Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartgtprec Structured version   Visualization version   GIF version

Theorem iccpartgtprec 47414
Description: If there is a partition, then all intermediate points and the upper bound are strictly greater than the preceeding intermediate points or lower bound. (Contributed by AV, 11-Jul-2020.)
Hypotheses
Ref Expression
iccpartgtprec.m (𝜑𝑀 ∈ ℕ)
iccpartgtprec.p (𝜑𝑃 ∈ (RePart‘𝑀))
iccpartgtprec.i (𝜑𝐼 ∈ (1...𝑀))
Assertion
Ref Expression
iccpartgtprec (𝜑 → (𝑃‘(𝐼 − 1)) < (𝑃𝐼))

Proof of Theorem iccpartgtprec
StepHypRef Expression
1 iccpartgtprec.m . . . 4 (𝜑𝑀 ∈ ℕ)
2 iccpartgtprec.p . . . 4 (𝜑𝑃 ∈ (RePart‘𝑀))
3 iccpartgtprec.i . . . . . 6 (𝜑𝐼 ∈ (1...𝑀))
41nnzd 12498 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
5 fzval3 13637 . . . . . . . 8 (𝑀 ∈ ℤ → (1...𝑀) = (1..^(𝑀 + 1)))
65eleq2d 2814 . . . . . . 7 (𝑀 ∈ ℤ → (𝐼 ∈ (1...𝑀) ↔ 𝐼 ∈ (1..^(𝑀 + 1))))
74, 6syl 17 . . . . . 6 (𝜑 → (𝐼 ∈ (1...𝑀) ↔ 𝐼 ∈ (1..^(𝑀 + 1))))
83, 7mpbid 232 . . . . 5 (𝜑𝐼 ∈ (1..^(𝑀 + 1)))
91nncnd 12144 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
10 pncan1 11544 . . . . . . . . . 10 (𝑀 ∈ ℂ → ((𝑀 + 1) − 1) = 𝑀)
119, 10syl 17 . . . . . . . . 9 (𝜑 → ((𝑀 + 1) − 1) = 𝑀)
1211eqcomd 2735 . . . . . . . 8 (𝜑𝑀 = ((𝑀 + 1) − 1))
1312oveq2d 7365 . . . . . . 7 (𝜑 → (0..^𝑀) = (0..^((𝑀 + 1) − 1)))
1413eleq2d 2814 . . . . . 6 (𝜑 → ((𝐼 − 1) ∈ (0..^𝑀) ↔ (𝐼 − 1) ∈ (0..^((𝑀 + 1) − 1))))
153elfzelzd 13428 . . . . . . 7 (𝜑𝐼 ∈ ℤ)
164peano2zd 12583 . . . . . . 7 (𝜑 → (𝑀 + 1) ∈ ℤ)
17 elfzom1b 13669 . . . . . . 7 ((𝐼 ∈ ℤ ∧ (𝑀 + 1) ∈ ℤ) → (𝐼 ∈ (1..^(𝑀 + 1)) ↔ (𝐼 − 1) ∈ (0..^((𝑀 + 1) − 1))))
1815, 16, 17syl2anc 584 . . . . . 6 (𝜑 → (𝐼 ∈ (1..^(𝑀 + 1)) ↔ (𝐼 − 1) ∈ (0..^((𝑀 + 1) − 1))))
1914, 18bitr4d 282 . . . . 5 (𝜑 → ((𝐼 − 1) ∈ (0..^𝑀) ↔ 𝐼 ∈ (1..^(𝑀 + 1))))
208, 19mpbird 257 . . . 4 (𝜑 → (𝐼 − 1) ∈ (0..^𝑀))
21 iccpartimp 47411 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ (𝐼 − 1) ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ (𝑃‘(𝐼 − 1)) < (𝑃‘((𝐼 − 1) + 1))))
221, 2, 20, 21syl3anc 1373 . . 3 (𝜑 → (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ (𝑃‘(𝐼 − 1)) < (𝑃‘((𝐼 − 1) + 1))))
2322simprd 495 . 2 (𝜑 → (𝑃‘(𝐼 − 1)) < (𝑃‘((𝐼 − 1) + 1)))
2415zcnd 12581 . . . . 5 (𝜑𝐼 ∈ ℂ)
25 npcan1 11545 . . . . 5 (𝐼 ∈ ℂ → ((𝐼 − 1) + 1) = 𝐼)
2624, 25syl 17 . . . 4 (𝜑 → ((𝐼 − 1) + 1) = 𝐼)
2726eqcomd 2735 . . 3 (𝜑𝐼 = ((𝐼 − 1) + 1))
2827fveq2d 6826 . 2 (𝜑 → (𝑃𝐼) = (𝑃‘((𝐼 − 1) + 1)))
2923, 28breqtrrd 5120 1 (𝜑 → (𝑃‘(𝐼 − 1)) < (𝑃𝐼))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5092  cfv 6482  (class class class)co 7349  m cmap 8753  cc 11007  0cc0 11009  1c1 11010   + caddc 11012  *cxr 11148   < clt 11149  cmin 11347  cn 12128  cz 12471  ...cfz 13410  ..^cfzo 13557  RePartciccp 47407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-n0 12385  df-z 12472  df-uz 12736  df-fz 13411  df-fzo 13558  df-iccp 47408
This theorem is referenced by:  iccpartipre  47415  iccpartiltu  47416
  Copyright terms: Public domain W3C validator