HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hstorth Structured version   Visualization version   GIF version

Theorem hstorth 30690
Description: Orthogonality property of a Hilbert-space-valued state. This is a key feature distinguishing it from a real-valued state. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hstorth (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → ((𝑆𝐴) ·ih (𝑆𝐵)) = 0)

Proof of Theorem hstorth
StepHypRef Expression
1 hstel2 30689 . 2 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → (((𝑆𝐴) ·ih (𝑆𝐵)) = 0 ∧ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵))))
21simpld 495 1 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → ((𝑆𝐴) ·ih (𝑆𝐵)) = 0)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  wss 3896  cfv 6463  (class class class)co 7313  0cc0 10941   + cva 29390   ·ih csp 29392   C cch 29399  cort 29400   chj 29403  CHStateschst 29433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-sep 5236  ax-nul 5243  ax-pow 5301  ax-pr 5365  ax-un 7626  ax-hilex 29469
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3443  df-sbc 3726  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-nul 4267  df-if 4470  df-pw 4545  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4849  df-br 5086  df-opab 5148  df-id 5505  df-xp 5611  df-rel 5612  df-cnv 5613  df-co 5614  df-dm 5615  df-rn 5616  df-res 5617  df-ima 5618  df-iota 6415  df-fun 6465  df-fn 6466  df-f 6467  df-fv 6471  df-ov 7316  df-oprab 7317  df-mpo 7318  df-map 8663  df-sh 29677  df-ch 29691  df-hst 30682
This theorem is referenced by:  hstnmoc  30693  hstpyth  30699  hstoh  30702  hst0  30703
  Copyright terms: Public domain W3C validator