MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hmphi Structured version   Visualization version   GIF version

Theorem hmphi 23501
Description: If there is a homeomorphism between spaces, then the spaces are homeomorphic. (Contributed by Mario Carneiro, 23-Aug-2015.)
Assertion
Ref Expression
hmphi (𝐹 ∈ (𝐽Homeo𝐾) → 𝐽𝐾)

Proof of Theorem hmphi
StepHypRef Expression
1 ne0i 4333 . 2 (𝐹 ∈ (𝐽Homeo𝐾) → (𝐽Homeo𝐾) ≠ ∅)
2 hmph 23500 . 2 (𝐽𝐾 ↔ (𝐽Homeo𝐾) ≠ ∅)
31, 2sylibr 233 1 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐽𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2104  wne 2938  c0 4321   class class class wbr 5147  (class class class)co 7411  Homeochmeo 23477  chmph 23478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-1st 7977  df-2nd 7978  df-1o 8468  df-hmeo 23479  df-hmph 23480
This theorem is referenced by:  hmphref  23505  hmphsym  23506  hmphtr  23507  indishmph  23522  ptcmpfi  23537  t0kq  23542  kqhmph  23543  xrhmph  24692  xrge0hmph  33210  reheibor  37010
  Copyright terms: Public domain W3C validator