Step | Hyp | Ref
| Expression |
1 | | simpl 483 |
. . . . . . . 8
⊢ (((𝑢𝐺𝑧) = 𝑧 ∧ ∃𝑤 ∈ 𝑋 (𝑤𝐺𝑧) = 𝑢) → (𝑢𝐺𝑧) = 𝑧) |
2 | 1 | ralimi 3087 |
. . . . . . 7
⊢
(∀𝑧 ∈
𝑋 ((𝑢𝐺𝑧) = 𝑧 ∧ ∃𝑤 ∈ 𝑋 (𝑤𝐺𝑧) = 𝑢) → ∀𝑧 ∈ 𝑋 (𝑢𝐺𝑧) = 𝑧) |
3 | | oveq2 7283 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → (𝑢𝐺𝑧) = (𝑢𝐺𝑥)) |
4 | | id 22 |
. . . . . . . . 9
⊢ (𝑧 = 𝑥 → 𝑧 = 𝑥) |
5 | 3, 4 | eqeq12d 2754 |
. . . . . . . 8
⊢ (𝑧 = 𝑥 → ((𝑢𝐺𝑧) = 𝑧 ↔ (𝑢𝐺𝑥) = 𝑥)) |
6 | 5 | rspccva 3560 |
. . . . . . 7
⊢
((∀𝑧 ∈
𝑋 (𝑢𝐺𝑧) = 𝑧 ∧ 𝑥 ∈ 𝑋) → (𝑢𝐺𝑥) = 𝑥) |
7 | 2, 6 | sylan 580 |
. . . . . 6
⊢
((∀𝑧 ∈
𝑋 ((𝑢𝐺𝑧) = 𝑧 ∧ ∃𝑤 ∈ 𝑋 (𝑤𝐺𝑧) = 𝑢) ∧ 𝑥 ∈ 𝑋) → (𝑢𝐺𝑥) = 𝑥) |
8 | 7 | adantll 711 |
. . . . 5
⊢ (((𝑢 ∈ 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝑢𝐺𝑧) = 𝑧 ∧ ∃𝑤 ∈ 𝑋 (𝑤𝐺𝑧) = 𝑢)) ∧ 𝑥 ∈ 𝑋) → (𝑢𝐺𝑥) = 𝑥) |
9 | 8 | adantll 711 |
. . . 4
⊢ (((𝐺 ∈ GrpOp ∧ (𝑢 ∈ 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝑢𝐺𝑧) = 𝑧 ∧ ∃𝑤 ∈ 𝑋 (𝑤𝐺𝑧) = 𝑢))) ∧ 𝑥 ∈ 𝑋) → (𝑢𝐺𝑥) = 𝑥) |
10 | | simpl 483 |
. . . . . . 7
⊢ ((𝐺 ∈ GrpOp ∧ (𝑢 ∈ 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝑢𝐺𝑧) = 𝑧 ∧ ∃𝑤 ∈ 𝑋 (𝑤𝐺𝑧) = 𝑢))) → 𝐺 ∈ GrpOp) |
11 | 10 | anim1i 615 |
. . . . . 6
⊢ (((𝐺 ∈ GrpOp ∧ (𝑢 ∈ 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝑢𝐺𝑧) = 𝑧 ∧ ∃𝑤 ∈ 𝑋 (𝑤𝐺𝑧) = 𝑢))) ∧ 𝑥 ∈ 𝑋) → (𝐺 ∈ GrpOp ∧ 𝑥 ∈ 𝑋)) |
12 | | id 22 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋) → (𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋)) |
13 | 12 | adantrr 714 |
. . . . . . . . 9
⊢ ((𝐺 ∈ GrpOp ∧ (𝑢 ∈ 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝑢𝐺𝑧) = 𝑧 ∧ ∃𝑤 ∈ 𝑋 (𝑤𝐺𝑧) = 𝑢))) → (𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋)) |
