MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoidinvlem1 Structured version   Visualization version   GIF version

Theorem grpoidinvlem1 30433
Description: Lemma for grpoidinv 30437. (Contributed by NM, 10-Oct-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
grpfo.1 𝑋 = ran 𝐺
Assertion
Ref Expression
grpoidinvlem1 (((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) ∧ ((𝑌𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝐴) = 𝐴)) → (𝑈𝐺𝐴) = 𝑈)

Proof of Theorem grpoidinvlem1
StepHypRef Expression
1 id 22 . . . . 5 ((𝑌𝑋𝐴𝑋𝐴𝑋) → (𝑌𝑋𝐴𝑋𝐴𝑋))
213anidm23 1423 . . . 4 ((𝑌𝑋𝐴𝑋) → (𝑌𝑋𝐴𝑋𝐴𝑋))
3 grpfo.1 . . . . 5 𝑋 = ran 𝐺
43grpoass 30432 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋𝐴𝑋)) → ((𝑌𝐺𝐴)𝐺𝐴) = (𝑌𝐺(𝐴𝐺𝐴)))
52, 4sylan2 593 . . 3 ((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) → ((𝑌𝐺𝐴)𝐺𝐴) = (𝑌𝐺(𝐴𝐺𝐴)))
65adantr 480 . 2 (((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) ∧ ((𝑌𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝐴) = 𝐴)) → ((𝑌𝐺𝐴)𝐺𝐴) = (𝑌𝐺(𝐴𝐺𝐴)))
7 oveq1 7394 . . 3 ((𝑌𝐺𝐴) = 𝑈 → ((𝑌𝐺𝐴)𝐺𝐴) = (𝑈𝐺𝐴))
87ad2antrl 728 . 2 (((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) ∧ ((𝑌𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝐴) = 𝐴)) → ((𝑌𝐺𝐴)𝐺𝐴) = (𝑈𝐺𝐴))
9 oveq2 7395 . . . 4 ((𝐴𝐺𝐴) = 𝐴 → (𝑌𝐺(𝐴𝐺𝐴)) = (𝑌𝐺𝐴))
109ad2antll 729 . . 3 (((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) ∧ ((𝑌𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝐴) = 𝐴)) → (𝑌𝐺(𝐴𝐺𝐴)) = (𝑌𝐺𝐴))
11 simprl 770 . . 3 (((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) ∧ ((𝑌𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝐴) = 𝐴)) → (𝑌𝐺𝐴) = 𝑈)
1210, 11eqtrd 2764 . 2 (((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) ∧ ((𝑌𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝐴) = 𝐴)) → (𝑌𝐺(𝐴𝐺𝐴)) = 𝑈)
136, 8, 123eqtr3d 2772 1 (((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) ∧ ((𝑌𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝐴) = 𝐴)) → (𝑈𝐺𝐴) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  ran crn 5639  (class class class)co 7387  GrpOpcgr 30418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fo 6517  df-fv 6519  df-ov 7390  df-grpo 30422
This theorem is referenced by:  grpoidinvlem3  30435
  Copyright terms: Public domain W3C validator