HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hstel2 Structured version   Visualization version   GIF version

Theorem hstel2 30482
Description: Properties of a Hilbert-space-valued state. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hstel2 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → (((𝑆𝐴) ·ih (𝑆𝐵)) = 0 ∧ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵))))

Proof of Theorem hstel2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ishst 30477 . . . 4 (𝑆 ∈ CHStates ↔ (𝑆: C ⟶ ℋ ∧ (norm‘(𝑆‘ ℋ)) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))))))
21simp3bi 1145 . . 3 (𝑆 ∈ CHStates → ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))))
32ad2antrr 722 . 2 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))))
4 sseq1 3942 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 ⊆ (⊥‘𝑦) ↔ 𝐴 ⊆ (⊥‘𝑦)))
5 fveq2 6756 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑆𝑥) = (𝑆𝐴))
65oveq1d 7270 . . . . . . . . 9 (𝑥 = 𝐴 → ((𝑆𝑥) ·ih (𝑆𝑦)) = ((𝑆𝐴) ·ih (𝑆𝑦)))
76eqeq1d 2740 . . . . . . . 8 (𝑥 = 𝐴 → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ↔ ((𝑆𝐴) ·ih (𝑆𝑦)) = 0))
8 fvoveq1 7278 . . . . . . . . 9 (𝑥 = 𝐴 → (𝑆‘(𝑥 𝑦)) = (𝑆‘(𝐴 𝑦)))
95oveq1d 7270 . . . . . . . . 9 (𝑥 = 𝐴 → ((𝑆𝑥) + (𝑆𝑦)) = ((𝑆𝐴) + (𝑆𝑦)))
108, 9eqeq12d 2754 . . . . . . . 8 (𝑥 = 𝐴 → ((𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)) ↔ (𝑆‘(𝐴 𝑦)) = ((𝑆𝐴) + (𝑆𝑦))))
117, 10anbi12d 630 . . . . . . 7 (𝑥 = 𝐴 → ((((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))) ↔ (((𝑆𝐴) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝐴 𝑦)) = ((𝑆𝐴) + (𝑆𝑦)))))
124, 11imbi12d 344 . . . . . 6 (𝑥 = 𝐴 → ((𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))) ↔ (𝐴 ⊆ (⊥‘𝑦) → (((𝑆𝐴) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝐴 𝑦)) = ((𝑆𝐴) + (𝑆𝑦))))))
13 fveq2 6756 . . . . . . . 8 (𝑦 = 𝐵 → (⊥‘𝑦) = (⊥‘𝐵))
1413sseq2d 3949 . . . . . . 7 (𝑦 = 𝐵 → (𝐴 ⊆ (⊥‘𝑦) ↔ 𝐴 ⊆ (⊥‘𝐵)))
15 fveq2 6756 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝑆𝑦) = (𝑆𝐵))
1615oveq2d 7271 . . . . . . . . 9 (𝑦 = 𝐵 → ((𝑆𝐴) ·ih (𝑆𝑦)) = ((𝑆𝐴) ·ih (𝑆𝐵)))
1716eqeq1d 2740 . . . . . . . 8 (𝑦 = 𝐵 → (((𝑆𝐴) ·ih (𝑆𝑦)) = 0 ↔ ((𝑆𝐴) ·ih (𝑆𝐵)) = 0))
18 oveq2 7263 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝐴 𝑦) = (𝐴 𝐵))
1918fveq2d 6760 . . . . . . . . 9 (𝑦 = 𝐵 → (𝑆‘(𝐴 𝑦)) = (𝑆‘(𝐴 𝐵)))
2015oveq2d 7271 . . . . . . . . 9 (𝑦 = 𝐵 → ((𝑆𝐴) + (𝑆𝑦)) = ((𝑆𝐴) + (𝑆𝐵)))
2119, 20eqeq12d 2754 . . . . . . . 8 (𝑦 = 𝐵 → ((𝑆‘(𝐴 𝑦)) = ((𝑆𝐴) + (𝑆𝑦)) ↔ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵))))
2217, 21anbi12d 630 . . . . . . 7 (𝑦 = 𝐵 → ((((𝑆𝐴) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝐴 𝑦)) = ((𝑆𝐴) + (𝑆𝑦))) ↔ (((𝑆𝐴) ·ih (𝑆𝐵)) = 0 ∧ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵)))))
2314, 22imbi12d 344 . . . . . 6 (𝑦 = 𝐵 → ((𝐴 ⊆ (⊥‘𝑦) → (((𝑆𝐴) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝐴 𝑦)) = ((𝑆𝐴) + (𝑆𝑦)))) ↔ (𝐴 ⊆ (⊥‘𝐵) → (((𝑆𝐴) ·ih (𝑆𝐵)) = 0 ∧ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵))))))
2412, 23rspc2v 3562 . . . . 5 ((𝐴C𝐵C ) → (∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))) → (𝐴 ⊆ (⊥‘𝐵) → (((𝑆𝐴) ·ih (𝑆𝐵)) = 0 ∧ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵))))))
2524com23 86 . . . 4 ((𝐴C𝐵C ) → (𝐴 ⊆ (⊥‘𝐵) → (∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))) → (((𝑆𝐴) ·ih (𝑆𝐵)) = 0 ∧ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵))))))
2625impr 454 . . 3 ((𝐴C ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → (∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))) → (((𝑆𝐴) ·ih (𝑆𝐵)) = 0 ∧ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵)))))
2726adantll 710 . 2 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → (∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))) → (((𝑆𝐴) ·ih (𝑆𝐵)) = 0 ∧ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵)))))
283, 27mpd 15 1 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → (((𝑆𝐴) ·ih (𝑆𝐵)) = 0 ∧ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  wss 3883  wf 6414  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803  chba 29182   + cva 29183   ·ih csp 29185  normcno 29186   C cch 29192  cort 29193   chj 29196  CHStateschst 29226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-hilex 29262
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-map 8575  df-sh 29470  df-ch 29484  df-hst 30475
This theorem is referenced by:  hstorth  30483  hstosum  30484
  Copyright terms: Public domain W3C validator