Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > iccpartipre | Structured version Visualization version GIF version |
Description: If there is a partition, then all intermediate points are real numbers. (Contributed by AV, 11-Jul-2020.) |
Ref | Expression |
---|---|
iccpartgtprec.m | ⊢ (𝜑 → 𝑀 ∈ ℕ) |
iccpartgtprec.p | ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) |
iccpartipre.i | ⊢ (𝜑 → 𝐼 ∈ (1..^𝑀)) |
Ref | Expression |
---|---|
iccpartipre | ⊢ (𝜑 → (𝑃‘𝐼) ∈ ℝ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccpartgtprec.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℕ) | |
2 | iccpartgtprec.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ (RePart‘𝑀)) | |
3 | nnz 12342 | . . . . . . . 8 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ ℤ) | |
4 | peano2zm 12363 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℤ → (𝑀 − 1) ∈ ℤ) | |
5 | id 22 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℤ) | |
6 | zre 12323 | . . . . . . . . . 10 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℝ) | |
7 | 6 | lem1d 11908 | . . . . . . . . 9 ⊢ (𝑀 ∈ ℤ → (𝑀 − 1) ≤ 𝑀) |
8 | 4, 5, 7 | 3jca 1127 | . . . . . . . 8 ⊢ (𝑀 ∈ ℤ → ((𝑀 − 1) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 − 1) ≤ 𝑀)) |
9 | 3, 8 | syl 17 | . . . . . . 7 ⊢ (𝑀 ∈ ℕ → ((𝑀 − 1) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 − 1) ≤ 𝑀)) |
10 | eluz2 12588 | . . . . . . 7 ⊢ (𝑀 ∈ (ℤ≥‘(𝑀 − 1)) ↔ ((𝑀 − 1) ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ (𝑀 − 1) ≤ 𝑀)) | |
11 | 9, 10 | sylibr 233 | . . . . . 6 ⊢ (𝑀 ∈ ℕ → 𝑀 ∈ (ℤ≥‘(𝑀 − 1))) |
12 | 1, 11 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘(𝑀 − 1))) |
13 | fzss2 13296 | . . . . 5 ⊢ (𝑀 ∈ (ℤ≥‘(𝑀 − 1)) → (0...(𝑀 − 1)) ⊆ (0...𝑀)) | |
14 | 12, 13 | syl 17 | . . . 4 ⊢ (𝜑 → (0...(𝑀 − 1)) ⊆ (0...𝑀)) |
15 | fzossfz 13406 | . . . . . 6 ⊢ (1..^𝑀) ⊆ (1...𝑀) | |
16 | iccpartipre.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ (1..^𝑀)) | |
17 | 15, 16 | sselid 3919 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (1...𝑀)) |
18 | elfzoelz 13387 | . . . . . . 7 ⊢ (𝐼 ∈ (1..^𝑀) → 𝐼 ∈ ℤ) | |
19 | 16, 18 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ ℤ) |
20 | 1 | nnzd 12425 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
