MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoidinvlem1 Structured version   Visualization version   GIF version

Theorem grpoidinvlem1 28058
Description: Lemma for grpoidinv 28062. (Contributed by NM, 10-Oct-2006.) (New usage is discouraged.)
Hypothesis
Ref Expression
grpfo.1 𝑋 = ran 𝐺
Assertion
Ref Expression
grpoidinvlem1 (((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) ∧ ((𝑌𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝐴) = 𝐴)) → (𝑈𝐺𝐴) = 𝑈)

Proof of Theorem grpoidinvlem1
StepHypRef Expression
1 id 22 . . . . 5 ((𝑌𝑋𝐴𝑋𝐴𝑋) → (𝑌𝑋𝐴𝑋𝐴𝑋))
213anidm23 1401 . . . 4 ((𝑌𝑋𝐴𝑋) → (𝑌𝑋𝐴𝑋𝐴𝑋))
3 grpfo.1 . . . . 5 𝑋 = ran 𝐺
43grpoass 28057 . . . 4 ((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋𝐴𝑋)) → ((𝑌𝐺𝐴)𝐺𝐴) = (𝑌𝐺(𝐴𝐺𝐴)))
52, 4sylan2 583 . . 3 ((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) → ((𝑌𝐺𝐴)𝐺𝐴) = (𝑌𝐺(𝐴𝐺𝐴)))
65adantr 473 . 2 (((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) ∧ ((𝑌𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝐴) = 𝐴)) → ((𝑌𝐺𝐴)𝐺𝐴) = (𝑌𝐺(𝐴𝐺𝐴)))
7 oveq1 6983 . . 3 ((𝑌𝐺𝐴) = 𝑈 → ((𝑌𝐺𝐴)𝐺𝐴) = (𝑈𝐺𝐴))
87ad2antrl 715 . 2 (((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) ∧ ((𝑌𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝐴) = 𝐴)) → ((𝑌𝐺𝐴)𝐺𝐴) = (𝑈𝐺𝐴))
9 oveq2 6984 . . . 4 ((𝐴𝐺𝐴) = 𝐴 → (𝑌𝐺(𝐴𝐺𝐴)) = (𝑌𝐺𝐴))
109ad2antll 716 . . 3 (((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) ∧ ((𝑌𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝐴) = 𝐴)) → (𝑌𝐺(𝐴𝐺𝐴)) = (𝑌𝐺𝐴))
11 simprl 758 . . 3 (((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) ∧ ((𝑌𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝐴) = 𝐴)) → (𝑌𝐺𝐴) = 𝑈)
1210, 11eqtrd 2814 . 2 (((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) ∧ ((𝑌𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝐴) = 𝐴)) → (𝑌𝐺(𝐴𝐺𝐴)) = 𝑈)
136, 8, 123eqtr3d 2822 1 (((𝐺 ∈ GrpOp ∧ (𝑌𝑋𝐴𝑋)) ∧ ((𝑌𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝐴) = 𝐴)) → (𝑈𝐺𝐴) = 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1068   = wceq 1507  wcel 2050  ran crn 5408  (class class class)co 6976  GrpOpcgr 28043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5060  ax-nul 5067  ax-pr 5186  ax-un 7279
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ral 3093  df-rex 3094  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-nul 4179  df-if 4351  df-sn 4442  df-pr 4444  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-id 5312  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-fo 6194  df-fv 6196  df-ov 6979  df-grpo 28047
This theorem is referenced by:  grpoidinvlem3  28060
  Copyright terms: Public domain W3C validator