![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hstpyth | Structured version Visualization version GIF version |
Description: Pythagorean property of a Hilbert-space-valued state for orthogonal vectors 𝐴 and 𝐵. (Contributed by NM, 26-Jun-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hstpyth | ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (𝐵 ∈ Cℋ ∧ 𝐴 ⊆ (⊥‘𝐵))) → ((normℎ‘(𝑆‘(𝐴 ∨ℋ 𝐵)))↑2) = (((normℎ‘(𝑆‘𝐴))↑2) + ((normℎ‘(𝑆‘𝐵))↑2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hstosum 29669 | . . . 4 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (𝐵 ∈ Cℋ ∧ 𝐴 ⊆ (⊥‘𝐵))) → (𝑆‘(𝐴 ∨ℋ 𝐵)) = ((𝑆‘𝐴) +ℎ (𝑆‘𝐵))) | |
2 | 1 | fveq2d 6452 | . . 3 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (𝐵 ∈ Cℋ ∧ 𝐴 ⊆ (⊥‘𝐵))) → (normℎ‘(𝑆‘(𝐴 ∨ℋ 𝐵))) = (normℎ‘((𝑆‘𝐴) +ℎ (𝑆‘𝐵)))) |
3 | 2 | oveq1d 6939 | . 2 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (𝐵 ∈ Cℋ ∧ 𝐴 ⊆ (⊥‘𝐵))) → ((normℎ‘(𝑆‘(𝐴 ∨ℋ 𝐵)))↑2) = ((normℎ‘((𝑆‘𝐴) +ℎ (𝑆‘𝐵)))↑2)) |
4 | hstcl 29665 | . . . 4 ⊢ ((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) → (𝑆‘𝐴) ∈ ℋ) | |
5 | 4 | adantr 474 | . . 3 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (𝐵 ∈ Cℋ ∧ 𝐴 ⊆ (⊥‘𝐵))) → (𝑆‘𝐴) ∈ ℋ) |
6 | hstcl 29665 | . . . 4 ⊢ ((𝑆 ∈ CHStates ∧ 𝐵 ∈ Cℋ ) → (𝑆‘𝐵) ∈ ℋ) | |
7 | 6 | ad2ant2r 737 | . . 3 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (𝐵 ∈ Cℋ ∧ 𝐴 ⊆ (⊥‘𝐵))) → (𝑆‘𝐵) ∈ ℋ) |
8 | hstorth 29668 | . . 3 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (𝐵 ∈ Cℋ ∧ 𝐴 ⊆ (⊥‘𝐵))) → ((𝑆‘𝐴) ·ih (𝑆‘𝐵)) = 0) | |
9 | normpyth 28591 | . . . 4 ⊢ (((𝑆‘𝐴) ∈ ℋ ∧ (𝑆‘𝐵) ∈ ℋ) → (((𝑆‘𝐴) ·ih (𝑆‘𝐵)) = 0 → ((normℎ‘((𝑆‘𝐴) +ℎ (𝑆‘𝐵)))↑2) = (((normℎ‘(𝑆‘𝐴))↑2) + ((normℎ‘(𝑆‘𝐵))↑2)))) | |
10 | 9 | 3impia 1106 | . . 3 ⊢ (((𝑆‘𝐴) ∈ ℋ ∧ (𝑆‘𝐵) ∈ ℋ ∧ ((𝑆‘𝐴) ·ih (𝑆‘𝐵)) = 0) → ((normℎ‘((𝑆‘𝐴) +ℎ (𝑆‘𝐵)))↑2) = (((normℎ‘(𝑆‘𝐴))↑2) + ((normℎ‘(𝑆‘𝐵))↑2))) |
11 | 5, 7, 8, 10 | syl3anc 1439 | . 2 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (𝐵 ∈ Cℋ ∧ 𝐴 ⊆ (⊥‘𝐵))) → ((normℎ‘((𝑆‘𝐴) +ℎ (𝑆‘𝐵)))↑2) = (((normℎ‘(𝑆‘𝐴))↑2) + ((normℎ‘(𝑆‘𝐵))↑2))) |
12 | 3, 11 | eqtrd 2814 | 1 ⊢ (((𝑆 ∈ CHStates ∧ 𝐴 ∈ Cℋ ) ∧ (𝐵 ∈ Cℋ ∧ 𝐴 ⊆ (⊥‘𝐵))) → ((normℎ‘(𝑆‘(𝐴 ∨ℋ 𝐵)))↑2) = (((normℎ‘(𝑆‘𝐴))↑2) + ((normℎ‘(𝑆‘𝐵))↑2))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ⊆ wss 3792 ‘cfv 6137 (class class class)co 6924 0cc0 10274 + caddc 10277 2c2 11435 ↑cexp 13183 ℋchba 28365 +ℎ cva 28366 ·ih csp 28368 normℎcno 28369 Cℋ cch 28375 ⊥cort 28376 ∨ℋ chj 28379 CHStateschst 28409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 ax-pre-sup 10352 ax-hilex 28445 ax-hfvadd 28446 ax-hv0cl 28449 ax-hvmul0 28456 ax-hfi 28525 ax-his1 28528 ax-his2 28529 ax-his3 28530 ax-his4 28531 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-2nd 7448 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-er 8028 df-map 8144 df-en 8244 df-dom 8245 df-sdom 8246 df-sup 8638 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-div 11036 df-nn 11380 df-2 11443 df-3 11444 df-n0 11648 df-z 11734 df-uz 11998 df-rp 12143 df-seq 13125 df-exp 13184 df-cj 14252 df-re 14253 df-im 14254 df-sqrt 14388 df-hnorm 28414 df-sh 28653 df-ch 28667 df-hst 29660 |
This theorem is referenced by: hstle 29678 |
Copyright terms: Public domain | W3C validator |