| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > hstosum | Structured version Visualization version GIF version | ||
| Description: Orthogonal sum property of a Hilbert-space-valued state. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| hstosum | ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (𝐵 ∈ Cℋ ∧ 𝐴 ⊆ (⊥‘𝐵))) → (𝑆‘(𝐴 ∨ℋ 𝐵)) = ((𝑆‘𝐴) +ℎ (𝑆‘𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hstel2 32185 | . 2 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (𝐵 ∈ Cℋ ∧ 𝐴 ⊆ (⊥‘𝐵))) → (((𝑆‘𝐴) ·ih (𝑆‘𝐵)) = 0 ∧ (𝑆‘(𝐴 ∨ℋ 𝐵)) = ((𝑆‘𝐴) +ℎ (𝑆‘𝐵)))) | |
| 2 | 1 | simprd 495 | 1 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (𝐵 ∈ Cℋ ∧ 𝐴 ⊆ (⊥‘𝐵))) → (𝑆‘(𝐴 ∨ℋ 𝐵)) = ((𝑆‘𝐴) +ℎ (𝑆‘𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ⊆ wss 3933 ‘cfv 6542 (class class class)co 7414 0cc0 11138 +ℎ cva 30886 ·ih csp 30888 Cℋ cch 30895 ⊥cort 30896 ∨ℋ chj 30899 CHStateschst 30929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-hilex 30965 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-sbc 3773 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-id 5560 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-map 8851 df-sh 31173 df-ch 31187 df-hst 32178 |
| This theorem is referenced by: hstoc 32188 hstpyth 32195 |
| Copyright terms: Public domain | W3C validator |