![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > idlss | Structured version Visualization version GIF version |
Description: An ideal of 𝑅 is a subset of 𝑅. (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
idlss.1 | ⊢ 𝐺 = (1st ‘𝑅) |
idlss.2 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
idlss | ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝐼 ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idlss.1 | . . . 4 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | eqid 2799 | . . . 4 ⊢ (2nd ‘𝑅) = (2nd ‘𝑅) | |
3 | idlss.2 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
4 | eqid 2799 | . . . 4 ⊢ (GId‘𝐺) = (GId‘𝐺) | |
5 | 1, 2, 3, 4 | isidl 34300 | . . 3 ⊢ (𝑅 ∈ RingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼 ⊆ 𝑋 ∧ (GId‘𝐺) ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧(2nd ‘𝑅)𝑥) ∈ 𝐼 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝐼))))) |
6 | 5 | biimpa 469 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝐼 ⊆ 𝑋 ∧ (GId‘𝐺) ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧(2nd ‘𝑅)𝑥) ∈ 𝐼 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝐼)))) |
7 | 6 | simp1d 1173 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝐼 ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ∀wral 3089 ⊆ wss 3769 ran crn 5313 ‘cfv 6101 (class class class)co 6878 1st c1st 7399 2nd c2nd 7400 GIdcgi 27870 RingOpscrngo 34180 Idlcidl 34293 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-iota 6064 df-fun 6103 df-fv 6109 df-ov 6881 df-idl 34296 |
This theorem is referenced by: idlcl 34303 idlnegcl 34308 1idl 34312 divrngidl 34314 intidl 34315 unichnidl 34317 ispridl2 34324 igenmin 34350 igenidl2 34351 |
Copyright terms: Public domain | W3C validator |