Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hmphi | Structured version Visualization version GIF version |
Description: If there is a homeomorphism between spaces, then the spaces are homeomorphic. (Contributed by Mario Carneiro, 23-Aug-2015.) |
Ref | Expression |
---|---|
hmphi | ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐽 ≃ 𝐾) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ne0i 4274 | . 2 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → (𝐽Homeo𝐾) ≠ ∅) | |
2 | hmph 22925 | . 2 ⊢ (𝐽 ≃ 𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅) | |
3 | 1, 2 | sylibr 233 | 1 ⊢ (𝐹 ∈ (𝐽Homeo𝐾) → 𝐽 ≃ 𝐾) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2110 ≠ wne 2945 ∅c0 4262 class class class wbr 5079 (class class class)co 7271 Homeochmeo 22902 ≃ chmph 22903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-un 7582 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-suc 6271 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-fv 6440 df-ov 7274 df-oprab 7275 df-mpo 7276 df-1st 7824 df-2nd 7825 df-1o 8288 df-hmeo 22904 df-hmph 22905 |
This theorem is referenced by: hmphref 22930 hmphsym 22931 hmphtr 22932 indishmph 22947 ptcmpfi 22962 t0kq 22967 kqhmph 22968 xrhmph 24108 xrge0hmph 31878 reheibor 35993 |
Copyright terms: Public domain | W3C validator |