HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hstel2 Structured version   Visualization version   GIF version

Theorem hstel2 29405
Description: Properties of a Hilbert-space-valued state. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hstel2 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → (((𝑆𝐴) ·ih (𝑆𝐵)) = 0 ∧ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵))))

Proof of Theorem hstel2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ishst 29400 . . . 4 (𝑆 ∈ CHStates ↔ (𝑆: C ⟶ ℋ ∧ (norm‘(𝑆‘ ℋ)) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))))))
21simp3bi 1170 . . 3 (𝑆 ∈ CHStates → ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))))
32ad2antrr 708 . 2 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))))
4 sseq1 3823 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 ⊆ (⊥‘𝑦) ↔ 𝐴 ⊆ (⊥‘𝑦)))
5 fveq2 6404 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑆𝑥) = (𝑆𝐴))
65oveq1d 6885 . . . . . . . . 9 (𝑥 = 𝐴 → ((𝑆𝑥) ·ih (𝑆𝑦)) = ((𝑆𝐴) ·ih (𝑆𝑦)))
76eqeq1d 2808 . . . . . . . 8 (𝑥 = 𝐴 → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ↔ ((𝑆𝐴) ·ih (𝑆𝑦)) = 0))
8 fvoveq1 6893 . . . . . . . . 9 (𝑥 = 𝐴 → (𝑆‘(𝑥 𝑦)) = (𝑆‘(𝐴 𝑦)))
95oveq1d 6885 . . . . . . . . 9 (𝑥 = 𝐴 → ((𝑆𝑥) + (𝑆𝑦)) = ((𝑆𝐴) + (𝑆𝑦)))
108, 9eqeq12d 2821 . . . . . . . 8 (𝑥 = 𝐴 → ((𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)) ↔ (𝑆‘(𝐴 𝑦)) = ((𝑆𝐴) + (𝑆𝑦))))
117, 10anbi12d 618 . . . . . . 7 (𝑥 = 𝐴 → ((((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))) ↔ (((𝑆𝐴) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝐴 𝑦)) = ((𝑆𝐴) + (𝑆𝑦)))))
124, 11imbi12d 335 . . . . . 6 (𝑥 = 𝐴 → ((𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))) ↔ (𝐴 ⊆ (⊥‘𝑦) → (((𝑆𝐴) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝐴 𝑦)) = ((𝑆𝐴) + (𝑆𝑦))))))
13 fveq2 6404 . . . . . . . 8 (𝑦 = 𝐵 → (⊥‘𝑦) = (⊥‘𝐵))
1413sseq2d 3830 . . . . . . 7 (𝑦 = 𝐵 → (𝐴 ⊆ (⊥‘𝑦) ↔ 𝐴 ⊆ (⊥‘𝐵)))
15 fveq2 6404 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝑆𝑦) = (𝑆𝐵))
1615oveq2d 6886 . . . . . . . . 9 (𝑦 = 𝐵 → ((𝑆𝐴) ·ih (𝑆𝑦)) = ((𝑆𝐴) ·ih (𝑆𝐵)))
1716eqeq1d 2808 . . . . . . . 8 (𝑦 = 𝐵 → (((𝑆𝐴) ·ih (𝑆𝑦)) = 0 ↔ ((𝑆𝐴) ·ih (𝑆𝐵)) = 0))
18 oveq2 6878 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝐴 𝑦) = (𝐴 𝐵))
1918fveq2d 6408 . . . . . . . . 9 (𝑦 = 𝐵 → (𝑆‘(𝐴 𝑦)) = (𝑆‘(𝐴 𝐵)))
2015oveq2d 6886 . . . . . . . . 9 (𝑦 = 𝐵 → ((𝑆𝐴) + (𝑆𝑦)) = ((𝑆𝐴) + (𝑆𝐵)))
2119, 20eqeq12d 2821 . . . . . . . 8 (𝑦 = 𝐵 → ((𝑆‘(𝐴 𝑦)) = ((𝑆𝐴) + (𝑆𝑦)) ↔ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵))))
2217, 21anbi12d 618 . . . . . . 7 (𝑦 = 𝐵 → ((((𝑆𝐴) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝐴 𝑦)) = ((𝑆𝐴) + (𝑆𝑦))) ↔ (((𝑆𝐴) ·ih (𝑆𝐵)) = 0 ∧ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵)))))
2314, 22imbi12d 335 . . . . . 6 (𝑦 = 𝐵 → ((𝐴 ⊆ (⊥‘𝑦) → (((𝑆𝐴) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝐴 𝑦)) = ((𝑆𝐴) + (𝑆𝑦)))) ↔ (𝐴 ⊆ (⊥‘𝐵) → (((𝑆𝐴) ·ih (𝑆𝐵)) = 0 ∧ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵))))))
2412, 23rspc2v 3515 . . . . 5 ((𝐴C𝐵C ) → (∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))) → (𝐴 ⊆ (⊥‘𝐵) → (((𝑆𝐴) ·ih (𝑆𝐵)) = 0 ∧ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵))))))
2524com23 86 . . . 4 ((𝐴C𝐵C ) → (𝐴 ⊆ (⊥‘𝐵) → (∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))) → (((𝑆𝐴) ·ih (𝑆𝐵)) = 0 ∧ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵))))))
2625impr 444 . . 3 ((𝐴C ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → (∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))) → (((𝑆𝐴) ·ih (𝑆𝐵)) = 0 ∧ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵)))))
2726adantll 696 . 2 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → (∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))) → (((𝑆𝐴) ·ih (𝑆𝐵)) = 0 ∧ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵)))))
283, 27mpd 15 1 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → (((𝑆𝐴) ·ih (𝑆𝐵)) = 0 ∧ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1637  wcel 2156  wral 3096  wss 3769  wf 6093  cfv 6097  (class class class)co 6870  0cc0 10217  1c1 10218  chil 28103   + cva 28104   ·ih csp 28106  normcno 28107   C cch 28113  cort 28114   chj 28117  CHStateschst 28147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2068  ax-7 2104  ax-8 2158  ax-9 2165  ax-10 2185  ax-11 2201  ax-12 2214  ax-13 2420  ax-ext 2784  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5096  ax-un 7175  ax-hilex 28183
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2061  df-eu 2634  df-mo 2635  df-clab 2793  df-cleq 2799  df-clel 2802  df-nfc 2937  df-ral 3101  df-rex 3102  df-rab 3105  df-v 3393  df-sbc 3634  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-nul 4117  df-if 4280  df-pw 4353  df-sn 4371  df-pr 4373  df-op 4377  df-uni 4631  df-br 4845  df-opab 4907  df-id 5219  df-xp 5317  df-rel 5318  df-cnv 5319  df-co 5320  df-dm 5321  df-rn 5322  df-res 5323  df-ima 5324  df-iota 6060  df-fun 6099  df-fn 6100  df-f 6101  df-fv 6105  df-ov 6873  df-oprab 6874  df-mpt2 6875  df-map 8090  df-sh 28391  df-ch 28405  df-hst 29398
This theorem is referenced by:  hstorth  29406  hstosum  29407
  Copyright terms: Public domain W3C validator