HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hstpyth Structured version   Visualization version   GIF version

Theorem hstpyth 32195
Description: Pythagorean property of a Hilbert-space-valued state for orthogonal vectors 𝐴 and 𝐵. (Contributed by NM, 26-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hstpyth (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → ((norm‘(𝑆‘(𝐴 𝐵)))↑2) = (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆𝐵))↑2)))

Proof of Theorem hstpyth
StepHypRef Expression
1 hstosum 32187 . . . 4 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵)))
21fveq2d 6891 . . 3 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → (norm‘(𝑆‘(𝐴 𝐵))) = (norm‘((𝑆𝐴) + (𝑆𝐵))))
32oveq1d 7429 . 2 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → ((norm‘(𝑆‘(𝐴 𝐵)))↑2) = ((norm‘((𝑆𝐴) + (𝑆𝐵)))↑2))
4 hstcl 32183 . . . 4 ((𝑆 ∈ CHStates ∧ 𝐴C ) → (𝑆𝐴) ∈ ℋ)
54adantr 480 . . 3 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → (𝑆𝐴) ∈ ℋ)
6 hstcl 32183 . . . 4 ((𝑆 ∈ CHStates ∧ 𝐵C ) → (𝑆𝐵) ∈ ℋ)
76ad2ant2r 747 . . 3 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → (𝑆𝐵) ∈ ℋ)
8 hstorth 32186 . . 3 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → ((𝑆𝐴) ·ih (𝑆𝐵)) = 0)
9 normpyth 31111 . . . 4 (((𝑆𝐴) ∈ ℋ ∧ (𝑆𝐵) ∈ ℋ) → (((𝑆𝐴) ·ih (𝑆𝐵)) = 0 → ((norm‘((𝑆𝐴) + (𝑆𝐵)))↑2) = (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆𝐵))↑2))))
1093impia 1117 . . 3 (((𝑆𝐴) ∈ ℋ ∧ (𝑆𝐵) ∈ ℋ ∧ ((𝑆𝐴) ·ih (𝑆𝐵)) = 0) → ((norm‘((𝑆𝐴) + (𝑆𝐵)))↑2) = (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆𝐵))↑2)))
115, 7, 8, 10syl3anc 1372 . 2 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → ((norm‘((𝑆𝐴) + (𝑆𝐵)))↑2) = (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆𝐵))↑2)))
123, 11eqtrd 2769 1 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → ((norm‘(𝑆‘(𝐴 𝐵)))↑2) = (((norm‘(𝑆𝐴))↑2) + ((norm‘(𝑆𝐵))↑2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wss 3933  cfv 6542  (class class class)co 7414  0cc0 11138   + caddc 11141  2c2 12304  cexp 14085  chba 30885   + cva 30886   ·ih csp 30888  normcno 30889   C cch 30895  cort 30896   chj 30899  CHStateschst 30929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5278  ax-nul 5288  ax-pow 5347  ax-pr 5414  ax-un 7738  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216  ax-hilex 30965  ax-hfvadd 30966  ax-hv0cl 30969  ax-hvmul0 30976  ax-hfi 31045  ax-his1 31048  ax-his2 31049  ax-his3 31050  ax-his4 31051
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3773  df-csb 3882  df-dif 3936  df-un 3938  df-in 3940  df-ss 3950  df-pss 3953  df-nul 4316  df-if 4508  df-pw 4584  df-sn 4609  df-pr 4611  df-op 4615  df-uni 4890  df-iun 4975  df-br 5126  df-opab 5188  df-mpt 5208  df-tr 5242  df-id 5560  df-eprel 5566  df-po 5574  df-so 5575  df-fr 5619  df-we 5621  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6303  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7371  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7871  df-2nd 7998  df-frecs 8289  df-wrecs 8320  df-recs 8394  df-rdg 8433  df-er 8728  df-map 8851  df-en 8969  df-dom 8970  df-sdom 8971  df-sup 9465  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11477  df-neg 11478  df-div 11904  df-nn 12250  df-2 12312  df-3 12313  df-n0 12511  df-z 12598  df-uz 12862  df-rp 13018  df-seq 14026  df-exp 14086  df-cj 15121  df-re 15122  df-im 15123  df-sqrt 15257  df-hnorm 30934  df-sh 31173  df-ch 31187  df-hst 32178
This theorem is referenced by:  hstle  32196
  Copyright terms: Public domain W3C validator