Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imsdval | Structured version Visualization version GIF version |
Description: Value of the induced metric (distance function) of a normed complex vector space. Equation 1 of [Kreyszig] p. 59. (Contributed by NM, 11-Sep-2007.) (Revised by Mario Carneiro, 27-Dec-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
imsdval.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
imsdval.3 | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
imsdval.6 | ⊢ 𝑁 = (normCV‘𝑈) |
imsdval.8 | ⊢ 𝐷 = (IndMet‘𝑈) |
Ref | Expression |
---|---|
imsdval | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴𝑀𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imsdval.3 | . . . . . 6 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
2 | imsdval.6 | . . . . . 6 ⊢ 𝑁 = (normCV‘𝑈) | |
3 | imsdval.8 | . . . . . 6 ⊢ 𝐷 = (IndMet‘𝑈) | |
4 | 1, 2, 3 | imsval 29043 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → 𝐷 = (𝑁 ∘ 𝑀)) |
5 | 4 | 3ad2ant1 1132 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐷 = (𝑁 ∘ 𝑀)) |
6 | 5 | fveq1d 6773 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐷‘〈𝐴, 𝐵〉) = ((𝑁 ∘ 𝑀)‘〈𝐴, 𝐵〉)) |
7 | imsdval.1 | . . . . . 6 ⊢ 𝑋 = (BaseSet‘𝑈) | |
8 | 7, 1 | nvmf 29003 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → 𝑀:(𝑋 × 𝑋)⟶𝑋) |
9 | opelxpi 5627 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋)) | |
10 | fvco3 6864 | . . . . 5 ⊢ ((𝑀:(𝑋 × 𝑋)⟶𝑋 ∧ 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋)) → ((𝑁 ∘ 𝑀)‘〈𝐴, 𝐵〉) = (𝑁‘(𝑀‘〈𝐴, 𝐵〉))) | |
11 | 8, 9, 10 | syl2an 596 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝑁 ∘ 𝑀)‘〈𝐴, 𝐵〉) = (𝑁‘(𝑀‘〈𝐴, 𝐵〉))) |
12 | 11 | 3impb 1114 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁 ∘ 𝑀)‘〈𝐴, 𝐵〉) = (𝑁‘(𝑀‘〈𝐴, 𝐵〉))) |
13 | 6, 12 | eqtrd 2780 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐷‘〈𝐴, 𝐵〉) = (𝑁‘(𝑀‘〈𝐴, 𝐵〉))) |
14 | df-ov 7274 | . 2 ⊢ (𝐴𝐷𝐵) = (𝐷‘〈𝐴, 𝐵〉) | |
15 | df-ov 7274 | . . 3 ⊢ (𝐴𝑀𝐵) = (𝑀‘〈𝐴, 𝐵〉) | |
16 | 15 | fveq2i 6774 | . 2 ⊢ (𝑁‘(𝐴𝑀𝐵)) = (𝑁‘(𝑀‘〈𝐴, 𝐵〉)) |
17 | 13, 14, 16 | 3eqtr4g 2805 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴𝑀𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 〈cop 4573 × cxp 5588 ∘ ccom 5594 ⟶wf 6428 ‘cfv 6432 (class class class)co 7271 NrmCVeccnv 28942 BaseSetcba 28944 −𝑣 cnsb 28947 normCVcnmcv 28948 IndMetcims 28949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 ax-un 7582 ax-resscn 10929 ax-1cn 10930 ax-icn 10931 ax-addcl 10932 ax-addrcl 10933 ax-mulcl 10934 ax-mulrcl 10935 ax-mulcom 10936 ax-addass 10937 ax-mulass 10938 ax-distr 10939 ax-i2m1 10940 ax-1ne0 10941 ax-1rid 10942 ax-rnegex 10943 ax-rrecex 10944 ax-cnre 10945 ax-pre-lttri 10946 ax-pre-lttrn 10947 ax-pre-ltadd 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-nel 3052 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-po 5504 df-so 5505 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-ov 7274 df-oprab 7275 df-mpo 7276 df-1st 7824 df-2nd 7825 df-er 8481 df-en 8717 df-dom 8718 df-sdom 8719 df-pnf 11012 df-mnf 11013 df-ltxr 11015 df-sub 11207 df-neg 11208 df-grpo 28851 df-gid 28852 df-ginv 28853 df-gdiv 28854 df-ablo 28903 df-vc 28917 df-nv 28950 df-va 28953 df-ba 28954 df-sm 28955 df-0v 28956 df-vs 28957 df-nmcv 28958 df-ims 28959 |
This theorem is referenced by: imsdval2 29045 nvnd 29046 vacn 29052 smcnlem 29055 sspimsval 29096 blometi 29161 blocnilem 29162 ubthlem2 29229 minvecolem2 29233 minvecolem4 29238 minvecolem5 29239 minvecolem6 29240 h2hmetdval 29336 hhssmetdval 29635 |
Copyright terms: Public domain | W3C validator |