![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iccpartipre | Structured version Visualization version GIF version |
Description: If there is a partition, then all intermediate points are real numbers. (Contributed by AV, 11-Jul-2020.) |
Ref | Expression |
---|---|
iccpartgtprec.m | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
iccpartgtprec.p | ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) |
iccpartipre.i | ⊢ (𝜑 → 𝐼 ∈ (1..^𝑀)) |
Ref | Expression |
---|---|
iccpartipre | ⊢ (𝜑 → (𝑃‘𝐼) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccpartgtprec.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
2 | iccpartgtprec.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) | |
3 | nnz 11853 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℤ) | |
4 | peano2zm 11874 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ) | |
5 | id 22 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℤ) | |
6 | zre 11833 | . . . . . . . . . 10 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
7 | 6 | lem1d 11421 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℤ → (𝑀 − 1) ≤ 𝑀) |
8 | 4, 5, 7 | 3jca 1121 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → ((𝑀 − 1) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 − 1) ≤ 𝑀)) |
9 | 3, 8 | syl 17 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ → ((𝑀 − 1) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 − 1) ≤ 𝑀)) |
10 | eluz2 12099 | . . . . . . 7 ⊢ (𝑀 ∈ (ℤ≥‘(𝑀 − 1)) ↔ ((𝑀 − 1) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 − 1) ≤ 𝑀)) | |
11 | 9, 10 | sylibr 235 | . . . . . 6 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ (ℤ≥‘(𝑀 − 1))) |
12 | 1, 11 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘(𝑀 − 1))) |
13 | fzss2 12797 | . . . . 5 ⊢ (𝑀 ∈ (ℤ≥‘(𝑀 − 1)) → (0...(𝑀 − 1)) ⊆ (0...𝑀)) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝜑 → (0...(𝑀 − 1)) ⊆ (0...𝑀)) |
15 | fzossfz 12906 | . . . . . 6 ⊢ (1..^𝑀) ⊆ (1...𝑀) | |
16 | iccpartipre.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (1..^𝑀)) | |
17 | 15, 16 | sseldi 3887 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (1...𝑀)) |
18 | elfzoelz 12888 | . . . . . . 7 ⊢ (𝐼 ∈ (1..^𝑀) → 𝐼 ∈ ℤ) | |
19 | 16, 18 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ ℤ) |
20 | 1 | nnzd 11935 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
21 | elfzm1b 12835 | . . . . . 6 ⊢ ((𝐼 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐼 ∈ (1...𝑀) ↔ (𝐼 − 1) ∈ (0...(𝑀 − 1)))) | |
22 | 19, 20, 21 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝐼 ∈ (1...𝑀) ↔ (𝐼 − 1) ∈ (0...(𝑀 − 1)))) |
23 | 17, 22 | mpbid 233 | . . . 4 ⊢ (𝜑 → (𝐼 − 1) ∈ (0...(𝑀 − 1))) |
24 | 14, 23 | sseldd 3890 | . . 3 ⊢ (𝜑 → (𝐼 − 1) ∈ (0...𝑀)) |
25 | 1, 2, 24 | iccpartxr 43061 | . 2 ⊢ (𝜑 → (𝑃‘(𝐼 − 1)) ∈ ℝ*) |
26 | 1eluzge0 12141 | . . . . . 6 ⊢ 1 ∈ (ℤ≥‘0) | |
27 | fzoss1 12914 | . . . . . 6 ⊢ (1 ∈ (ℤ≥‘0) → (1..^𝑀) ⊆ (0..^𝑀)) | |
28 | 26, 27 | mp1i 13 | . . . . 5 ⊢ (𝜑 → (1..^𝑀) ⊆ (0..^𝑀)) |
29 | fzossfz 12906 | . . . . 5 ⊢ (0..^𝑀) ⊆ (0...𝑀) | |
30 | 28, 29 | syl6ss 3901 | . . . 4 ⊢ (𝜑 → (1..^𝑀) ⊆ (0...𝑀)) |
31 | 30, 16 | sseldd 3890 | . . 3 ⊢ (𝜑 → 𝐼 ∈ (0...𝑀)) |
32 | 1, 2, 31 | iccpartxr 43061 | . 2 ⊢ (𝜑 → (𝑃‘𝐼) ∈ ℝ*) |
33 | 28, 16 | sseldd 3890 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ (0..^𝑀)) |
34 | fzofzp1 12984 | . . . 4 ⊢ (𝐼 ∈ (0..^𝑀) → (𝐼 + 1) ∈ (0...𝑀)) | |
35 | 33, 34 | syl 17 | . . 3 ⊢ (𝜑 → (𝐼 + 1) ∈ (0...𝑀)) |
36 | 1, 2, 35 | iccpartxr 43061 | . 2 ⊢ (𝜑 → (𝑃‘(𝐼 + 1)) ∈ ℝ*) |
37 | 1, 2, 17 | iccpartgtprec 43062 | . 2 ⊢ (𝜑 → (𝑃‘(𝐼 − 1)) < (𝑃‘𝐼)) |
38 | iccpartimp 43059 | . . . 4 ⊢ ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 𝐼 ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ* ↑𝑚 (0...𝑀)) ∧ (𝑃‘𝐼) < (𝑃‘(𝐼 + 1)))) | |
39 | 1, 2, 33, 38 | syl3anc 1364 | . . 3 ⊢ (𝜑 → (𝑃 ∈ (ℝ* ↑𝑚 (0...𝑀)) ∧ (𝑃‘𝐼) < (𝑃‘(𝐼 + 1)))) |
40 | 39 | simprd 496 | . 2 ⊢ (𝜑 → (𝑃‘𝐼) < (𝑃‘(𝐼 + 1))) |
41 | xrre2 12413 | . 2 ⊢ ((((𝑃‘(𝐼 − 1)) ∈ ℝ* ∧ (𝑃‘𝐼) ∈ ℝ* ∧ (𝑃‘(𝐼 + 1)) ∈ ℝ*) ∧ ((𝑃‘(𝐼 − 1)) < (𝑃‘𝐼) ∧ (𝑃‘𝐼) < (𝑃‘(𝐼 + 1)))) → (𝑃‘𝐼) ∈ ℝ) | |
42 | 25, 32, 36, 37, 40, 41 | syl32anc 1371 | 1 ⊢ (𝜑 → (𝑃‘𝐼) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ wa 396 ∧ w3a 1080 ∈ wcel 2081 ⊆ wss 3859 class class class wbr 4962 ‘cfv 6225 (class class class)co 7016 ↑𝑚 cmap 8256 ℝcr 10382 0cc0 10383 1c1 10384 + caddc 10386 ℝ*cxr 10520 < clt 10521 ≤ cle 10522 − cmin 10717 ℕcn 11486 ℤcz 11829 ℤ≥cuz 12093 ...cfz 12742 ..^cfzo 12883 RePartciccp 43055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-cnex 10439 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-om 7437 df-1st 7545 df-2nd 7546 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-er 8139 df-map 8258 df-en 8358 df-dom 8359 df-sdom 8360 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-nn 11487 df-n0 11746 df-z 11830 df-uz 12094 df-fz 12743 df-fzo 12884 df-iccp 43056 |
This theorem is referenced by: iccpartiltu 43064 iccpartigtl 43065 iccpartgt 43069 bgoldbtbndlem3 43454 |
Copyright terms: Public domain | W3C validator |