Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1idl Structured version   Visualization version   GIF version

Theorem 1idl 36882
Description: Two ways of expressing the unit ideal. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
1idl.1 𝐺 = (1st𝑅)
1idl.2 𝐻 = (2nd𝑅)
1idl.3 𝑋 = ran 𝐺
1idl.4 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
1idl ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑈𝐼𝐼 = 𝑋))

Proof of Theorem 1idl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 1idl.1 . . . . . 6 𝐺 = (1st𝑅)
2 1idl.3 . . . . . 6 𝑋 = ran 𝐺
31, 2idlss 36872 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝐼𝑋)
43adantr 481 . . . 4 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝑈𝐼) → 𝐼𝑋)
5 1idl.2 . . . . . . . . 9 𝐻 = (2nd𝑅)
61rneqi 5934 . . . . . . . . . 10 ran 𝐺 = ran (1st𝑅)
72, 6eqtri 2760 . . . . . . . . 9 𝑋 = ran (1st𝑅)
8 1idl.4 . . . . . . . . 9 𝑈 = (GId‘𝐻)
95, 7, 8rngolidm 36793 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑥𝑋) → (𝑈𝐻𝑥) = 𝑥)
109ad2ant2rl 747 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝑈𝐼𝑥𝑋)) → (𝑈𝐻𝑥) = 𝑥)
111, 5, 2idlrmulcl 36877 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝑈𝐼𝑥𝑋)) → (𝑈𝐻𝑥) ∈ 𝐼)
1210, 11eqeltrrd 2834 . . . . . 6 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝑈𝐼𝑥𝑋)) → 𝑥𝐼)
1312expr 457 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝑈𝐼) → (𝑥𝑋𝑥𝐼))
1413ssrdv 3987 . . . 4 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝑈𝐼) → 𝑋𝐼)
154, 14eqssd 3998 . . 3 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝑈𝐼) → 𝐼 = 𝑋)
1615ex 413 . 2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑈𝐼𝐼 = 𝑋))
177, 5, 8rngo1cl 36795 . . . 4 (𝑅 ∈ RingOps → 𝑈𝑋)
1817adantr 481 . . 3 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝑈𝑋)
19 eleq2 2822 . . 3 (𝐼 = 𝑋 → (𝑈𝐼𝑈𝑋))
2018, 19syl5ibrcom 246 . 2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝐼 = 𝑋𝑈𝐼))
2116, 20impbid 211 1 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑈𝐼𝐼 = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wss 3947  ran crn 5676  cfv 6540  (class class class)co 7405  1st c1st 7969  2nd c2nd 7970  GIdcgi 29730  RingOpscrngo 36750  Idlcidl 36863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fo 6546  df-fv 6548  df-riota 7361  df-ov 7408  df-1st 7971  df-2nd 7972  df-grpo 29733  df-gid 29734  df-ablo 29785  df-ass 36699  df-exid 36701  df-mgmOLD 36705  df-sgrOLD 36717  df-mndo 36723  df-rngo 36751  df-idl 36866
This theorem is referenced by:  0rngo  36883  divrngidl  36884  maxidln1  36900
  Copyright terms: Public domain W3C validator