14 | 13 | adantr 481 |
. . . . . . . 8
⊢ (((𝐺 ∈ GrpOp ∧ (𝑢 ∈ 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝑢𝐺𝑧) = 𝑧 ∧ ∃𝑤 ∈ 𝑋 (𝑤𝐺𝑧) = 𝑢))) ∧ 𝑥 ∈ 𝑋) → (𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋)) |
15 | 2 | adantl 482 |
. . . . . . . . 9
⊢ ((𝑢 ∈ 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝑢𝐺𝑧) = 𝑧 ∧ ∃𝑤 ∈ 𝑋 (𝑤𝐺𝑧) = 𝑢)) → ∀𝑧 ∈ 𝑋 (𝑢𝐺𝑧) = 𝑧) |
16 | 15 | ad2antlr 724 |
. . . . . . . 8
⊢ (((𝐺 ∈ GrpOp ∧ (𝑢 ∈ 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝑢𝐺𝑧) = 𝑧 ∧ ∃𝑤 ∈ 𝑋 (𝑤𝐺𝑧) = 𝑢))) ∧ 𝑥 ∈ 𝑋) → ∀𝑧 ∈ 𝑋 (𝑢𝐺𝑧) = 𝑧) |
17 | | simpr 485 |
. . . . . . . . . . 11
⊢ (((𝑢𝐺𝑧) = 𝑧 ∧ ∃𝑤 ∈ 𝑋 (𝑤𝐺𝑧) = 𝑢) → ∃𝑤 ∈ 𝑋 (𝑤𝐺𝑧) = 𝑢) |
18 | 17 | ralimi 3087 |
. . . . . . . . . 10
⊢
(∀𝑧 ∈
𝑋 ((𝑢𝐺𝑧) = 𝑧 ∧ ∃𝑤 ∈ 𝑋 (𝑤𝐺𝑧) = 𝑢) → ∀𝑧 ∈ 𝑋 ∃𝑤 ∈ 𝑋 (𝑤𝐺𝑧) = 𝑢) |
19 | 18 | adantl 482 |
. . . . . . . . 9
⊢ ((𝑢 ∈ 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝑢𝐺𝑧) = 𝑧 ∧ ∃𝑤 ∈ 𝑋 (𝑤𝐺𝑧) = 𝑢)) → ∀𝑧 ∈ 𝑋 ∃𝑤 ∈ 𝑋 (𝑤𝐺𝑧) = 𝑢) |
20 | 19 | ad2antlr 724 |
. . . . . . . 8
⊢ (((𝐺 ∈ GrpOp ∧ (𝑢 ∈ 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝑢𝐺𝑧) = 𝑧 ∧ ∃𝑤 ∈ 𝑋 (𝑤𝐺𝑧) = 𝑢))) ∧ 𝑥 ∈ 𝑋) → ∀𝑧 ∈ 𝑋 ∃𝑤 ∈ 𝑋 (𝑤𝐺𝑧) = 𝑢) |
21 | 14, 16, 20 | jca32 516 |
. . . . . . 7
⊢ (((𝐺 ∈ GrpOp ∧ (𝑢 ∈ 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝑢𝐺𝑧) = 𝑧 ∧ ∃𝑤 ∈ 𝑋 (𝑤𝐺𝑧) = 𝑢))) ∧ 𝑥 ∈ 𝑋) → ((𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋) ∧ (∀𝑧 ∈ 𝑋 (𝑢𝐺𝑧) = 𝑧 ∧ ∀𝑧 ∈ 𝑋 ∃𝑤 ∈ 𝑋 (𝑤𝐺𝑧) = 𝑢))) |
22 | | grpfo.1 |
. . . . . . . 8
⊢ 𝑋 = ran 𝐺 |
23 | | biid 260 |
. . . . . . . 8
⊢
(∀𝑧 ∈
𝑋 (𝑢𝐺𝑧) = 𝑧 ↔ ∀𝑧 ∈ 𝑋 (𝑢𝐺𝑧) = 𝑧) |
24 | | biid 260 |
. . . . . . . 8
⊢
(∀𝑧 ∈
𝑋 ∃𝑤 ∈ 𝑋 (𝑤𝐺𝑧) = 𝑢 ↔ ∀𝑧 ∈ 𝑋 ∃𝑤 ∈ 𝑋 (𝑤𝐺𝑧) = 𝑢) |
