Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imsdval | Structured version Visualization version GIF version |
Description: Value of the induced metric (distance function) of a normed complex vector space. Equation 1 of [Kreyszig] p. 59. (Contributed by NM, 11-Sep-2007.) (Revised by Mario Carneiro, 27-Dec-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
imsdval.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
imsdval.3 | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
imsdval.6 | ⊢ 𝑁 = (normCV‘𝑈) |
imsdval.8 | ⊢ 𝐷 = (IndMet‘𝑈) |
Ref | Expression |
---|---|
imsdval | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴𝑀𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imsdval.3 | . . . . . 6 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
2 | imsdval.6 | . . . . . 6 ⊢ 𝑁 = (normCV‘𝑈) | |
3 | imsdval.8 | . . . . . 6 ⊢ 𝐷 = (IndMet‘𝑈) | |
4 | 1, 2, 3 | imsval 28948 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → 𝐷 = (𝑁 ∘ 𝑀)) |
5 | 4 | 3ad2ant1 1131 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐷 = (𝑁 ∘ 𝑀)) |
6 | 5 | fveq1d 6758 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐷‘〈𝐴, 𝐵〉) = ((𝑁 ∘ 𝑀)‘〈𝐴, 𝐵〉)) |
7 | imsdval.1 | . . . . . 6 ⊢ 𝑋 = (BaseSet‘𝑈) | |
8 | 7, 1 | nvmf 28908 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → 𝑀:(𝑋 × 𝑋)⟶𝑋) |
9 | opelxpi 5617 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋)) | |
10 | fvco3 6849 | . . . . 5 ⊢ ((𝑀:(𝑋 × 𝑋)⟶𝑋 ∧ 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋)) → ((𝑁 ∘ 𝑀)‘〈𝐴, 𝐵〉) = (𝑁‘(𝑀‘〈𝐴, 𝐵〉))) | |
11 | 8, 9, 10 | syl2an 595 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝑁 ∘ 𝑀)‘〈𝐴, 𝐵〉) = (𝑁‘(𝑀‘〈𝐴, 𝐵〉))) |
12 | 11 | 3impb 1113 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁 ∘ 𝑀)‘〈𝐴, 𝐵〉) = (𝑁‘(𝑀‘〈𝐴, 𝐵〉))) |
13 | 6, 12 | eqtrd 2778 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐷‘〈𝐴, 𝐵〉) = (𝑁‘(𝑀‘〈𝐴, 𝐵〉))) |
14 | df-ov 7258 | . 2 ⊢ (𝐴𝐷𝐵) = (𝐷‘〈𝐴, 𝐵〉) | |
15 | df-ov 7258 | . . 3 ⊢ (𝐴𝑀𝐵) = (𝑀‘〈𝐴, 𝐵〉) | |
16 | 15 | fveq2i 6759 | . 2 ⊢ (𝑁‘(𝐴𝑀𝐵)) = (𝑁‘(𝑀‘〈𝐴, 𝐵〉)) |
17 | 13, 14, 16 | 3eqtr4g 2804 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴𝑀𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 〈cop 4564 × cxp 5578 ∘ ccom 5584 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 NrmCVeccnv 28847 BaseSetcba 28849 −𝑣 cnsb 28852 normCVcnmcv 28853 IndMetcims 28854 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-ltxr 10945 df-sub 11137 df-neg 11138 df-grpo 28756 df-gid 28757 df-ginv 28758 df-gdiv 28759 df-ablo 28808 df-vc 28822 df-nv 28855 df-va 28858 df-ba 28859 df-sm 28860 df-0v 28861 df-vs 28862 df-nmcv 28863 df-ims 28864 |
This theorem is referenced by: imsdval2 28950 nvnd 28951 vacn 28957 smcnlem 28960 sspimsval 29001 blometi 29066 blocnilem 29067 ubthlem2 29134 minvecolem2 29138 minvecolem4 29143 minvecolem5 29144 minvecolem6 29145 h2hmetdval 29241 hhssmetdval 29540 |
Copyright terms: Public domain | W3C validator |