| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iccpartipre | Structured version Visualization version GIF version | ||
| Description: If there is a partition, then all intermediate points are real numbers. (Contributed by AV, 11-Jul-2020.) |
| Ref | Expression |
|---|---|
| iccpartgtprec.m | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| iccpartgtprec.p | ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) |
| iccpartipre.i | ⊢ (𝜑 → 𝐼 ∈ (1..^𝑀)) |
| Ref | Expression |
|---|---|
| iccpartipre | ⊢ (𝜑 → (𝑃‘𝐼) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccpartgtprec.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
| 2 | iccpartgtprec.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) | |
| 3 | nnz 12526 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℤ) | |
| 4 | peano2zm 12552 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ) | |
| 5 | id 22 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℤ) | |
| 6 | zre 12509 | . . . . . . . . . 10 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
| 7 | 6 | lem1d 12092 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℤ → (𝑀 − 1) ≤ 𝑀) |
| 8 | 4, 5, 7 | 3jca 1128 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → ((𝑀 − 1) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 − 1) ≤ 𝑀)) |
| 9 | 3, 8 | syl 17 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ → ((𝑀 − 1) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 − 1) ≤ 𝑀)) |
| 10 | eluz2 12775 | . . . . . . 7 ⊢ (𝑀 ∈ (ℤ≥‘(𝑀 − 1)) ↔ ((𝑀 − 1) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 − 1) ≤ 𝑀)) | |
| 11 | 9, 10 | sylibr 234 | . . . . . 6 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ (ℤ≥‘(𝑀 − 1))) |
| 12 | 1, 11 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘(𝑀 − 1))) |
| 13 | fzss2 13501 | . . . . 5 ⊢ (𝑀 ∈ (ℤ≥‘(𝑀 − 1)) → (0...(𝑀 − 1)) ⊆ (0...𝑀)) | |
| 14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝜑 → (0...(𝑀 − 1)) ⊆ (0...𝑀)) |
| 15 | fzossfz 13615 | . . . . . 6 ⊢ (1..^𝑀) ⊆ (1...𝑀) | |
| 16 | iccpartipre.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (1..^𝑀)) | |
| 17 | 15, 16 | sselid 3941 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (1...𝑀)) |
| 18 | elfzoelz 13596 | . . . . . . 7 ⊢ (𝐼 ∈ (1..^𝑀) → 𝐼 ∈ ℤ) | |
| 19 | 16, 18 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ ℤ) |
| 20 | 1 | nnzd 12532 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 21 | elfzm1b 13539 | . . . . . 6 ⊢ ((𝐼 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐼 ∈ (1...𝑀) ↔ (𝐼 − 1) ∈ (0...(𝑀 − 1)))) | |
| 22 | 19, 20, 21 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝐼 ∈ (1...𝑀) ↔ (𝐼 − 1) ∈ (0...(𝑀 − 1)))) |
| 23 | 17, 22 | mpbid 232 | . . . 4 ⊢ (𝜑 → (𝐼 − 1) ∈ (0...(𝑀 − 1))) |
| 24 | 14, 23 | sseldd 3944 | . . 3 ⊢ (𝜑 → (𝐼 − 1) ∈ (0...𝑀)) |
| 25 | 1, 2, 24 | iccpartxr 47413 | . 2 ⊢ (𝜑 → (𝑃‘(𝐼 − 1)) ∈ ℝ*) |
| 26 | 1eluzge0 12815 | . . . . . 6 ⊢ 1 ∈ (ℤ≥‘0) | |
| 27 | fzoss1 13623 | . . . . . 6 ⊢ (1 ∈ (ℤ≥‘0) → (1..^𝑀) ⊆ (0..^𝑀)) | |
| 28 | 26, 27 | mp1i 13 | . . . . 5 ⊢ (𝜑 → (1..^𝑀) ⊆ (0..^𝑀)) |
| 29 | fzossfz 13615 | . . . . 5 ⊢ (0..^𝑀) ⊆ (0...𝑀) | |
| 30 | 28, 29 | sstrdi 3956 | . . . 4 ⊢ (𝜑 → (1..^𝑀) ⊆ (0...𝑀)) |
| 31 | 30, 16 | sseldd 3944 | . . 3 ⊢ (𝜑 → 𝐼 ∈ (0...𝑀)) |
| 32 | 1, 2, 31 | iccpartxr 47413 | . 2 ⊢ (𝜑 → (𝑃‘𝐼) ∈ ℝ*) |
| 33 | 28, 16 | sseldd 3944 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ (0..^𝑀)) |
| 34 | fzofzp1 13701 | . . . 4 ⊢ (𝐼 ∈ (0..^𝑀) → (𝐼 + 1) ∈ (0...𝑀)) | |
| 35 | 33, 34 | syl 17 | . . 3 ⊢ (𝜑 → (𝐼 + 1) ∈ (0...𝑀)) |
| 36 | 1, 2, 35 | iccpartxr 47413 | . 2 ⊢ (𝜑 → (𝑃‘(𝐼 + 1)) ∈ ℝ*) |
| 37 | 1, 2, 17 | iccpartgtprec 47414 | . 2 ⊢ (𝜑 → (𝑃‘(𝐼 − 1)) < (𝑃‘𝐼)) |
| 38 | iccpartimp 47411 | . . . 4 ⊢ ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 𝐼 ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ (𝑃‘𝐼) < (𝑃‘(𝐼 + 1)))) | |
| 39 | 1, 2, 33, 38 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ (𝑃‘𝐼) < (𝑃‘(𝐼 + 1)))) |
| 40 | 39 | simprd 495 | . 2 ⊢ (𝜑 → (𝑃‘𝐼) < (𝑃‘(𝐼 + 1))) |
| 41 | xrre2 13106 | . 2 ⊢ ((((𝑃‘(𝐼 − 1)) ∈ ℝ* ∧ (𝑃‘𝐼) ∈ ℝ* ∧ (𝑃‘(𝐼 + 1)) ∈ ℝ*) ∧ ((𝑃‘(𝐼 − 1)) < (𝑃‘𝐼) ∧ (𝑃‘𝐼) < (𝑃‘(𝐼 + 1)))) → (𝑃‘𝐼) ∈ ℝ) | |
| 42 | 25, 32, 36, 37, 40, 41 | syl32anc 1380 | 1 ⊢ (𝜑 → (𝑃‘𝐼) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ⊆ wss 3911 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 ↑m cmap 8776 ℝcr 11043 0cc0 11044 1c1 11045 + caddc 11047 ℝ*cxr 11183 < clt 11184 ≤ cle 11185 − cmin 11381 ℕcn 12162 ℤcz 12505 ℤ≥cuz 12769 ...cfz 13444 ..^cfzo 13591 RePartciccp 47407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-fzo 13592 df-iccp 47408 |
| This theorem is referenced by: iccpartiltu 47416 iccpartigtl 47417 iccpartgt 47421 bgoldbtbndlem3 47801 |
| Copyright terms: Public domain | W3C validator |