Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartgtprec Structured version   Visualization version   GIF version

Theorem iccpartgtprec 43980
 Description: If there is a partition, then all intermediate points and the upper bound are strictly greater than the preceeding intermediate points or lower bound. (Contributed by AV, 11-Jul-2020.)
Hypotheses
Ref Expression
iccpartgtprec.m (𝜑𝑀 ∈ ℕ)
iccpartgtprec.p (𝜑𝑃 ∈ (RePart‘𝑀))
iccpartgtprec.i (𝜑𝐼 ∈ (1...𝑀))
Assertion
Ref Expression
iccpartgtprec (𝜑 → (𝑃‘(𝐼 − 1)) < (𝑃𝐼))

Proof of Theorem iccpartgtprec
StepHypRef Expression
1 iccpartgtprec.m . . . 4 (𝜑𝑀 ∈ ℕ)
2 iccpartgtprec.p . . . 4 (𝜑𝑃 ∈ (RePart‘𝑀))
3 iccpartgtprec.i . . . . . 6 (𝜑𝐼 ∈ (1...𝑀))
41nnzd 12077 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
5 fzval3 13104 . . . . . . . 8 (𝑀 ∈ ℤ → (1...𝑀) = (1..^(𝑀 + 1)))
65eleq2d 2875 . . . . . . 7 (𝑀 ∈ ℤ → (𝐼 ∈ (1...𝑀) ↔ 𝐼 ∈ (1..^(𝑀 + 1))))
74, 6syl 17 . . . . . 6 (𝜑 → (𝐼 ∈ (1...𝑀) ↔ 𝐼 ∈ (1..^(𝑀 + 1))))
83, 7mpbid 235 . . . . 5 (𝜑𝐼 ∈ (1..^(𝑀 + 1)))
91nncnd 11644 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
10 pncan1 11056 . . . . . . . . . 10 (𝑀 ∈ ℂ → ((𝑀 + 1) − 1) = 𝑀)
119, 10syl 17 . . . . . . . . 9 (𝜑 → ((𝑀 + 1) − 1) = 𝑀)
1211eqcomd 2804 . . . . . . . 8 (𝜑𝑀 = ((𝑀 + 1) − 1))
1312oveq2d 7152 . . . . . . 7 (𝜑 → (0..^𝑀) = (0..^((𝑀 + 1) − 1)))
1413eleq2d 2875 . . . . . 6 (𝜑 → ((𝐼 − 1) ∈ (0..^𝑀) ↔ (𝐼 − 1) ∈ (0..^((𝑀 + 1) − 1))))
15 elfzelz 12905 . . . . . . . 8 (𝐼 ∈ (1...𝑀) → 𝐼 ∈ ℤ)
163, 15syl 17 . . . . . . 7 (𝜑𝐼 ∈ ℤ)
174peano2zd 12081 . . . . . . 7 (𝜑 → (𝑀 + 1) ∈ ℤ)
18 elfzom1b 13134 . . . . . . 7 ((𝐼 ∈ ℤ ∧ (𝑀 + 1) ∈ ℤ) → (𝐼 ∈ (1..^(𝑀 + 1)) ↔ (𝐼 − 1) ∈ (0..^((𝑀 + 1) − 1))))
1916, 17, 18syl2anc 587 . . . . . 6 (𝜑 → (𝐼 ∈ (1..^(𝑀 + 1)) ↔ (𝐼 − 1) ∈ (0..^((𝑀 + 1) − 1))))
2014, 19bitr4d 285 . . . . 5 (𝜑 → ((𝐼 − 1) ∈ (0..^𝑀) ↔ 𝐼 ∈ (1..^(𝑀 + 1))))
218, 20mpbird 260 . . . 4 (𝜑 → (𝐼 − 1) ∈ (0..^𝑀))
22 iccpartimp 43977 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ (𝐼 − 1) ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ (𝑃‘(𝐼 − 1)) < (𝑃‘((𝐼 − 1) + 1))))
231, 2, 21, 22syl3anc 1368 . . 3 (𝜑 → (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ (𝑃‘(𝐼 − 1)) < (𝑃‘((𝐼 − 1) + 1))))
2423simprd 499 . 2 (𝜑 → (𝑃‘(𝐼 − 1)) < (𝑃‘((𝐼 − 1) + 1)))
2516zcnd 12079 . . . . 5 (𝜑𝐼 ∈ ℂ)
26 npcan1 11057 . . . . 5 (𝐼 ∈ ℂ → ((𝐼 − 1) + 1) = 𝐼)
2725, 26syl 17 . . . 4 (𝜑 → ((𝐼 − 1) + 1) = 𝐼)
2827eqcomd 2804 . . 3 (𝜑𝐼 = ((𝐼 − 1) + 1))
2928fveq2d 6650 . 2 (𝜑 → (𝑃𝐼) = (𝑃‘((𝐼 − 1) + 1)))
3024, 29breqtrrd 5059 1 (𝜑 → (𝑃‘(𝐼 − 1)) < (𝑃𝐼))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2111   class class class wbr 5031  ‘cfv 6325  (class class class)co 7136   ↑m cmap 8392  ℂcc 10527  0cc0 10529  1c1 10530   + caddc 10532  ℝ*cxr 10666   < clt 10667   − cmin 10862  ℕcn 11628  ℤcz 11972  ...cfz 12888  ..^cfzo 13031  RePartciccp 43973 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pow 5232  ax-pr 5296  ax-un 7444  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4802  df-iun 4884  df-br 5032  df-opab 5094  df-mpt 5112  df-tr 5138  df-id 5426  df-eprel 5431  df-po 5439  df-so 5440  df-fr 5479  df-we 5481  df-xp 5526  df-rel 5527  df-cnv 5528  df-co 5529  df-dm 5530  df-rn 5531  df-res 5532  df-ima 5533  df-pred 6117  df-ord 6163  df-on 6164  df-lim 6165  df-suc 6166  df-iota 6284  df-fun 6327  df-fn 6328  df-f 6329  df-f1 6330  df-fo 6331  df-f1o 6332  df-fv 6333  df-riota 7094  df-ov 7139  df-oprab 7140  df-mpo 7141  df-om 7564  df-1st 7674  df-2nd 7675  df-wrecs 7933  df-recs 7994  df-rdg 8032  df-er 8275  df-en 8496  df-dom 8497  df-sdom 8498  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11629  df-n0 11889  df-z 11973  df-uz 12235  df-fz 12889  df-fzo 13032  df-iccp 43974 This theorem is referenced by:  iccpartipre  43981  iccpartiltu  43982
 Copyright terms: Public domain W3C validator