Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1idl Structured version   Visualization version   GIF version

Theorem 1idl 35770
Description: Two ways of expressing the unit ideal. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
1idl.1 𝐺 = (1st𝑅)
1idl.2 𝐻 = (2nd𝑅)
1idl.3 𝑋 = ran 𝐺
1idl.4 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
1idl ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑈𝐼𝐼 = 𝑋))

Proof of Theorem 1idl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 1idl.1 . . . . . 6 𝐺 = (1st𝑅)
2 1idl.3 . . . . . 6 𝑋 = ran 𝐺
31, 2idlss 35760 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝐼𝑋)
43adantr 484 . . . 4 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝑈𝐼) → 𝐼𝑋)
5 1idl.2 . . . . . . . . 9 𝐻 = (2nd𝑅)
61rneqi 5782 . . . . . . . . . 10 ran 𝐺 = ran (1st𝑅)
72, 6eqtri 2781 . . . . . . . . 9 𝑋 = ran (1st𝑅)
8 1idl.4 . . . . . . . . 9 𝑈 = (GId‘𝐻)
95, 7, 8rngolidm 35681 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑥𝑋) → (𝑈𝐻𝑥) = 𝑥)
109ad2ant2rl 748 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝑈𝐼𝑥𝑋)) → (𝑈𝐻𝑥) = 𝑥)
111, 5, 2idlrmulcl 35765 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝑈𝐼𝑥𝑋)) → (𝑈𝐻𝑥) ∈ 𝐼)
1210, 11eqeltrrd 2853 . . . . . 6 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝑈𝐼𝑥𝑋)) → 𝑥𝐼)
1312expr 460 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝑈𝐼) → (𝑥𝑋𝑥𝐼))
1413ssrdv 3900 . . . 4 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝑈𝐼) → 𝑋𝐼)
154, 14eqssd 3911 . . 3 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝑈𝐼) → 𝐼 = 𝑋)
1615ex 416 . 2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑈𝐼𝐼 = 𝑋))
177, 5, 8rngo1cl 35683 . . . 4 (𝑅 ∈ RingOps → 𝑈𝑋)
1817adantr 484 . . 3 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝑈𝑋)
19 eleq2 2840 . . 3 (𝐼 = 𝑋 → (𝑈𝐼𝑈𝑋))
2018, 19syl5ibrcom 250 . 2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝐼 = 𝑋𝑈𝐼))
2116, 20impbid 215 1 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑈𝐼𝐼 = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wss 3860  ran crn 5528  cfv 6339  (class class class)co 7155  1st c1st 7696  2nd c2nd 7697  GIdcgi 28377  RingOpscrngo 35638  Idlcidl 35751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5172  ax-nul 5179  ax-pow 5237  ax-pr 5301  ax-un 7464
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-id 5433  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-fo 6345  df-fv 6347  df-riota 7113  df-ov 7158  df-1st 7698  df-2nd 7699  df-grpo 28380  df-gid 28381  df-ablo 28432  df-ass 35587  df-exid 35589  df-mgmOLD 35593  df-sgrOLD 35605  df-mndo 35611  df-rngo 35639  df-idl 35754
This theorem is referenced by:  0rngo  35771  divrngidl  35772  maxidln1  35788
  Copyright terms: Public domain W3C validator