 13806  df-mod 13884  df-struct 17144  df-sets 17161  df-slot 17179  df-ndx 17191  df-base 17209  df-ress 17238  df-plusg 17274  df-tset 17280  df-0g 17451  df-efmnd 18854
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator