HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hstel2 Structured version   Visualization version   GIF version

Theorem hstel2 30300
Description: Properties of a Hilbert-space-valued state. (Contributed by NM, 25-Jun-2006.) (New usage is discouraged.)
Assertion
Ref Expression
hstel2 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → (((𝑆𝐴) ·ih (𝑆𝐵)) = 0 ∧ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵))))

Proof of Theorem hstel2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ishst 30295 . . . 4 (𝑆 ∈ CHStates ↔ (𝑆: C ⟶ ℋ ∧ (norm‘(𝑆‘ ℋ)) = 1 ∧ ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))))))
21simp3bi 1149 . . 3 (𝑆 ∈ CHStates → ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))))
32ad2antrr 726 . 2 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → ∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))))
4 sseq1 3926 . . . . . . 7 (𝑥 = 𝐴 → (𝑥 ⊆ (⊥‘𝑦) ↔ 𝐴 ⊆ (⊥‘𝑦)))
5 fveq2 6717 . . . . . . . . . 10 (𝑥 = 𝐴 → (𝑆𝑥) = (𝑆𝐴))
65oveq1d 7228 . . . . . . . . 9 (𝑥 = 𝐴 → ((𝑆𝑥) ·ih (𝑆𝑦)) = ((𝑆𝐴) ·ih (𝑆𝑦)))
76eqeq1d 2739 . . . . . . . 8 (𝑥 = 𝐴 → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ↔ ((𝑆𝐴) ·ih (𝑆𝑦)) = 0))
8 fvoveq1 7236 . . . . . . . . 9 (𝑥 = 𝐴 → (𝑆‘(𝑥 𝑦)) = (𝑆‘(𝐴 𝑦)))
95oveq1d 7228 . . . . . . . . 9 (𝑥 = 𝐴 → ((𝑆𝑥) + (𝑆𝑦)) = ((𝑆𝐴) + (𝑆𝑦)))
108, 9eqeq12d 2753 . . . . . . . 8 (𝑥 = 𝐴 → ((𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)) ↔ (𝑆‘(𝐴 𝑦)) = ((𝑆𝐴) + (𝑆𝑦))))
117, 10anbi12d 634 . . . . . . 7 (𝑥 = 𝐴 → ((((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦))) ↔ (((𝑆𝐴) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝐴 𝑦)) = ((𝑆𝐴) + (𝑆𝑦)))))
124, 11imbi12d 348 . . . . . 6 (𝑥 = 𝐴 → ((𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))) ↔ (𝐴 ⊆ (⊥‘𝑦) → (((𝑆𝐴) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝐴 𝑦)) = ((𝑆𝐴) + (𝑆𝑦))))))
13 fveq2 6717 . . . . . . . 8 (𝑦 = 𝐵 → (⊥‘𝑦) = (⊥‘𝐵))
1413sseq2d 3933 . . . . . . 7 (𝑦 = 𝐵 → (𝐴 ⊆ (⊥‘𝑦) ↔ 𝐴 ⊆ (⊥‘𝐵)))
15 fveq2 6717 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝑆𝑦) = (𝑆𝐵))
1615oveq2d 7229 . . . . . . . . 9 (𝑦 = 𝐵 → ((𝑆𝐴) ·ih (𝑆𝑦)) = ((𝑆𝐴) ·ih (𝑆𝐵)))
1716eqeq1d 2739 . . . . . . . 8 (𝑦 = 𝐵 → (((𝑆𝐴) ·ih (𝑆𝑦)) = 0 ↔ ((𝑆𝐴) ·ih (𝑆𝐵)) = 0))
18 oveq2 7221 . . . . . . . . . 10 (𝑦 = 𝐵 → (𝐴 𝑦) = (𝐴 𝐵))
1918fveq2d 6721 . . . . . . . . 9 (𝑦 = 𝐵 → (𝑆‘(𝐴 𝑦)) = (𝑆‘(𝐴 𝐵)))
2015oveq2d 7229 . . . . . . . . 9 (𝑦 = 𝐵 → ((𝑆𝐴) + (𝑆𝑦)) = ((𝑆𝐴) + (𝑆𝐵)))
2119, 20eqeq12d 2753 . . . . . . . 8 (𝑦 = 𝐵 → ((𝑆‘(𝐴 𝑦)) = ((𝑆𝐴) + (𝑆𝑦)) ↔ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵))))
2217, 21anbi12d 634 . . . . . . 7 (𝑦 = 𝐵 → ((((𝑆𝐴) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝐴 𝑦)) = ((𝑆𝐴) + (𝑆𝑦))) ↔ (((𝑆𝐴) ·ih (𝑆𝐵)) = 0 ∧ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵)))))
2314, 22imbi12d 348 . . . . . 6 (𝑦 = 𝐵 → ((𝐴 ⊆ (⊥‘𝑦) → (((𝑆𝐴) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝐴 𝑦)) = ((𝑆𝐴) + (𝑆𝑦)))) ↔ (𝐴 ⊆ (⊥‘𝐵) → (((𝑆𝐴) ·ih (𝑆𝐵)) = 0 ∧ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵))))))
2412, 23rspc2v 3547 . . . . 5 ((𝐴C𝐵C ) → (∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))) → (𝐴 ⊆ (⊥‘𝐵) → (((𝑆𝐴) ·ih (𝑆𝐵)) = 0 ∧ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵))))))
2524com23 86 . . . 4 ((𝐴C𝐵C ) → (𝐴 ⊆ (⊥‘𝐵) → (∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))) → (((𝑆𝐴) ·ih (𝑆𝐵)) = 0 ∧ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵))))))
2625impr 458 . . 3 ((𝐴C ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → (∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))) → (((𝑆𝐴) ·ih (𝑆𝐵)) = 0 ∧ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵)))))
2726adantll 714 . 2 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → (∀𝑥C𝑦C (𝑥 ⊆ (⊥‘𝑦) → (((𝑆𝑥) ·ih (𝑆𝑦)) = 0 ∧ (𝑆‘(𝑥 𝑦)) = ((𝑆𝑥) + (𝑆𝑦)))) → (((𝑆𝐴) ·ih (𝑆𝐵)) = 0 ∧ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵)))))
283, 27mpd 15 1 (((𝑆 ∈ CHStates ∧ 𝐴C ) ∧ (𝐵C𝐴 ⊆ (⊥‘𝐵))) → (((𝑆𝐴) ·ih (𝑆𝐵)) = 0 ∧ (𝑆‘(𝐴 𝐵)) = ((𝑆𝐴) + (𝑆𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wral 3061  wss 3866  wf 6376  cfv 6380  (class class class)co 7213  0cc0 10729  1c1 10730  chba 29000   + cva 29001   ·ih csp 29003  normcno 29004   C cch 29010  cort 29011   chj 29014  CHStateschst 29044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-hilex 29080
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-sbc 3695  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-fv 6388  df-ov 7216  df-oprab 7217  df-mpo 7218  df-map 8510  df-sh 29288  df-ch 29302  df-hst 30293
This theorem is referenced by:  hstorth  30301  hstosum  30302
  Copyright terms: Public domain W3C validator