MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imsdval Structured version   Visualization version   GIF version

Theorem imsdval 30705
Description: Value of the induced metric (distance function) of a normed complex vector space. Equation 1 of [Kreyszig] p. 59. (Contributed by NM, 11-Sep-2007.) (Revised by Mario Carneiro, 27-Dec-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
imsdval.1 𝑋 = (BaseSet‘𝑈)
imsdval.3 𝑀 = ( −𝑣𝑈)
imsdval.6 𝑁 = (normCV𝑈)
imsdval.8 𝐷 = (IndMet‘𝑈)
Assertion
Ref Expression
imsdval ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴𝑀𝐵)))

Proof of Theorem imsdval
StepHypRef Expression
1 imsdval.3 . . . . . 6 𝑀 = ( −𝑣𝑈)
2 imsdval.6 . . . . . 6 𝑁 = (normCV𝑈)
3 imsdval.8 . . . . . 6 𝐷 = (IndMet‘𝑈)
41, 2, 3imsval 30704 . . . . 5 (𝑈 ∈ NrmCVec → 𝐷 = (𝑁𝑀))
543ad2ant1 1134 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → 𝐷 = (𝑁𝑀))
65fveq1d 6908 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐷‘⟨𝐴, 𝐵⟩) = ((𝑁𝑀)‘⟨𝐴, 𝐵⟩))
7 imsdval.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
87, 1nvmf 30664 . . . . 5 (𝑈 ∈ NrmCVec → 𝑀:(𝑋 × 𝑋)⟶𝑋)
9 opelxpi 5722 . . . . 5 ((𝐴𝑋𝐵𝑋) → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋))
10 fvco3 7008 . . . . 5 ((𝑀:(𝑋 × 𝑋)⟶𝑋 ∧ ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋)) → ((𝑁𝑀)‘⟨𝐴, 𝐵⟩) = (𝑁‘(𝑀‘⟨𝐴, 𝐵⟩)))
118, 9, 10syl2an 596 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋)) → ((𝑁𝑀)‘⟨𝐴, 𝐵⟩) = (𝑁‘(𝑀‘⟨𝐴, 𝐵⟩)))
12113impb 1115 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝑀)‘⟨𝐴, 𝐵⟩) = (𝑁‘(𝑀‘⟨𝐴, 𝐵⟩)))
136, 12eqtrd 2777 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐷‘⟨𝐴, 𝐵⟩) = (𝑁‘(𝑀‘⟨𝐴, 𝐵⟩)))
14 df-ov 7434 . 2 (𝐴𝐷𝐵) = (𝐷‘⟨𝐴, 𝐵⟩)
15 df-ov 7434 . . 3 (𝐴𝑀𝐵) = (𝑀‘⟨𝐴, 𝐵⟩)
1615fveq2i 6909 . 2 (𝑁‘(𝐴𝑀𝐵)) = (𝑁‘(𝑀‘⟨𝐴, 𝐵⟩))
1713, 14, 163eqtr4g 2802 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴𝑀𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  cop 4632   × cxp 5683  ccom 5689  wf 6557  cfv 6561  (class class class)co 7431  NrmCVeccnv 30603  BaseSetcba 30605  𝑣 cnsb 30608  normCVcnmcv 30609  IndMetcims 30610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-ltxr 11300  df-sub 11494  df-neg 11495  df-grpo 30512  df-gid 30513  df-ginv 30514  df-gdiv 30515  df-ablo 30564  df-vc 30578  df-nv 30611  df-va 30614  df-ba 30615  df-sm 30616  df-0v 30617  df-vs 30618  df-nmcv 30619  df-ims 30620
This theorem is referenced by:  imsdval2  30706  nvnd  30707  vacn  30713  smcnlem  30716  sspimsval  30757  blometi  30822  blocnilem  30823  ubthlem2  30890  minvecolem2  30894  minvecolem4  30899  minvecolem5  30900  minvecolem6  30901  h2hmetdval  30997  hhssmetdval  31296
  Copyright terms: Public domain W3C validator