MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imsdval Structured version   Visualization version   GIF version

Theorem imsdval 30661
Description: Value of the induced metric (distance function) of a normed complex vector space. Equation 1 of [Kreyszig] p. 59. (Contributed by NM, 11-Sep-2007.) (Revised by Mario Carneiro, 27-Dec-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
imsdval.1 𝑋 = (BaseSet‘𝑈)
imsdval.3 𝑀 = ( −𝑣𝑈)
imsdval.6 𝑁 = (normCV𝑈)
imsdval.8 𝐷 = (IndMet‘𝑈)
Assertion
Ref Expression
imsdval ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴𝑀𝐵)))

Proof of Theorem imsdval
StepHypRef Expression
1 imsdval.3 . . . . . 6 𝑀 = ( −𝑣𝑈)
2 imsdval.6 . . . . . 6 𝑁 = (normCV𝑈)
3 imsdval.8 . . . . . 6 𝐷 = (IndMet‘𝑈)
41, 2, 3imsval 30660 . . . . 5 (𝑈 ∈ NrmCVec → 𝐷 = (𝑁𝑀))
543ad2ant1 1133 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → 𝐷 = (𝑁𝑀))
65fveq1d 6824 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐷‘⟨𝐴, 𝐵⟩) = ((𝑁𝑀)‘⟨𝐴, 𝐵⟩))
7 imsdval.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
87, 1nvmf 30620 . . . . 5 (𝑈 ∈ NrmCVec → 𝑀:(𝑋 × 𝑋)⟶𝑋)
9 opelxpi 5653 . . . . 5 ((𝐴𝑋𝐵𝑋) → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋))
10 fvco3 6921 . . . . 5 ((𝑀:(𝑋 × 𝑋)⟶𝑋 ∧ ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋)) → ((𝑁𝑀)‘⟨𝐴, 𝐵⟩) = (𝑁‘(𝑀‘⟨𝐴, 𝐵⟩)))
118, 9, 10syl2an 596 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋)) → ((𝑁𝑀)‘⟨𝐴, 𝐵⟩) = (𝑁‘(𝑀‘⟨𝐴, 𝐵⟩)))
12113impb 1114 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝑀)‘⟨𝐴, 𝐵⟩) = (𝑁‘(𝑀‘⟨𝐴, 𝐵⟩)))
136, 12eqtrd 2766 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐷‘⟨𝐴, 𝐵⟩) = (𝑁‘(𝑀‘⟨𝐴, 𝐵⟩)))
14 df-ov 7349 . 2 (𝐴𝐷𝐵) = (𝐷‘⟨𝐴, 𝐵⟩)
15 df-ov 7349 . . 3 (𝐴𝑀𝐵) = (𝑀‘⟨𝐴, 𝐵⟩)
1615fveq2i 6825 . 2 (𝑁‘(𝐴𝑀𝐵)) = (𝑁‘(𝑀‘⟨𝐴, 𝐵⟩))
1713, 14, 163eqtr4g 2791 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴𝑀𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  cop 4582   × cxp 5614  ccom 5620  wf 6477  cfv 6481  (class class class)co 7346  NrmCVeccnv 30559  BaseSetcba 30561  𝑣 cnsb 30564  normCVcnmcv 30565  IndMetcims 30566
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-ltxr 11148  df-sub 11343  df-neg 11344  df-grpo 30468  df-gid 30469  df-ginv 30470  df-gdiv 30471  df-ablo 30520  df-vc 30534  df-nv 30567  df-va 30570  df-ba 30571  df-sm 30572  df-0v 30573  df-vs 30574  df-nmcv 30575  df-ims 30576
This theorem is referenced by:  imsdval2  30662  nvnd  30663  vacn  30669  smcnlem  30672  sspimsval  30713  blometi  30778  blocnilem  30779  ubthlem2  30846  minvecolem2  30850  minvecolem4  30855  minvecolem5  30856  minvecolem6  30857  h2hmetdval  30953  hhssmetdval  31252
  Copyright terms: Public domain W3C validator