25 | 22, 23, 24 | grpoidinvlem3 28868 |
. . . . . . 7
⊢ ((((𝐺 ∈ GrpOp ∧ 𝑢 ∈ 𝑋) ∧ (∀𝑧 ∈ 𝑋 (𝑢𝐺𝑧) = 𝑧 ∧ ∀𝑧 ∈ 𝑋 ∃𝑤 ∈ 𝑋 (𝑤𝐺𝑧) = 𝑢)) ∧ 𝑥 ∈ 𝑋) → ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)) |
26 | 21, 25 | sylancom 588 |
. . . . . 6
⊢ (((𝐺 ∈ GrpOp ∧ (𝑢 ∈ 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝑢𝐺𝑧) = 𝑧 ∧ ∃𝑤 ∈ 𝑋 (𝑤𝐺𝑧) = 𝑢))) ∧ 𝑥 ∈ 𝑋) → ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)) |
27 | 22 | grpoidinvlem4 28869 |
. . . . . 6
⊢ (((𝐺 ∈ GrpOp ∧ 𝑥 ∈ 𝑋) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢)) → (𝑥𝐺𝑢) = (𝑢𝐺𝑥)) |
28 | 11, 26, 27 | syl2anc 584 |
. . . . 5
⊢ (((𝐺 ∈ GrpOp ∧ (𝑢 ∈ 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝑢𝐺𝑧) = 𝑧 ∧ ∃𝑤 ∈ 𝑋 (𝑤𝐺𝑧) = 𝑢))) ∧ 𝑥 ∈ 𝑋) → (𝑥𝐺𝑢) = (𝑢𝐺𝑥)) |
29 | 28, 9 | eqtrd 2778 |
. . . 4
⊢ (((𝐺 ∈ GrpOp ∧ (𝑢 ∈ 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝑢𝐺𝑧) = 𝑧 ∧ ∃𝑤 ∈ 𝑋 (𝑤𝐺𝑧) = 𝑢))) ∧ 𝑥 ∈ 𝑋) → (𝑥𝐺𝑢) = 𝑥) |
30 | 9, 29, 26 | jca31 515 |
. . 3
⊢ (((𝐺 ∈ GrpOp ∧ (𝑢 ∈ 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝑢𝐺𝑧) = 𝑧 ∧ ∃𝑤 ∈ 𝑋 (𝑤𝐺𝑧) = 𝑢))) ∧ 𝑥 ∈ 𝑋) → (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢))) |
31 | 30 | ralrimiva 3103 |
. 2
⊢ ((𝐺 ∈ GrpOp ∧ (𝑢 ∈ 𝑋 ∧ ∀𝑧 ∈ 𝑋 ((𝑢𝐺𝑧) = 𝑧 ∧ ∃𝑤 ∈ 𝑋 (𝑤𝐺𝑧) = 𝑢))) → ∀𝑥 ∈ 𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢))) |
32 | 22 | grpolidinv 28863 |
. 2
⊢ (𝐺 ∈ GrpOp →
∃𝑢 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑢𝐺𝑧) = 𝑧 ∧ ∃𝑤 ∈ 𝑋 (𝑤𝐺𝑧) = 𝑢)) |
33 | 31, 32 | reximddv 3204 |
1
⊢ (𝐺 ∈ GrpOp →
∃𝑢 ∈ 𝑋 ∀𝑥 ∈ 𝑋 (((𝑢𝐺𝑥) = 𝑥 ∧ (𝑥𝐺𝑢) = 𝑥) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝑥) = 𝑢 ∧ (𝑥𝐺𝑦) = 𝑢))) |