| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iccpartgtprec | Structured version Visualization version GIF version | ||
| Description: If there is a partition, then all intermediate points and the upper bound are strictly greater than the preceeding intermediate points or lower bound. (Contributed by AV, 11-Jul-2020.) |
| Ref | Expression |
|---|---|
| iccpartgtprec.m | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| iccpartgtprec.p | ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) |
| iccpartgtprec.i | ⊢ (𝜑 → 𝐼 ∈ (1...𝑀)) |
| Ref | Expression |
|---|---|
| iccpartgtprec | ⊢ (𝜑 → (𝑃‘(𝐼 − 1)) < (𝑃‘𝐼)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccpartgtprec.m | . . . 4 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
| 2 | iccpartgtprec.p | . . . 4 ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) | |
| 3 | iccpartgtprec.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (1...𝑀)) | |
| 4 | 1 | nnzd 12495 | . . . . . . 7 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 5 | fzval3 13634 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → (1...𝑀) = (1..^(𝑀 + 1))) | |
| 6 | 5 | eleq2d 2817 | . . . . . . 7 ⊢ (𝑀 ∈ ℤ → (𝐼 ∈ (1...𝑀) ↔ 𝐼 ∈ (1..^(𝑀 + 1)))) |
| 7 | 4, 6 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝐼 ∈ (1...𝑀) ↔ 𝐼 ∈ (1..^(𝑀 + 1)))) |
| 8 | 3, 7 | mpbid 232 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (1..^(𝑀 + 1))) |
| 9 | 1 | nncnd 12141 | . . . . . . . . . 10 ⊢ (𝜑 → 𝑀 ∈ ℂ) |
| 10 | pncan1 11541 | . . . . . . . . . 10 ⊢ (𝑀 ∈ ℂ → ((𝑀 + 1) − 1) = 𝑀) | |
| 11 | 9, 10 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → ((𝑀 + 1) − 1) = 𝑀) |
| 12 | 11 | eqcomd 2737 | . . . . . . . 8 ⊢ (𝜑 → 𝑀 = ((𝑀 + 1) − 1)) |
| 13 | 12 | oveq2d 7362 | . . . . . . 7 ⊢ (𝜑 → (0..^𝑀) = (0..^((𝑀 + 1) − 1))) |
| 14 | 13 | eleq2d 2817 | . . . . . 6 ⊢ (𝜑 → ((𝐼 − 1) ∈ (0..^𝑀) ↔ (𝐼 − 1) ∈ (0..^((𝑀 + 1) − 1)))) |
| 15 | 3 | elfzelzd 13425 | . . . . . . 7 ⊢ (𝜑 → 𝐼 ∈ ℤ) |
| 16 | 4 | peano2zd 12580 | . . . . . . 7 ⊢ (𝜑 → (𝑀 + 1) ∈ ℤ) |
| 17 | elfzom1b 13666 | . . . . . . 7 ⊢ ((𝐼 ∈ ℤ ∧ (𝑀 + 1) ∈ ℤ) → (𝐼 ∈ (1..^(𝑀 + 1)) ↔ (𝐼 − 1) ∈ (0..^((𝑀 + 1) − 1)))) | |
| 18 | 15, 16, 17 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝐼 ∈ (1..^(𝑀 + 1)) ↔ (𝐼 − 1) ∈ (0..^((𝑀 + 1) − 1)))) |
| 19 | 14, 18 | bitr4d 282 | . . . . 5 ⊢ (𝜑 → ((𝐼 − 1) ∈ (0..^𝑀) ↔ 𝐼 ∈ (1..^(𝑀 + 1)))) |
| 20 | 8, 19 | mpbird 257 | . . . 4 ⊢ (𝜑 → (𝐼 − 1) ∈ (0..^𝑀)) |
| 21 | iccpartimp 47527 | . . . 4 ⊢ ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ (𝐼 − 1) ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ (𝑃‘(𝐼 − 1)) < (𝑃‘((𝐼 − 1) + 1)))) | |
| 22 | 1, 2, 20, 21 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ (𝑃‘(𝐼 − 1)) < (𝑃‘((𝐼 − 1) + 1)))) |
| 23 | 22 | simprd 495 | . 2 ⊢ (𝜑 → (𝑃‘(𝐼 − 1)) < (𝑃‘((𝐼 − 1) + 1))) |
| 24 | 15 | zcnd 12578 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ ℂ) |
| 25 | npcan1 11542 | . . . . 5 ⊢ (𝐼 ∈ ℂ → ((𝐼 − 1) + 1) = 𝐼) | |
| 26 | 24, 25 | syl 17 | . . . 4 ⊢ (𝜑 → ((𝐼 − 1) + 1) = 𝐼) |
| 27 | 26 | eqcomd 2737 | . . 3 ⊢ (𝜑 → 𝐼 = ((𝐼 − 1) + 1)) |
| 28 | 27 | fveq2d 6826 | . 2 ⊢ (𝜑 → (𝑃‘𝐼) = (𝑃‘((𝐼 − 1) + 1))) |
| 29 | 23, 28 | breqtrrd 5117 | 1 ⊢ (𝜑 → (𝑃‘(𝐼 − 1)) < (𝑃‘𝐼)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 ℂcc 11004 0cc0 11006 1c1 11007 + caddc 11009 ℝ*cxr 11145 < clt 11146 − cmin 11344 ℕcn 12125 ℤcz 12468 ...cfz 13407 ..^cfzo 13554 RePartciccp 47523 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-iccp 47524 |
| This theorem is referenced by: iccpartipre 47531 iccpartiltu 47532 |
| Copyright terms: Public domain | W3C validator |