HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hstel2 Structured version   Visualization version   GIF version

Theorem hstel2 30581
Description: Properties of a Hilbert-space-valued state. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hstel2 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → (((𝑆𝐴) ·ih (𝑆𝐵)) = 0 ∧ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵))))

Proof of Theorem hstel2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ishst 30576 . . . 4 (𝑆 ∈ CHStates ↔ (𝑆: C ⟶ ℋ ∧ (norm‘(𝑆‘ ℋ)) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))))))
21simp3bi 1146 . . 3 (𝑆 ∈ CHStates → ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))))
32ad2antrr 723 . 2 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))))
4 sseq1 3946 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 ⊆ (⊥‘𝑦) ↔ 𝐴 ⊆ (⊥‘𝑦)))
5 fveq2 6774 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑆𝑥) = (𝑆𝐴))
65oveq1d 7290 . . . . . . . . 9 (𝑥 = 𝐴 → ((𝑆𝑥) ·ih (𝑆𝑦)) = ((𝑆𝐴) ·ih (𝑆𝑦)))
76eqeq1d 2740 . . . . . . . 8 (𝑥 = 𝐴 → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ↔ ((𝑆𝐴) ·ih (𝑆𝑦)) = 0))
8 fvoveq1 7298 . . . . . . . . 9 (𝑥 = 𝐴 → (𝑆‘(𝑥 𝑦)) = (𝑆‘(𝐴 𝑦)))
95oveq1d 7290 . . . . . . . . 9 (𝑥 = 𝐴 → ((𝑆𝑥) + (𝑆𝑦)) = ((𝑆𝐴) + (𝑆𝑦)))
108, 9eqeq12d 2754 . . . . . . . 8 (𝑥 = 𝐴 → ((𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)) ↔ (𝑆‘(𝐴 𝑦)) = ((𝑆𝐴) + (𝑆𝑦))))
117, 10anbi12d 631 . . . . . . 7 (𝑥 = 𝐴 → ((((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))) ↔ (((𝑆𝐴) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝐴 𝑦)) = ((𝑆𝐴) + (𝑆𝑦)))))
124, 11imbi12d 345 . . . . . 6 (𝑥 = 𝐴 → ((𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))) ↔ (𝐴 ⊆ (⊥‘𝑦) → (((𝑆𝐴) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝐴 𝑦)) = ((𝑆𝐴) + (𝑆𝑦))))))
13 fveq2 6774 . . . . . . . 8 (𝑦 = 𝐵 → (⊥‘𝑦) = (⊥‘𝐵))
1413sseq2d 3953 . . . . . . 7 (𝑦 = 𝐵 → (𝐴 ⊆ (⊥‘𝑦) ↔ 𝐴 ⊆ (⊥‘𝐵)))
15 fveq2 6774 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝑆𝑦) = (𝑆𝐵))
1615oveq2d 7291 . . . . . . . . 9 (𝑦 = 𝐵 → ((𝑆𝐴) ·ih (𝑆𝑦)) = ((𝑆𝐴) ·ih (𝑆𝐵)))
1716eqeq1d 2740 . . . . . . . 8 (𝑦 = 𝐵 → (((𝑆𝐴) ·ih (𝑆𝑦)) = 0 ↔ ((𝑆𝐴) ·ih (𝑆𝐵)) = 0))
18 oveq2 7283 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝐴 𝑦) = (𝐴 𝐵))
1918fveq2d 6778 . . . . . . . . 9 (𝑦 = 𝐵 → (𝑆‘(𝐴 𝑦)) = (𝑆‘(𝐴 𝐵)))
2015oveq2d 7291 . . . . . . . . 9 (𝑦 = 𝐵 → ((𝑆𝐴) + (𝑆𝑦)) = ((𝑆𝐴) + (𝑆𝐵)))
2119, 20eqeq12d 2754 . . . . . . . 8 (𝑦 = 𝐵 → ((𝑆‘(𝐴 𝑦)) = ((𝑆𝐴) + (𝑆𝑦)) ↔ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵))))
2217, 21anbi12d 631 . . . . . . 7 (𝑦 = 𝐵 → ((((𝑆𝐴) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝐴 𝑦)) = ((𝑆𝐴) + (𝑆𝑦))) ↔ (((𝑆𝐴) ·ih (𝑆𝐵)) = 0 ∧ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵)))))
2314, 22imbi12d 345 . . . . . 6 (𝑦 = 𝐵 → ((𝐴 ⊆ (⊥‘𝑦) → (((𝑆𝐴) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝐴 𝑦)) = ((𝑆𝐴) + (𝑆𝑦)))) ↔ (𝐴 ⊆ (⊥‘𝐵) → (((𝑆𝐴) ·ih (𝑆𝐵)) = 0 ∧ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵))))))
2412, 23rspc2v 3570 . . . . 5 ((𝐴C𝐵C ) → (∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))) → (𝐴 ⊆ (⊥‘𝐵) → (((𝑆𝐴) ·ih (𝑆𝐵)) = 0 ∧ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵))))))
2524com23 86 . . . 4 ((𝐴C𝐵C ) → (𝐴 ⊆ (⊥‘𝐵) → (∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))) → (((𝑆𝐴) ·ih (𝑆𝐵)) = 0 ∧ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵))))))
2625impr 455 . . 3 ((𝐴C ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → (∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))) → (((𝑆𝐴) ·ih (𝑆𝐵)) = 0 ∧ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵)))))
2726adantll 711 . 2 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → (∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))) → (((𝑆𝐴) ·ih (𝑆𝐵)) = 0 ∧ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵)))))
283, 27mpd 15 1 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → (((𝑆𝐴) ·ih (𝑆𝐵)) = 0 ∧ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wral 3064  wss 3887  wf 6429  cfv 6433  (class class class)co 7275  0cc0 10871  1c1 10872  chba 29281   + cva 29282   ·ih csp 29284  normcno 29285   C cch 29291  cort 29292   chj 29295  CHStateschst 29325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-hilex 29361
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-sh 29569  df-ch 29583  df-hst 30574
This theorem is referenced by:  hstorth  30582  hstosum  30583
  Copyright terms: Public domain W3C validator