| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > idlss | Structured version Visualization version GIF version | ||
| Description: An ideal of 𝑅 is a subset of 𝑅. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| Ref | Expression |
|---|---|
| idlss.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| idlss.2 | ⊢ 𝑋 = ran 𝐺 |
| Ref | Expression |
|---|---|
| idlss | ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝐼 ⊆ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | idlss.1 | . . . 4 ⊢ 𝐺 = (1st ‘𝑅) | |
| 2 | eqid 2736 | . . . 4 ⊢ (2nd ‘𝑅) = (2nd ‘𝑅) | |
| 3 | idlss.2 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
| 4 | eqid 2736 | . . . 4 ⊢ (GId‘𝐺) = (GId‘𝐺) | |
| 5 | 1, 2, 3, 4 | isidl 38043 | . . 3 ⊢ (𝑅 ∈ RingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼 ⊆ 𝑋 ∧ (GId‘𝐺) ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧(2nd ‘𝑅)𝑥) ∈ 𝐼 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝐼))))) |
| 6 | 5 | biimpa 476 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝐼 ⊆ 𝑋 ∧ (GId‘𝐺) ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧(2nd ‘𝑅)𝑥) ∈ 𝐼 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝐼)))) |
| 7 | 6 | simp1d 1142 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝐼 ⊆ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ⊆ wss 3931 ran crn 5660 ‘cfv 6536 (class class class)co 7410 1st c1st 7991 2nd c2nd 7992 GIdcgi 30476 RingOpscrngo 37923 Idlcidl 38036 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-idl 38039 |
| This theorem is referenced by: idlcl 38046 idlnegcl 38051 1idl 38055 divrngidl 38057 intidl 38058 unichnidl 38060 ispridl2 38067 igenmin 38093 igenidl2 38094 |
| Copyright terms: Public domain | W3C validator |