21 | elfzm1b 13334 | . . . . . 6 ⊢ ((𝐼 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐼 ∈ (1...𝑀) ↔ (𝐼 − 1) ∈ (0...(𝑀 − 1)))) | |
22 | 19, 20, 21 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝐼 ∈ (1...𝑀) ↔ (𝐼 − 1) ∈ (0...(𝑀 − 1)))) |
23 | 17, 22 | mpbid 231 | . . . 4 ⊢ (𝜑 → (𝐼 − 1) ∈ (0...(𝑀 − 1))) |
24 | 14, 23 | sseldd 3922 | . . 3 ⊢ (𝜑 → (𝐼 − 1) ∈ (0...𝑀)) |
25 | 1, 2, 24 | iccpartxr 44871 | . 2 ⊢ (𝜑 → (𝑃‘(𝐼 − 1)) ∈ ℝ*) |
26 | 1eluzge0 12632 | . . . . . 6 ⊢ 1 ∈ (ℤ≥‘0) | |
27 | fzoss1 13414 | . . . . . 6 ⊢ (1 ∈ (ℤ≥‘0) → (1..^𝑀) ⊆ (0..^𝑀)) | |
28 | 26, 27 | mp1i 13 | . . . . 5 ⊢ (𝜑 → (1..^𝑀) ⊆ (0..^𝑀)) |
29 | fzossfz 13406 | . . . . 5 ⊢ (0..^𝑀) ⊆ (0...𝑀) | |
30 | 28, 29 | sstrdi 3933 | . . . 4 ⊢ (𝜑 → (1..^𝑀) ⊆ (0...𝑀)) |
31 | 30, 16 | sseldd 3922 | . . 3 ⊢ (𝜑 → 𝐼 ∈ (0...𝑀)) |
32 | 1, 2, 31 | iccpartxr 44871 | . 2 ⊢ (𝜑 → (𝑃‘𝐼) ∈ ℝ*) |
33 | 28, 16 | sseldd 3922 | . . . 4 ⊢ (𝜑 → 𝐼 ∈ (0..^𝑀)) |
34 | fzofzp1 13484 | . . . 4 ⊢ (𝐼 ∈ (0..^𝑀) → (𝐼 + 1) ∈ (0...𝑀)) | |
35 | 33, 34 | syl 17 | . . 3 ⊢ (𝜑 → (𝐼 + 1) ∈ (0...𝑀)) |
36 | 1, 2, 35 | iccpartxr 44871 | . 2 ⊢ (𝜑 → (𝑃‘(𝐼 + 1)) ∈ ℝ*) |
37 | 1, 2, 17 | iccpartgtprec 44872 | . 2 ⊢ (𝜑 → (𝑃‘(𝐼 − 1)) < (𝑃‘𝐼)) |
38 | iccpartimp 44869 | . . . 4 ⊢ ((𝑀 ∈ ℕ ∧ 𝑃 ∈ (RePart‘𝑀) ∧ 𝐼 ∈ (0..^𝑀)) → (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ (𝑃‘𝐼) < (𝑃‘(𝐼 + 1)))) | |
39 | 1, 2, 33, 38 | syl3anc 1370 | . . 3 ⊢ (𝜑 → (𝑃 ∈ (ℝ* ↑m (0...𝑀)) ∧ (𝑃‘𝐼) < (𝑃‘(𝐼 + 1)))) |
40 | 39 | simprd 496 | . 2 ⊢ (𝜑 → (𝑃‘𝐼) < (𝑃‘(𝐼 + 1))) |
41 | xrre2 12904 | . 2 ⊢ ((((𝑃‘(𝐼 − 1)) ∈ ℝ* ∧ (𝑃‘𝐼) ∈ ℝ* ∧ (𝑃‘(𝐼 + 1)) ∈ ℝ*) ∧ ((𝑃‘(𝐼 − 1)) < (𝑃‘𝐼) ∧ (𝑃‘𝐼) < (𝑃‘(𝐼 + 1)))) → (𝑃‘𝐼) ∈ ℝ) | |
42 | 25, 32, 36, 37, 40, 41 | syl32anc 1377 | 1 ⊢ (𝜑 → (𝑃‘𝐼) ∈ ℝ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2106 ⊆ wss 3887 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 ↑m cmap 8615 ℝcr 10870 0cc0 10871 1c1 10872 + caddc 10874 ℝ*cxr 11008 < clt 11009 ≤ cle 11010 − cmin 11205 ℕcn 11973 ℤcz 12319 ℤ≥cuz 12582 ...cfz 13239 ..^cfzo 13382 RePartciccp 44865 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-iccp 44866 |
This theorem is referenced by: iccpartiltu 44874 iccpartigtl 44875 iccpartgt 44879 bgoldbtbndlem3 45259 |
Copyright terms: Public domain | W3C validator |