| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 1idl | Structured version Visualization version GIF version | ||
| Description: Two ways of expressing the unit ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| Ref | Expression |
|---|---|
| 1idl.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| 1idl.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
| 1idl.3 | ⊢ 𝑋 = ran 𝐺 |
| 1idl.4 | ⊢ 𝑈 = (GId‘𝐻) |
| Ref | Expression |
|---|---|
| 1idl | ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑈 ∈ 𝐼 ↔ 𝐼 = 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1idl.1 | . . . . . 6 ⊢ 𝐺 = (1st ‘𝑅) | |
| 2 | 1idl.3 | . . . . . 6 ⊢ 𝑋 = ran 𝐺 | |
| 3 | 1, 2 | idlss 38040 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝐼 ⊆ 𝑋) |
| 4 | 3 | adantr 480 | . . . 4 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝑈 ∈ 𝐼) → 𝐼 ⊆ 𝑋) |
| 5 | 1idl.2 | . . . . . . . . 9 ⊢ 𝐻 = (2nd ‘𝑅) | |
| 6 | 1 | rneqi 5917 | . . . . . . . . . 10 ⊢ ran 𝐺 = ran (1st ‘𝑅) |
| 7 | 2, 6 | eqtri 2758 | . . . . . . . . 9 ⊢ 𝑋 = ran (1st ‘𝑅) |
| 8 | 1idl.4 | . . . . . . . . 9 ⊢ 𝑈 = (GId‘𝐻) | |
| 9 | 5, 7, 8 | rngolidm 37961 | . . . . . . . 8 ⊢ ((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋) → (𝑈𝐻𝑥) = 𝑥) |
| 10 | 9 | ad2ant2rl 749 | . . . . . . 7 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝑈 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋)) → (𝑈𝐻𝑥) = 𝑥) |
| 11 | 1, 5, 2 | idlrmulcl 38045 | . . . . . . 7 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝑈 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋)) → (𝑈𝐻𝑥) ∈ 𝐼) |
| 12 | 10, 11 | eqeltrrd 2835 | . . . . . 6 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝑈 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋)) → 𝑥 ∈ 𝐼) |
| 13 | 12 | expr 456 | . . . . 5 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝑈 ∈ 𝐼) → (𝑥 ∈ 𝑋 → 𝑥 ∈ 𝐼)) |
| 14 | 13 | ssrdv 3964 | . . . 4 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝑈 ∈ 𝐼) → 𝑋 ⊆ 𝐼) |
| 15 | 4, 14 | eqssd 3976 | . . 3 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝑈 ∈ 𝐼) → 𝐼 = 𝑋) |
| 16 | 15 | ex 412 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑈 ∈ 𝐼 → 𝐼 = 𝑋)) |
| 17 | 7, 5, 8 | rngo1cl 37963 | . . . 4 ⊢ (𝑅 ∈ RingOps → 𝑈 ∈ 𝑋) |
| 18 | 17 | adantr 480 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝑈 ∈ 𝑋) |
| 19 | eleq2 2823 | . . 3 ⊢ (𝐼 = 𝑋 → (𝑈 ∈ 𝐼 ↔ 𝑈 ∈ 𝑋)) | |
| 20 | 18, 19 | syl5ibrcom 247 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝐼 = 𝑋 → 𝑈 ∈ 𝐼)) |
| 21 | 16, 20 | impbid 212 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑈 ∈ 𝐼 ↔ 𝐼 = 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 ran crn 5655 ‘cfv 6531 (class class class)co 7405 1st c1st 7986 2nd c2nd 7987 GIdcgi 30471 RingOpscrngo 37918 Idlcidl 38031 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fo 6537 df-fv 6539 df-riota 7362 df-ov 7408 df-1st 7988 df-2nd 7989 df-grpo 30474 df-gid 30475 df-ablo 30526 df-ass 37867 df-exid 37869 df-mgmOLD 37873 df-sgrOLD 37885 df-mndo 37891 df-rngo 37919 df-idl 38034 |
| This theorem is referenced by: 0rngo 38051 divrngidl 38052 maxidln1 38068 |
| Copyright terms: Public domain | W3C validator |