| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iccpartipre | Structured version Visualization version GIF version | ||
| Description: If there is a partition, then all intermediate points are real numbers. (Contributed by AV, 11-Jul-2020.) |
| Ref | Expression |
|---|---|
| iccpartgtprec.m | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| iccpartgtprec.p | ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) |
| iccpartipre.i | ⊢ (𝜑 → 𝐼 ∈ (1..^𝑀)) |
| Ref | Expression |
|---|---|
| iccpartipre | ⊢ (𝜑 → (𝑃‘𝐼) ∈ ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccpartgtprec.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
| 2 | iccpartgtprec.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) | |
| 3 | nnz 12489 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℤ) | |
| 4 | peano2zm 12515 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ) | |
| 5 | id 22 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℤ) | |
| 6 | zre 12472 | . . . . . . . . . 10 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
| 7 | 6 | lem1d 12055 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℤ → (𝑀 − 1) ≤ 𝑀) |
| 8 | 4, 5, 7 | 3jca 1128 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → ((𝑀 − 1) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 − 1) ≤ 𝑀)) |
| 9 | 3, 8 | syl 17 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ → ((𝑀 − 1) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 − 1) ≤ 𝑀)) |
| 10 | eluz2 12738 | . . . . . . 7 ⊢ (𝑀 ∈ (ℤ≥‘(𝑀 − 1)) ↔ ((𝑀 − 1) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 − 1) ≤ 𝑀)) | |
| 11 | 9, 10 | sylibr 234 | . . . . . 6 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ (ℤ≥‘(𝑀 − 1))) |
| 12 | 1, 11 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘(𝑀 − 1))) |
| 13 | fzss2 13464 | . . . . 5 ⊢ (𝑀 ∈ (ℤ≥‘(𝑀 − 1)) → (0...(𝑀 − 1)) ⊆ (0...𝑀)) | |
| 14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝜑 → (0...(𝑀 − 1)) ⊆ (0...𝑀)) |
| 15 | fzossfz 13578 | . . . . . 6 ⊢ (1..^𝑀) ⊆ (1...𝑀) | |
| 16 | iccpartipre.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (1..^𝑀)) | |
| 17 | 15, 16 | sselid 3927 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (1...𝑀)) |
| 18 | elfzoelz 13559 | . . . . . . 7 ⊢ (𝐼 ∈ (1..^𝑀) → 𝐼 ∈ ℤ) | |
| 19 | 16, 18 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ ℤ) |
| 20 | 1 | nnzd 12495 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 21 | elfzm1b 13502 | . . . . . 6 ⊢ ((𝐼 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐼 ∈ (1...𝑀) ↔ (𝐼 − 1) ∈ (0...(𝑀 − 1)))) | |
| 22 | 19, 20, 21 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝐼 ∈ (1...𝑀) ↔ (𝐼 − 1) ∈ (0...(𝑀 − 1)))) |
| 23 | 17, 22 | mpbid 232 | . . . 4 ⊢ (𝜑 → (𝐼 − 1) ∈ (0...(𝑀 − 1))) |
| 24 | 14, 23 | sseldd 3930 | . . 3 ⊢ (𝜑 → (𝐼 − 1) ∈ (0...𝑀)) |
| 25 | 1, 2, 24 | iccpartxr 47518 | . 2 ⊢ (𝜑 → (𝑃‘(𝐼 − 1)) ∈ ℝ*) |
| 26 | 1eluzge0 12778 | . . . . . 6 ⊢ 1 ∈ (ℤ≥‘0) | |
| 27 | fzoss1 13586 | . . . . . 6 ⊢ (1 ∈ (ℤ≥‘0) → (1..^𝑀) ⊆ (0..^𝑀)) | |
| 28 | 26, 27 | mp1i 13 | . . . . 5 ⊢ (𝜑 → (1..^𝑀) ⊆ (0..^𝑀)) |
| 29 | fzossfz 13578 | . . . . 5 ⊢ (0..^𝑀) ⊆ (0...𝑀) | |
| 30 | 28, 29 | sstrdi 3942 | . . . 4 ⊢ (𝜑 → (1..^𝑀) ⊆ (0...𝑀)) |
| 31 | 30, 16 | sseldd 3930 | . . 3 ⊢ (𝜑 → 𝐼 ∈ (0...𝑀)) |
| 32 | 1, 2, 31 | iccpartxr 47518 | . 2 ⊢ (𝜑 → (𝑃‘𝐼) ∈ ℝ*) |
| 33 | 28, 16 | sseldd 3930 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ (0..^𝑀)) |
| 34 | fzofzp1 13664 | . . . 4 ⊢ (𝐼 ∈ (0..^𝑀) → (𝐼 + 1) ∈ (0...𝑀)) | |
| 35 | 33, 34 | syl 17 | . . 3 ⊢ (𝜑 → (𝐼 + 1) ∈ (0...𝑀)) |
| 36 | 1, 2, 35 | iccpartxr 47518 | . 2 ⊢ (𝜑 → (𝑃‘(𝐼 + 1)) ∈ ℝ*) |
| 37 | 1, 2, 17 | iccpartgtprec 47519 | . 2 ⊢ (𝜑 → (𝑃‘(𝐼 − 1)) < (𝑃‘𝐼)) |
| 38 | iccpartimp 47516 | . . . 4 ⊢ ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 𝐼 ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ (𝑃‘𝐼) < (𝑃‘(𝐼 + 1)))) | |
| 39 | 1, 2, 33, 38 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ (𝑃‘𝐼) < (𝑃‘(𝐼 + 1)))) |
| 40 | 39 | simprd 495 | . 2 ⊢ (𝜑 → (𝑃‘𝐼) < (𝑃‘(𝐼 + 1))) |
| 41 | xrre2 13069 | . 2 ⊢ ((((𝑃‘(𝐼 − 1)) ∈ ℝ* ∧ (𝑃‘𝐼) ∈ ℝ* ∧ (𝑃‘(𝐼 + 1)) ∈ ℝ*) ∧ ((𝑃‘(𝐼 − 1)) < (𝑃‘𝐼) ∧ (𝑃‘𝐼) < (𝑃‘(𝐼 + 1)))) → (𝑃‘𝐼) ∈ ℝ) | |
| 42 | 25, 32, 36, 37, 40, 41 | syl32anc 1380 | 1 ⊢ (𝜑 → (𝑃‘𝐼) ∈ ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2111 ⊆ wss 3897 class class class wbr 5089 ‘cfv 6481 (class class class)co 7346 ↑m cmap 8750 ℝcr 11005 0cc0 11006 1c1 11007 + caddc 11009 ℝ*cxr 11145 < clt 11146 ≤ cle 11147 − cmin 11344 ℕcn 12125 ℤcz 12468 ℤ≥cuz 12732 ...cfz 13407 ..^cfzo 13554 RePartciccp 47512 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-iccp 47513 |
| This theorem is referenced by: iccpartiltu 47521 iccpartigtl 47522 iccpartgt 47526 bgoldbtbndlem3 47906 |
| Copyright terms: Public domain | W3C validator |