![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > idlss | Structured version Visualization version GIF version |
Description: An ideal of 𝑅 is a subset of 𝑅. (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
idlss.1 | ⊢ 𝐺 = (1st ‘𝑅) |
idlss.2 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
idlss | ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝐼 ⊆ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | idlss.1 | . . . 4 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | eqid 2732 | . . . 4 ⊢ (2nd ‘𝑅) = (2nd ‘𝑅) | |
3 | idlss.2 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
4 | eqid 2732 | . . . 4 ⊢ (GId‘𝐺) = (GId‘𝐺) | |
5 | 1, 2, 3, 4 | isidl 36877 | . . 3 ⊢ (𝑅 ∈ RingOps → (𝐼 ∈ (Idl‘𝑅) ↔ (𝐼 ⊆ 𝑋 ∧ (GId‘𝐺) ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧(2nd ‘𝑅)𝑥) ∈ 𝐼 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝐼))))) |
6 | 5 | biimpa 477 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝐼 ⊆ 𝑋 ∧ (GId‘𝐺) ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐼 (∀𝑦 ∈ 𝐼 (𝑥𝐺𝑦) ∈ 𝐼 ∧ ∀𝑧 ∈ 𝑋 ((𝑧(2nd ‘𝑅)𝑥) ∈ 𝐼 ∧ (𝑥(2nd ‘𝑅)𝑧) ∈ 𝐼)))) |
7 | 6 | simp1d 1142 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝐼 ⊆ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ⊆ wss 3948 ran crn 5677 ‘cfv 6543 (class class class)co 7408 1st c1st 7972 2nd c2nd 7973 GIdcgi 29738 RingOpscrngo 36757 Idlcidl 36870 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7411 df-idl 36873 |
This theorem is referenced by: idlcl 36880 idlnegcl 36885 1idl 36889 divrngidl 36891 intidl 36892 unichnidl 36894 ispridl2 36901 igenmin 36927 igenidl2 36928 |
Copyright terms: Public domain | W3C validator |