| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 1idl | Structured version Visualization version GIF version | ||
| Description: Two ways of expressing the unit ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
| Ref | Expression |
|---|---|
| 1idl.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| 1idl.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
| 1idl.3 | ⊢ 𝑋 = ran 𝐺 |
| 1idl.4 | ⊢ 𝑈 = (GId‘𝐻) |
| Ref | Expression |
|---|---|
| 1idl | ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑈 ∈ 𝐼 ↔ 𝐼 = 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1idl.1 | . . . . . 6 ⊢ 𝐺 = (1st ‘𝑅) | |
| 2 | 1idl.3 | . . . . . 6 ⊢ 𝑋 = ran 𝐺 | |
| 3 | 1, 2 | idlss 38005 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝐼 ⊆ 𝑋) |
| 4 | 3 | adantr 480 | . . . 4 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝑈 ∈ 𝐼) → 𝐼 ⊆ 𝑋) |
| 5 | 1idl.2 | . . . . . . . . 9 ⊢ 𝐻 = (2nd ‘𝑅) | |
| 6 | 1 | rneqi 5903 | . . . . . . . . . 10 ⊢ ran 𝐺 = ran (1st ‘𝑅) |
| 7 | 2, 6 | eqtri 2753 | . . . . . . . . 9 ⊢ 𝑋 = ran (1st ‘𝑅) |
| 8 | 1idl.4 | . . . . . . . . 9 ⊢ 𝑈 = (GId‘𝐻) | |
| 9 | 5, 7, 8 | rngolidm 37926 | . . . . . . . 8 ⊢ ((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋) → (𝑈𝐻𝑥) = 𝑥) |
| 10 | 9 | ad2ant2rl 749 | . . . . . . 7 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝑈 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋)) → (𝑈𝐻𝑥) = 𝑥) |
| 11 | 1, 5, 2 | idlrmulcl 38010 | . . . . . . 7 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝑈 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋)) → (𝑈𝐻𝑥) ∈ 𝐼) |
| 12 | 10, 11 | eqeltrrd 2830 | . . . . . 6 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝑈 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋)) → 𝑥 ∈ 𝐼) |
| 13 | 12 | expr 456 | . . . . 5 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝑈 ∈ 𝐼) → (𝑥 ∈ 𝑋 → 𝑥 ∈ 𝐼)) |
| 14 | 13 | ssrdv 3954 | . . . 4 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝑈 ∈ 𝐼) → 𝑋 ⊆ 𝐼) |
| 15 | 4, 14 | eqssd 3966 | . . 3 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝑈 ∈ 𝐼) → 𝐼 = 𝑋) |
| 16 | 15 | ex 412 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑈 ∈ 𝐼 → 𝐼 = 𝑋)) |
| 17 | 7, 5, 8 | rngo1cl 37928 | . . . 4 ⊢ (𝑅 ∈ RingOps → 𝑈 ∈ 𝑋) |
| 18 | 17 | adantr 480 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝑈 ∈ 𝑋) |
| 19 | eleq2 2818 | . . 3 ⊢ (𝐼 = 𝑋 → (𝑈 ∈ 𝐼 ↔ 𝑈 ∈ 𝑋)) | |
| 20 | 18, 19 | syl5ibrcom 247 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝐼 = 𝑋 → 𝑈 ∈ 𝐼)) |
| 21 | 16, 20 | impbid 212 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑈 ∈ 𝐼 ↔ 𝐼 = 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3916 ran crn 5641 ‘cfv 6513 (class class class)co 7389 1st c1st 7968 2nd c2nd 7969 GIdcgi 30425 RingOpscrngo 37883 Idlcidl 37996 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-iun 4959 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-fo 6519 df-fv 6521 df-riota 7346 df-ov 7392 df-1st 7970 df-2nd 7971 df-grpo 30428 df-gid 30429 df-ablo 30480 df-ass 37832 df-exid 37834 df-mgmOLD 37838 df-sgrOLD 37850 df-mndo 37856 df-rngo 37884 df-idl 37999 |
| This theorem is referenced by: 0rngo 38016 divrngidl 38017 maxidln1 38033 |
| Copyright terms: Public domain | W3C validator |