Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartgtprec Structured version   Visualization version   GIF version

Theorem iccpartgtprec 47530
Description: If there is a partition, then all intermediate points and the upper bound are strictly greater than the preceeding intermediate points or lower bound. (Contributed by AV, 11-Jul-2020.)
Hypotheses
Ref Expression
iccpartgtprec.m (𝜑𝑀 ∈ ℕ)
iccpartgtprec.p (𝜑𝑃 ∈ (RePart‘𝑀))
iccpartgtprec.i (𝜑𝐼 ∈ (1...𝑀))
Assertion
Ref Expression
iccpartgtprec (𝜑 → (𝑃‘(𝐼 − 1)) < (𝑃𝐼))

Proof of Theorem iccpartgtprec
StepHypRef Expression
1 iccpartgtprec.m . . . 4 (𝜑𝑀 ∈ ℕ)
2 iccpartgtprec.p . . . 4 (𝜑𝑃 ∈ (RePart‘𝑀))
3 iccpartgtprec.i . . . . . 6 (𝜑𝐼 ∈ (1...𝑀))
41nnzd 12495 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
5 fzval3 13634 . . . . . . . 8 (𝑀 ∈ ℤ → (1...𝑀) = (1..^(𝑀 + 1)))
65eleq2d 2817 . . . . . . 7 (𝑀 ∈ ℤ → (𝐼 ∈ (1...𝑀) ↔ 𝐼 ∈ (1..^(𝑀 + 1))))
74, 6syl 17 . . . . . 6 (𝜑 → (𝐼 ∈ (1...𝑀) ↔ 𝐼 ∈ (1..^(𝑀 + 1))))
83, 7mpbid 232 . . . . 5 (𝜑𝐼 ∈ (1..^(𝑀 + 1)))
91nncnd 12141 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
10 pncan1 11541 . . . . . . . . . 10 (𝑀 ∈ ℂ → ((𝑀 + 1) − 1) = 𝑀)
119, 10syl 17 . . . . . . . . 9 (𝜑 → ((𝑀 + 1) − 1) = 𝑀)
1211eqcomd 2737 . . . . . . . 8 (𝜑𝑀 = ((𝑀 + 1) − 1))
1312oveq2d 7362 . . . . . . 7 (𝜑 → (0..^𝑀) = (0..^((𝑀 + 1) − 1)))
1413eleq2d 2817 . . . . . 6 (𝜑 → ((𝐼 − 1) ∈ (0..^𝑀) ↔ (𝐼 − 1) ∈ (0..^((𝑀 + 1) − 1))))
153elfzelzd 13425 . . . . . . 7 (𝜑𝐼 ∈ ℤ)
164peano2zd 12580 . . . . . . 7 (𝜑 → (𝑀 + 1) ∈ ℤ)
17 elfzom1b 13666 . . . . . . 7 ((𝐼 ∈ ℤ ∧ (𝑀 + 1) ∈ ℤ) → (𝐼 ∈ (1..^(𝑀 + 1)) ↔ (𝐼 − 1) ∈ (0..^((𝑀 + 1) − 1))))
1815, 16, 17syl2anc 584 . . . . . 6 (𝜑 → (𝐼 ∈ (1..^(𝑀 + 1)) ↔ (𝐼 − 1) ∈ (0..^((𝑀 + 1) − 1))))
1914, 18bitr4d 282 . . . . 5 (𝜑 → ((𝐼 − 1) ∈ (0..^𝑀) ↔ 𝐼 ∈ (1..^(𝑀 + 1))))
208, 19mpbird 257 . . . 4 (𝜑 → (𝐼 − 1) ∈ (0..^𝑀))
21 iccpartimp 47527 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ (𝐼 − 1) ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ (𝑃‘(𝐼 − 1)) < (𝑃‘((𝐼 − 1) + 1))))
221, 2, 20, 21syl3anc 1373 . . 3 (𝜑 → (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ (𝑃‘(𝐼 − 1)) < (𝑃‘((𝐼 − 1) + 1))))
2322simprd 495 . 2 (𝜑 → (𝑃‘(𝐼 − 1)) < (𝑃‘((𝐼 − 1) + 1)))
2415zcnd 12578 . . . . 5 (𝜑𝐼 ∈ ℂ)
25 npcan1 11542 . . . . 5 (𝐼 ∈ ℂ → ((𝐼 − 1) + 1) = 𝐼)
2624, 25syl 17 . . . 4 (𝜑 → ((𝐼 − 1) + 1) = 𝐼)
2726eqcomd 2737 . . 3 (𝜑𝐼 = ((𝐼 − 1) + 1))
2827fveq2d 6826 . 2 (𝜑 → (𝑃𝐼) = (𝑃‘((𝐼 − 1) + 1)))
2923, 28breqtrrd 5117 1 (𝜑 → (𝑃‘(𝐼 − 1)) < (𝑃𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111   class class class wbr 5089  cfv 6481  (class class class)co 7346  m cmap 8750  cc 11004  0cc0 11006  1c1 11007   + caddc 11009  *cxr 11145   < clt 11146  cmin 11344  cn 12125  cz 12468  ...cfz 13407  ..^cfzo 13554  RePartciccp 47523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-iccp 47524
This theorem is referenced by:  iccpartipre  47531  iccpartiltu  47532
  Copyright terms: Public domain W3C validator