Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1idl Structured version   Visualization version   GIF version

Theorem 1idl 36184
Description: Two ways of expressing the unit ideal. (Contributed by Jeff Madsen, 10-Jun-2010.)
Hypotheses
Ref Expression
1idl.1 𝐺 = (1st𝑅)
1idl.2 𝐻 = (2nd𝑅)
1idl.3 𝑋 = ran 𝐺
1idl.4 𝑈 = (GId‘𝐻)
Assertion
Ref Expression
1idl ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑈𝐼𝐼 = 𝑋))

Proof of Theorem 1idl
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 1idl.1 . . . . . 6 𝐺 = (1st𝑅)
2 1idl.3 . . . . . 6 𝑋 = ran 𝐺
31, 2idlss 36174 . . . . 5 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝐼𝑋)
43adantr 481 . . . 4 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝑈𝐼) → 𝐼𝑋)
5 1idl.2 . . . . . . . . 9 𝐻 = (2nd𝑅)
61rneqi 5846 . . . . . . . . . 10 ran 𝐺 = ran (1st𝑅)
72, 6eqtri 2766 . . . . . . . . 9 𝑋 = ran (1st𝑅)
8 1idl.4 . . . . . . . . 9 𝑈 = (GId‘𝐻)
95, 7, 8rngolidm 36095 . . . . . . . 8 ((𝑅 ∈ RingOps ∧ 𝑥𝑋) → (𝑈𝐻𝑥) = 𝑥)
109ad2ant2rl 746 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝑈𝐼𝑥𝑋)) → (𝑈𝐻𝑥) = 𝑥)
111, 5, 2idlrmulcl 36179 . . . . . . 7 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝑈𝐼𝑥𝑋)) → (𝑈𝐻𝑥) ∈ 𝐼)
1210, 11eqeltrrd 2840 . . . . . 6 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝑈𝐼𝑥𝑋)) → 𝑥𝐼)
1312expr 457 . . . . 5 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝑈𝐼) → (𝑥𝑋𝑥𝐼))
1413ssrdv 3927 . . . 4 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝑈𝐼) → 𝑋𝐼)
154, 14eqssd 3938 . . 3 (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝑈𝐼) → 𝐼 = 𝑋)
1615ex 413 . 2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑈𝐼𝐼 = 𝑋))
177, 5, 8rngo1cl 36097 . . . 4 (𝑅 ∈ RingOps → 𝑈𝑋)
1817adantr 481 . . 3 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝑈𝑋)
19 eleq2 2827 . . 3 (𝐼 = 𝑋 → (𝑈𝐼𝑈𝑋))
2018, 19syl5ibrcom 246 . 2 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝐼 = 𝑋𝑈𝐼))
2116, 20impbid 211 1 ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑈𝐼𝐼 = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wss 3887  ran crn 5590  cfv 6433  (class class class)co 7275  1st c1st 7829  2nd c2nd 7830  GIdcgi 28852  RingOpscrngo 36052  Idlcidl 36165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fo 6439  df-fv 6441  df-riota 7232  df-ov 7278  df-1st 7831  df-2nd 7832  df-grpo 28855  df-gid 28856  df-ablo 28907  df-ass 36001  df-exid 36003  df-mgmOLD 36007  df-sgrOLD 36019  df-mndo 36025  df-rngo 36053  df-idl 36168
This theorem is referenced by:  0rngo  36185  divrngidl  36186  maxidln1  36202
  Copyright terms: Public domain W3C validator