Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iccpartipre | Structured version Visualization version GIF version |
Description: If there is a partition, then all intermediate points are real numbers. (Contributed by AV, 11-Jul-2020.) |
Ref | Expression |
---|---|
iccpartgtprec.m | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
iccpartgtprec.p | ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) |
iccpartipre.i | ⊢ (𝜑 → 𝐼 ∈ (1..^𝑀)) |
Ref | Expression |
---|---|
iccpartipre | ⊢ (𝜑 → (𝑃‘𝐼) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccpartgtprec.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
2 | iccpartgtprec.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) | |
3 | nnz 12272 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℤ) | |
4 | peano2zm 12293 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ) | |
5 | id 22 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℤ) | |
6 | zre 12253 | . . . . . . . . . 10 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
7 | 6 | lem1d 11838 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℤ → (𝑀 − 1) ≤ 𝑀) |
8 | 4, 5, 7 | 3jca 1126 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → ((𝑀 − 1) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 − 1) ≤ 𝑀)) |
9 | 3, 8 | syl 17 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ → ((𝑀 − 1) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 − 1) ≤ 𝑀)) |
10 | eluz2 12517 | . . . . . . 7 ⊢ (𝑀 ∈ (ℤ≥‘(𝑀 − 1)) ↔ ((𝑀 − 1) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 − 1) ≤ 𝑀)) | |
11 | 9, 10 | sylibr 233 | . . . . . 6 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ (ℤ≥‘(𝑀 − 1))) |
12 | 1, 11 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘(𝑀 − 1))) |
13 | fzss2 13225 | . . . . 5 ⊢ (𝑀 ∈ (ℤ≥‘(𝑀 − 1)) → (0...(𝑀 − 1)) ⊆ (0...𝑀)) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝜑 → (0...(𝑀 − 1)) ⊆ (0...𝑀)) |
15 | fzossfz 13334 | . . . . . 6 ⊢ (1..^𝑀) ⊆ (1...𝑀) | |
16 | iccpartipre.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (1..^𝑀)) | |
17 | 15, 16 | sselid 3915 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (1...𝑀)) |
18 | elfzoelz 13316 | . . . . . . 7 ⊢ (𝐼 ∈ (1..^𝑀) → 𝐼 ∈ ℤ) | |
19 | 16, 18 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ ℤ) |
20 | 1 | nnzd 12354 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
21 | elfzm1b 13263 | . . . . . 6 ⊢ ((𝐼 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐼 ∈ (1...𝑀) ↔ (𝐼 − 1) ∈ (0...(𝑀 − 1)))) | |
22 | 19, 20, 21 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → (𝐼 ∈ (1...𝑀) ↔ (𝐼 − 1) ∈ (0...(𝑀 − 1)))) |
23 | 17, 22 | mpbid 231 | . . . 4 ⊢ (𝜑 → (𝐼 − 1) ∈ (0...(𝑀 − 1))) |
24 | 14, 23 | sseldd 3918 | . . 3 ⊢ (𝜑 → (𝐼 − 1) ∈ (0...𝑀)) |
25 | 1, 2, 24 | iccpartxr 44759 | . 2 ⊢ (𝜑 → (𝑃‘(𝐼 − 1)) ∈ ℝ*) |
26 | 1eluzge0 12561 | . . . . . 6 ⊢ 1 ∈ (ℤ≥‘0) | |
27 | fzoss1 13342 | . . . . . 6 ⊢ (1 ∈ (ℤ≥‘0) → (1..^𝑀) ⊆ (0..^𝑀)) | |
28 | 26, 27 | mp1i 13 | . . . . 5 ⊢ (𝜑 → (1..^𝑀) ⊆ (0..^𝑀)) |
29 | fzossfz 13334 | . . . . 5 ⊢ (0..^𝑀) ⊆ (0...𝑀) | |
30 | 28, 29 | sstrdi 3929 | . . . 4 ⊢ (𝜑 → (1..^𝑀) ⊆ (0...𝑀)) |
31 | 30, 16 | sseldd 3918 | . . 3 ⊢ (𝜑 → 𝐼 ∈ (0...𝑀)) |
32 | 1, 2, 31 | iccpartxr 44759 | . 2 ⊢ (𝜑 → (𝑃‘𝐼) ∈ ℝ*) |
33 | 28, 16 | sseldd 3918 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ (0..^𝑀)) |
34 | fzofzp1 13412 | . . . 4 ⊢ (𝐼 ∈ (0..^𝑀) → (𝐼 + 1) ∈ (0...𝑀)) | |
35 | 33, 34 | syl 17 | . . 3 ⊢ (𝜑 → (𝐼 + 1) ∈ (0...𝑀)) |
36 | 1, 2, 35 | iccpartxr 44759 | . 2 ⊢ (𝜑 → (𝑃‘(𝐼 + 1)) ∈ ℝ*) |
37 | 1, 2, 17 | iccpartgtprec 44760 | . 2 ⊢ (𝜑 → (𝑃‘(𝐼 − 1)) < (𝑃‘𝐼)) |
38 | iccpartimp 44757 | . . . 4 ⊢ ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 𝐼 ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ (𝑃‘𝐼) < (𝑃‘(𝐼 + 1)))) | |
39 | 1, 2, 33, 38 | syl3anc 1369 | . . 3 ⊢ (𝜑 → (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ (𝑃‘𝐼) < (𝑃‘(𝐼 + 1)))) |
40 | 39 | simprd 495 | . 2 ⊢ (𝜑 → (𝑃‘𝐼) < (𝑃‘(𝐼 + 1))) |
41 | xrre2 12833 | . 2 ⊢ ((((𝑃‘(𝐼 − 1)) ∈ ℝ* ∧ (𝑃‘𝐼) ∈ ℝ* ∧ (𝑃‘(𝐼 + 1)) ∈ ℝ*) ∧ ((𝑃‘(𝐼 − 1)) < (𝑃‘𝐼) ∧ (𝑃‘𝐼) < (𝑃‘(𝐼 + 1)))) → (𝑃‘𝐼) ∈ ℝ) | |
42 | 25, 32, 36, 37, 40, 41 | syl32anc 1376 | 1 ⊢ (𝜑 → (𝑃‘𝐼) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2108 ⊆ wss 3883 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 − cmin 11135 ℕcn 11903 ℤcz 12249 ℤ≥cuz 12511 ...cfz 13168 ..^cfzo 13311 RePartciccp 44753 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-iccp 44754 |
This theorem is referenced by: iccpartiltu 44762 iccpartigtl 44763 iccpartgt 44767 bgoldbtbndlem3 45147 |
Copyright terms: Public domain | W3C validator |