MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoidinvlem1 Structured version   Visualization version   GIF version

Theorem grpoidinvlem1 30440
Description: Lemma for grpoidinv 30444. (Contributed by NM, 10-Oct-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
grpfo.1 𝑋 = ran 𝐺
Assertion
Ref Expression
grpoidinvlem1 (((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) ∧ ((𝑌𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝐴) = 𝐴)) → (𝑈𝐺𝐴) = 𝑈)

Proof of Theorem grpoidinvlem1
StepHypRef Expression
1 id 22 . . . . 5 ((𝑌𝑋𝐴𝑋𝐴𝑋) → (𝑌𝑋𝐴𝑋𝐴𝑋))
213anidm23 1423 . . . 4 ((𝑌𝑋𝐴𝑋) → (𝑌𝑋𝐴𝑋𝐴𝑋))
3 grpfo.1 . . . . 5 𝑋 = ran 𝐺
43grpoass 30439 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋𝐴𝑋)) → ((𝑌𝐺𝐴)𝐺𝐴) = (𝑌𝐺(𝐴𝐺𝐴)))
52, 4sylan2 593 . . 3 ((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) → ((𝑌𝐺𝐴)𝐺𝐴) = (𝑌𝐺(𝐴𝐺𝐴)))
65adantr 480 . 2 (((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) ∧ ((𝑌𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝐴) = 𝐴)) → ((𝑌𝐺𝐴)𝐺𝐴) = (𝑌𝐺(𝐴𝐺𝐴)))
7 oveq1 7397 . . 3 ((𝑌𝐺𝐴) = 𝑈 → ((𝑌𝐺𝐴)𝐺𝐴) = (𝑈𝐺𝐴))
87ad2antrl 728 . 2 (((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) ∧ ((𝑌𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝐴) = 𝐴)) → ((𝑌𝐺𝐴)𝐺𝐴) = (𝑈𝐺𝐴))
9 oveq2 7398 . . . 4 ((𝐴𝐺𝐴) = 𝐴 → (𝑌𝐺(𝐴𝐺𝐴)) = (𝑌𝐺𝐴))
109ad2antll 729 . . 3 (((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) ∧ ((𝑌𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝐴) = 𝐴)) → (𝑌𝐺(𝐴𝐺𝐴)) = (𝑌𝐺𝐴))
11 simprl 770 . . 3 (((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) ∧ ((𝑌𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝐴) = 𝐴)) → (𝑌𝐺𝐴) = 𝑈)
1210, 11eqtrd 2765 . 2 (((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) ∧ ((𝑌𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝐴) = 𝐴)) → (𝑌𝐺(𝐴𝐺𝐴)) = 𝑈)
136, 8, 123eqtr3d 2773 1 (((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) ∧ ((𝑌𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝐴) = 𝐴)) → (𝑈𝐺𝐴) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  ran crn 5642  (class class class)co 7390  GrpOpcgr 30425
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-fo 6520  df-fv 6522  df-ov 7393  df-grpo 30429
This theorem is referenced by:  grpoidinvlem3  30442
  Copyright terms: Public domain W3C validator