MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imsdval Structured version   Visualization version   GIF version

Theorem imsdval 30715
Description: Value of the induced metric (distance function) of a normed complex vector space. Equation 1 of [Kreyszig] p. 59. (Contributed by NM, 11-Sep-2007.) (Revised by Mario Carneiro, 27-Dec-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
imsdval.1 𝑋 = (BaseSet‘𝑈)
imsdval.3 𝑀 = ( −𝑣𝑈)
imsdval.6 𝑁 = (normCV𝑈)
imsdval.8 𝐷 = (IndMet‘𝑈)
Assertion
Ref Expression
imsdval ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴𝑀𝐵)))

Proof of Theorem imsdval
StepHypRef Expression
1 imsdval.3 . . . . . 6 𝑀 = ( −𝑣𝑈)
2 imsdval.6 . . . . . 6 𝑁 = (normCV𝑈)
3 imsdval.8 . . . . . 6 𝐷 = (IndMet‘𝑈)
41, 2, 3imsval 30714 . . . . 5 (𝑈 ∈ NrmCVec → 𝐷 = (𝑁𝑀))
543ad2ant1 1132 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → 𝐷 = (𝑁𝑀))
65fveq1d 6909 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐷‘⟨𝐴, 𝐵⟩) = ((𝑁𝑀)‘⟨𝐴, 𝐵⟩))
7 imsdval.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
87, 1nvmf 30674 . . . . 5 (𝑈 ∈ NrmCVec → 𝑀:(𝑋 × 𝑋)⟶𝑋)
9 opelxpi 5726 . . . . 5 ((𝐴𝑋𝐵𝑋) → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋))
10 fvco3 7008 . . . . 5 ((𝑀:(𝑋 × 𝑋)⟶𝑋 ∧ ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋)) → ((𝑁𝑀)‘⟨𝐴, 𝐵⟩) = (𝑁‘(𝑀‘⟨𝐴, 𝐵⟩)))
118, 9, 10syl2an 596 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋)) → ((𝑁𝑀)‘⟨𝐴, 𝐵⟩) = (𝑁‘(𝑀‘⟨𝐴, 𝐵⟩)))
12113impb 1114 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝑀)‘⟨𝐴, 𝐵⟩) = (𝑁‘(𝑀‘⟨𝐴, 𝐵⟩)))
136, 12eqtrd 2775 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐷‘⟨𝐴, 𝐵⟩) = (𝑁‘(𝑀‘⟨𝐴, 𝐵⟩)))
14 df-ov 7434 . 2 (𝐴𝐷𝐵) = (𝐷‘⟨𝐴, 𝐵⟩)
15 df-ov 7434 . . 3 (𝐴𝑀𝐵) = (𝑀‘⟨𝐴, 𝐵⟩)
1615fveq2i 6910 . 2 (𝑁‘(𝐴𝑀𝐵)) = (𝑁‘(𝑀‘⟨𝐴, 𝐵⟩))
1713, 14, 163eqtr4g 2800 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴𝑀𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  cop 4637   × cxp 5687  ccom 5693  wf 6559  cfv 6563  (class class class)co 7431  NrmCVeccnv 30613  BaseSetcba 30615  𝑣 cnsb 30618  normCVcnmcv 30619  IndMetcims 30620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-ltxr 11298  df-sub 11492  df-neg 11493  df-grpo 30522  df-gid 30523  df-ginv 30524  df-gdiv 30525  df-ablo 30574  df-vc 30588  df-nv 30621  df-va 30624  df-ba 30625  df-sm 30626  df-0v 30627  df-vs 30628  df-nmcv 30629  df-ims 30630
This theorem is referenced by:  imsdval2  30716  nvnd  30717  vacn  30723  smcnlem  30726  sspimsval  30767  blometi  30832  blocnilem  30833  ubthlem2  30900  minvecolem2  30904  minvecolem4  30909  minvecolem5  30910  minvecolem6  30911  h2hmetdval  31007  hhssmetdval  31306
  Copyright terms: Public domain W3C validator