Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1idl Structured version   Visualization version   GIF version

Theorem 1idl 38072
Description: Two ways of expressing the unit ideal. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
1idl.1 𝐺 = (1st𝑅)
1idl.2 𝐻 = (2nd𝑅)
1idl.3 𝑋 = ran 𝐺
1idl.4 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
1idl ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑈𝐼𝐼 = 𝑋))

Proof of Theorem 1idl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 1idl.1 . . . . . 6 𝐺 = (1st𝑅)
2 1idl.3 . . . . . 6 𝑋 = ran 𝐺
31, 2idlss 38062 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝐼𝑋)
43adantr 480 . . . 4 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝑈𝐼) → 𝐼𝑋)
5 1idl.2 . . . . . . . . 9 𝐻 = (2nd𝑅)
61rneqi 5882 . . . . . . . . . 10 ran 𝐺 = ran (1st𝑅)
72, 6eqtri 2754 . . . . . . . . 9 𝑋 = ran (1st𝑅)
8 1idl.4 . . . . . . . . 9 𝑈 = (GId‘𝐻)
95, 7, 8rngolidm 37983 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑥𝑋) → (𝑈𝐻𝑥) = 𝑥)
109ad2ant2rl 749 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝑈𝐼𝑥𝑋)) → (𝑈𝐻𝑥) = 𝑥)
111, 5, 2idlrmulcl 38067 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝑈𝐼𝑥𝑋)) → (𝑈𝐻𝑥) ∈ 𝐼)
1210, 11eqeltrrd 2832 . . . . . 6 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝑈𝐼𝑥𝑋)) → 𝑥𝐼)
1312expr 456 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝑈𝐼) → (𝑥𝑋𝑥𝐼))
1413ssrdv 3935 . . . 4 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝑈𝐼) → 𝑋𝐼)
154, 14eqssd 3947 . . 3 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝑈𝐼) → 𝐼 = 𝑋)
1615ex 412 . 2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑈𝐼𝐼 = 𝑋))
177, 5, 8rngo1cl 37985 . . . 4 (𝑅 ∈ RingOps → 𝑈𝑋)
1817adantr 480 . . 3 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝑈𝑋)
19 eleq2 2820 . . 3 (𝐼 = 𝑋 → (𝑈𝐼𝑈𝑋))
2018, 19syl5ibrcom 247 . 2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝐼 = 𝑋𝑈𝐼))
2116, 20impbid 212 1 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑈𝐼𝐼 = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wss 3897  ran crn 5620  cfv 6487  (class class class)co 7352  1st c1st 7925  2nd c2nd 7926  GIdcgi 30477  RingOpscrngo 37940  Idlcidl 38053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-fo 6493  df-fv 6495  df-riota 7309  df-ov 7355  df-1st 7927  df-2nd 7928  df-grpo 30480  df-gid 30481  df-ablo 30532  df-ass 37889  df-exid 37891  df-mgmOLD 37895  df-sgrOLD 37907  df-mndo 37913  df-rngo 37941  df-idl 38056
This theorem is referenced by:  0rngo  38073  divrngidl  38074  maxidln1  38090
  Copyright terms: Public domain W3C validator