MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imsdval Structured version   Visualization version   GIF version

Theorem imsdval 29044
Description: Value of the induced metric (distance function) of a normed complex vector space. Equation 1 of [Kreyszig] p. 59. (Contributed by NM, 11-Sep-2007.) (Revised by Mario Carneiro, 27-Dec-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
imsdval.1 𝑋 = (BaseSet‘𝑈)
imsdval.3 𝑀 = ( −𝑣𝑈)
imsdval.6 𝑁 = (normCV𝑈)
imsdval.8 𝐷 = (IndMet‘𝑈)
Assertion
Ref Expression
imsdval ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴𝑀𝐵)))

Proof of Theorem imsdval
StepHypRef Expression
1 imsdval.3 . . . . . 6 𝑀 = ( −𝑣𝑈)
2 imsdval.6 . . . . . 6 𝑁 = (normCV𝑈)
3 imsdval.8 . . . . . 6 𝐷 = (IndMet‘𝑈)
41, 2, 3imsval 29043 . . . . 5 (𝑈 ∈ NrmCVec → 𝐷 = (𝑁𝑀))
543ad2ant1 1132 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → 𝐷 = (𝑁𝑀))
65fveq1d 6773 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐷‘⟨𝐴, 𝐵⟩) = ((𝑁𝑀)‘⟨𝐴, 𝐵⟩))
7 imsdval.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
87, 1nvmf 29003 . . . . 5 (𝑈 ∈ NrmCVec → 𝑀:(𝑋 × 𝑋)⟶𝑋)
9 opelxpi 5627 . . . . 5 ((𝐴𝑋𝐵𝑋) → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋))
10 fvco3 6864 . . . . 5 ((𝑀:(𝑋 × 𝑋)⟶𝑋 ∧ ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑋)) → ((𝑁𝑀)‘⟨𝐴, 𝐵⟩) = (𝑁‘(𝑀‘⟨𝐴, 𝐵⟩)))
118, 9, 10syl2an 596 . . . 4 ((𝑈 ∈ NrmCVec ∧ (𝐴𝑋𝐵𝑋)) → ((𝑁𝑀)‘⟨𝐴, 𝐵⟩) = (𝑁‘(𝑀‘⟨𝐴, 𝐵⟩)))
12113impb 1114 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → ((𝑁𝑀)‘⟨𝐴, 𝐵⟩) = (𝑁‘(𝑀‘⟨𝐴, 𝐵⟩)))
136, 12eqtrd 2780 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐷‘⟨𝐴, 𝐵⟩) = (𝑁‘(𝑀‘⟨𝐴, 𝐵⟩)))
14 df-ov 7274 . 2 (𝐴𝐷𝐵) = (𝐷‘⟨𝐴, 𝐵⟩)
15 df-ov 7274 . . 3 (𝐴𝑀𝐵) = (𝑀‘⟨𝐴, 𝐵⟩)
1615fveq2i 6774 . 2 (𝑁‘(𝐴𝑀𝐵)) = (𝑁‘(𝑀‘⟨𝐴, 𝐵⟩))
1713, 14, 163eqtr4g 2805 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴𝑀𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1542  wcel 2110  cop 4573   × cxp 5588  ccom 5594  wf 6428  cfv 6432  (class class class)co 7271  NrmCVeccnv 28942  BaseSetcba 28944  𝑣 cnsb 28947  normCVcnmcv 28948  IndMetcims 28949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5490  df-po 5504  df-so 5505  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-1st 7824  df-2nd 7825  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-pnf 11012  df-mnf 11013  df-ltxr 11015  df-sub 11207  df-neg 11208  df-grpo 28851  df-gid 28852  df-ginv 28853  df-gdiv 28854  df-ablo 28903  df-vc 28917  df-nv 28950  df-va 28953  df-ba 28954  df-sm 28955  df-0v 28956  df-vs 28957  df-nmcv 28958  df-ims 28959
This theorem is referenced by:  imsdval2  29045  nvnd  29046  vacn  29052  smcnlem  29055  sspimsval  29096  blometi  29161  blocnilem  29162  ubthlem2  29229  minvecolem2  29233  minvecolem4  29238  minvecolem5  29239  minvecolem6  29240  h2hmetdval  29336  hhssmetdval  29635
  Copyright terms: Public domain W3C validator