MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmphi Structured version   Visualization version   GIF version

Theorem hmphi 22928
Description: If there is a homeomorphism between spaces, then the spaces are homeomorphic. (Contributed by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
hmphi (𝐹 ∈ (𝐽Homeo𝐾) → 𝐽𝐾)

Proof of Theorem hmphi
StepHypRef Expression
1 ne0i 4268 . 2 (𝐹 ∈ (𝐽Homeo𝐾) → (𝐽Homeo𝐾) ≠ ∅)
2 hmph 22927 . 2 (𝐽𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅)
31, 2sylibr 233 1 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐽𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  wne 2943  c0 4256   class class class wbr 5074  (class class class)co 7275  Homeochmeo 22904  chmph 22905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-1o 8297  df-hmeo 22906  df-hmph 22907
This theorem is referenced by:  hmphref  22932  hmphsym  22933  hmphtr  22934  indishmph  22949  ptcmpfi  22964  t0kq  22969  kqhmph  22970  xrhmph  24110  xrge0hmph  31882  reheibor  35997
  Copyright terms: Public domain W3C validator