![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 1idl | Structured version Visualization version GIF version |
Description: Two ways of expressing the unit ideal. (Contributed by Jeff Madsen, 10-Jun-2010.) |
Ref | Expression |
---|---|
1idl.1 | ⊢ 𝐺 = (1st ‘𝑅) |
1idl.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
1idl.3 | ⊢ 𝑋 = ran 𝐺 |
1idl.4 | ⊢ 𝑈 = (GId‘𝐻) |
Ref | Expression |
---|---|
1idl | ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑈 ∈ 𝐼 ↔ 𝐼 = 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1idl.1 | . . . . . 6 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | 1idl.3 | . . . . . 6 ⊢ 𝑋 = ran 𝐺 | |
3 | 1, 2 | idlss 37424 | . . . . 5 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝐼 ⊆ 𝑋) |
4 | 3 | adantr 480 | . . . 4 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝑈 ∈ 𝐼) → 𝐼 ⊆ 𝑋) |
5 | 1idl.2 | . . . . . . . . 9 ⊢ 𝐻 = (2nd ‘𝑅) | |
6 | 1 | rneqi 5933 | . . . . . . . . . 10 ⊢ ran 𝐺 = ran (1st ‘𝑅) |
7 | 2, 6 | eqtri 2755 | . . . . . . . . 9 ⊢ 𝑋 = ran (1st ‘𝑅) |
8 | 1idl.4 | . . . . . . . . 9 ⊢ 𝑈 = (GId‘𝐻) | |
9 | 5, 7, 8 | rngolidm 37345 | . . . . . . . 8 ⊢ ((𝑅 ∈ RingOps ∧ 𝑥 ∈ 𝑋) → (𝑈𝐻𝑥) = 𝑥) |
10 | 9 | ad2ant2rl 748 | . . . . . . 7 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝑈 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋)) → (𝑈𝐻𝑥) = 𝑥) |
11 | 1, 5, 2 | idlrmulcl 37429 | . . . . . . 7 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝑈 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋)) → (𝑈𝐻𝑥) ∈ 𝐼) |
12 | 10, 11 | eqeltrrd 2829 | . . . . . 6 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ (𝑈 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋)) → 𝑥 ∈ 𝐼) |
13 | 12 | expr 456 | . . . . 5 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝑈 ∈ 𝐼) → (𝑥 ∈ 𝑋 → 𝑥 ∈ 𝐼)) |
14 | 13 | ssrdv 3984 | . . . 4 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝑈 ∈ 𝐼) → 𝑋 ⊆ 𝐼) |
15 | 4, 14 | eqssd 3995 | . . 3 ⊢ (((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) ∧ 𝑈 ∈ 𝐼) → 𝐼 = 𝑋) |
16 | 15 | ex 412 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑈 ∈ 𝐼 → 𝐼 = 𝑋)) |
17 | 7, 5, 8 | rngo1cl 37347 | . . . 4 ⊢ (𝑅 ∈ RingOps → 𝑈 ∈ 𝑋) |
18 | 17 | adantr 480 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → 𝑈 ∈ 𝑋) |
19 | eleq2 2817 | . . 3 ⊢ (𝐼 = 𝑋 → (𝑈 ∈ 𝐼 ↔ 𝑈 ∈ 𝑋)) | |
20 | 18, 19 | syl5ibrcom 246 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝐼 = 𝑋 → 𝑈 ∈ 𝐼)) |
21 | 16, 20 | impbid 211 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐼 ∈ (Idl‘𝑅)) → (𝑈 ∈ 𝐼 ↔ 𝐼 = 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ⊆ wss 3944 ran crn 5673 ‘cfv 6542 (class class class)co 7414 1st c1st 7985 2nd c2nd 7986 GIdcgi 30287 RingOpscrngo 37302 Idlcidl 37415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-fo 6548 df-fv 6550 df-riota 7370 df-ov 7417 df-1st 7987 df-2nd 7988 df-grpo 30290 df-gid 30291 df-ablo 30342 df-ass 37251 df-exid 37253 df-mgmOLD 37257 df-sgrOLD 37269 df-mndo 37275 df-rngo 37303 df-idl 37418 |
This theorem is referenced by: 0rngo 37435 divrngidl 37436 maxidln1 37452 |
Copyright terms: Public domain | W3C validator |