Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idlss Structured version   Visualization version   GIF version

Theorem idlss 36478
Description: An ideal of 𝑅 is a subset of 𝑅. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
idlss.1 𝐺 = (1st𝑅)
idlss.2 𝑋 = ran 𝐺
Assertion
Ref Expression
idlss ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝐼𝑋)

Proof of Theorem idlss
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idlss.1 . . . 4 𝐺 = (1st𝑅)
2 eqid 2737 . . . 4 (2nd𝑅) = (2nd𝑅)
3 idlss.2 . . . 4 𝑋 = ran 𝐺
4 eqid 2737 . . . 4 (GId‘𝐺) = (GId‘𝐺)
51, 2, 3, 4isidl 36476 . . 3 (𝑅 ∈ RingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼𝑋 ∧ (GId‘𝐺) ∈ 𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧(2nd𝑅)𝑥) ∈ 𝐼 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐼)))))
65biimpa 478 . 2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝐼𝑋 ∧ (GId‘𝐺) ∈ 𝐼 ∧ ∀𝑥𝐼 (∀𝑦𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧𝑋 ((𝑧(2nd𝑅)𝑥) ∈ 𝐼 ∧ (𝑥(2nd𝑅)𝑧) ∈ 𝐼))))
76simp1d 1143 1 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝐼𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wral 3065  wss 3911  ran crn 5635  cfv 6497  (class class class)co 7358  1st c1st 7920  2nd c2nd 7921  GIdcgi 29435  RingOpscrngo 36356  Idlcidl 36469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3409  df-v 3448  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-iota 6449  df-fun 6499  df-fv 6505  df-ov 7361  df-idl 36472
This theorem is referenced by:  idlcl  36479  idlnegcl  36484  1idl  36488  divrngidl  36490  intidl  36491  unichnidl  36493  ispridl2  36500  igenmin  36526  igenidl2  36527
  Copyright terms: Public domain W3C validator