Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartipre Structured version   Visualization version   GIF version

Theorem iccpartipre 47520
Description: If there is a partition, then all intermediate points are real numbers. (Contributed by AV, 11-Jul-2020.)
Hypotheses
Ref Expression
iccpartgtprec.m (𝜑𝑀 ∈ ℕ)
iccpartgtprec.p (𝜑𝑃 ∈ (RePart‘𝑀))
iccpartipre.i (𝜑𝐼 ∈ (1..^𝑀))
Assertion
Ref Expression
iccpartipre (𝜑 → (𝑃𝐼) ∈ ℝ)

Proof of Theorem iccpartipre
StepHypRef Expression
1 iccpartgtprec.m . . 3 (𝜑𝑀 ∈ ℕ)
2 iccpartgtprec.p . . 3 (𝜑𝑃 ∈ (RePart‘𝑀))
3 nnz 12489 . . . . . . . 8 (𝑀 ∈ ℕ → 𝑀 ∈ ℤ)
4 peano2zm 12515 . . . . . . . . 9 (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ)
5 id 22 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ ℤ)
6 zre 12472 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
76lem1d 12055 . . . . . . . . 9 (𝑀 ∈ ℤ → (𝑀 − 1) ≤ 𝑀)
84, 5, 73jca 1128 . . . . . . . 8 (𝑀 ∈ ℤ → ((𝑀 − 1) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 − 1) ≤ 𝑀))
93, 8syl 17 . . . . . . 7 (𝑀 ∈ ℕ → ((𝑀 − 1) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 − 1) ≤ 𝑀))
10 eluz2 12738 . . . . . . 7 (𝑀 ∈ (ℤ‘(𝑀 − 1)) ↔ ((𝑀 − 1) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 − 1) ≤ 𝑀))
119, 10sylibr 234 . . . . . 6 (𝑀 ∈ ℕ → 𝑀 ∈ (ℤ‘(𝑀 − 1)))
121, 11syl 17 . . . . 5 (𝜑𝑀 ∈ (ℤ‘(𝑀 − 1)))
13 fzss2 13464 . . . . 5 (𝑀 ∈ (ℤ‘(𝑀 − 1)) → (0...(𝑀 − 1)) ⊆ (0...𝑀))
1412, 13syl 17 . . . 4 (𝜑 → (0...(𝑀 − 1)) ⊆ (0...𝑀))
15 fzossfz 13578 . . . . . 6 (1..^𝑀) ⊆ (1...𝑀)
16 iccpartipre.i . . . . . 6 (𝜑𝐼 ∈ (1..^𝑀))
1715, 16sselid 3927 . . . . 5 (𝜑𝐼 ∈ (1...𝑀))
18 elfzoelz 13559 . . . . . . 7 (𝐼 ∈ (1..^𝑀) → 𝐼 ∈ ℤ)
1916, 18syl 17 . . . . . 6 (𝜑𝐼 ∈ ℤ)
201nnzd 12495 . . . . . 6 (𝜑𝑀 ∈ ℤ)
21 elfzm1b 13502 . . . . . 6 ((𝐼 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐼 ∈ (1...𝑀) ↔ (𝐼 − 1) ∈ (0...(𝑀 − 1))))
2219, 20, 21syl2anc 584 . . . . 5 (𝜑 → (𝐼 ∈ (1...𝑀) ↔ (𝐼 − 1) ∈ (0...(𝑀 − 1))))
2317, 22mpbid 232 . . . 4 (𝜑 → (𝐼 − 1) ∈ (0...(𝑀 − 1)))
2414, 23sseldd 3930 . . 3 (𝜑 → (𝐼 − 1) ∈ (0...𝑀))
251, 2, 24iccpartxr 47518 . 2 (𝜑 → (𝑃‘(𝐼 − 1)) ∈ ℝ*)
26 1eluzge0 12778 . . . . . 6 1 ∈ (ℤ‘0)
27 fzoss1 13586 . . . . . 6 (1 ∈ (ℤ‘0) → (1..^𝑀) ⊆ (0..^𝑀))
2826, 27mp1i 13 . . . . 5 (𝜑 → (1..^𝑀) ⊆ (0..^𝑀))
29 fzossfz 13578 . . . . 5 (0..^𝑀) ⊆ (0...𝑀)
3028, 29sstrdi 3942 . . . 4 (𝜑 → (1..^𝑀) ⊆ (0...𝑀))
3130, 16sseldd 3930 . . 3 (𝜑𝐼 ∈ (0...𝑀))
321, 2, 31iccpartxr 47518 . 2 (𝜑 → (𝑃𝐼) ∈ ℝ*)
3328, 16sseldd 3930 . . . 4 (𝜑𝐼 ∈ (0..^𝑀))
34 fzofzp1 13664 . . . 4 (𝐼 ∈ (0..^𝑀) → (𝐼 + 1) ∈ (0...𝑀))
3533, 34syl 17 . . 3 (𝜑 → (𝐼 + 1) ∈ (0...𝑀))
361, 2, 35iccpartxr 47518 . 2 (𝜑 → (𝑃‘(𝐼 + 1)) ∈ ℝ*)
371, 2, 17iccpartgtprec 47519 . 2 (𝜑 → (𝑃‘(𝐼 − 1)) < (𝑃𝐼))
38 iccpartimp 47516 . . . 4 ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 𝐼 ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ (𝑃𝐼) < (𝑃‘(𝐼 + 1))))
391, 2, 33, 38syl3anc 1373 . . 3 (𝜑 → (𝑃 ∈ (ℝ*m (0...𝑀)) ∧ (𝑃𝐼) < (𝑃‘(𝐼 + 1))))
4039simprd 495 . 2 (𝜑 → (𝑃𝐼) < (𝑃‘(𝐼 + 1)))
41 xrre2 13069 . 2 ((((𝑃‘(𝐼 − 1)) ∈ ℝ* ∧ (𝑃𝐼) ∈ ℝ* ∧ (𝑃‘(𝐼 + 1)) ∈ ℝ*) ∧ ((𝑃‘(𝐼 − 1)) < (𝑃𝐼) ∧ (𝑃𝐼) < (𝑃‘(𝐼 + 1)))) → (𝑃𝐼) ∈ ℝ)
4225, 32, 36, 37, 40, 41syl32anc 1380 1 (𝜑 → (𝑃𝐼) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2111  wss 3897   class class class wbr 5089  cfv 6481  (class class class)co 7346  m cmap 8750  cr 11005  0cc0 11006  1c1 11007   + caddc 11009  *cxr 11145   < clt 11146  cle 11147  cmin 11344  cn 12125  cz 12468  cuz 12732  ...cfz 13407  ..^cfzo 13554  RePartciccp 47512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-uz 12733  df-fz 13408  df-fzo 13555  df-iccp 47513
This theorem is referenced by:  iccpartiltu  47521  iccpartigtl  47522  iccpartgt  47526  bgoldbtbndlem3  47906
  Copyright terms: Public domain W3C validator