| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imsdval | Structured version Visualization version GIF version | ||
| Description: Value of the induced metric (distance function) of a normed complex vector space. Equation 1 of [Kreyszig] p. 59. (Contributed by NM, 11-Sep-2007.) (Revised by Mario Carneiro, 27-Dec-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| imsdval.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| imsdval.3 | ⊢ 𝑀 = ( −𝑣 ‘𝑈) |
| imsdval.6 | ⊢ 𝑁 = (normCV‘𝑈) |
| imsdval.8 | ⊢ 𝐷 = (IndMet‘𝑈) |
| Ref | Expression |
|---|---|
| imsdval | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴𝑀𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imsdval.3 | . . . . . 6 ⊢ 𝑀 = ( −𝑣 ‘𝑈) | |
| 2 | imsdval.6 | . . . . . 6 ⊢ 𝑁 = (normCV‘𝑈) | |
| 3 | imsdval.8 | . . . . . 6 ⊢ 𝐷 = (IndMet‘𝑈) | |
| 4 | 1, 2, 3 | imsval 30667 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → 𝐷 = (𝑁 ∘ 𝑀)) |
| 5 | 4 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐷 = (𝑁 ∘ 𝑀)) |
| 6 | 5 | fveq1d 6830 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐷‘〈𝐴, 𝐵〉) = ((𝑁 ∘ 𝑀)‘〈𝐴, 𝐵〉)) |
| 7 | imsdval.1 | . . . . . 6 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 8 | 7, 1 | nvmf 30627 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → 𝑀:(𝑋 × 𝑋)⟶𝑋) |
| 9 | opelxpi 5656 | . . . . 5 ⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋)) | |
| 10 | fvco3 6927 | . . . . 5 ⊢ ((𝑀:(𝑋 × 𝑋)⟶𝑋 ∧ 〈𝐴, 𝐵〉 ∈ (𝑋 × 𝑋)) → ((𝑁 ∘ 𝑀)‘〈𝐴, 𝐵〉) = (𝑁‘(𝑀‘〈𝐴, 𝐵〉))) | |
| 11 | 8, 9, 10 | syl2an 596 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → ((𝑁 ∘ 𝑀)‘〈𝐴, 𝐵〉) = (𝑁‘(𝑀‘〈𝐴, 𝐵〉))) |
| 12 | 11 | 3impb 1114 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝑁 ∘ 𝑀)‘〈𝐴, 𝐵〉) = (𝑁‘(𝑀‘〈𝐴, 𝐵〉))) |
| 13 | 6, 12 | eqtrd 2768 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐷‘〈𝐴, 𝐵〉) = (𝑁‘(𝑀‘〈𝐴, 𝐵〉))) |
| 14 | df-ov 7355 | . 2 ⊢ (𝐴𝐷𝐵) = (𝐷‘〈𝐴, 𝐵〉) | |
| 15 | df-ov 7355 | . . 3 ⊢ (𝐴𝑀𝐵) = (𝑀‘〈𝐴, 𝐵〉) | |
| 16 | 15 | fveq2i 6831 | . 2 ⊢ (𝑁‘(𝐴𝑀𝐵)) = (𝑁‘(𝑀‘〈𝐴, 𝐵〉)) |
| 17 | 13, 14, 16 | 3eqtr4g 2793 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐷𝐵) = (𝑁‘(𝐴𝑀𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 〈cop 4581 × cxp 5617 ∘ ccom 5623 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 NrmCVeccnv 30566 BaseSetcba 30568 −𝑣 cnsb 30571 normCVcnmcv 30572 IndMetcims 30573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-ltxr 11158 df-sub 11353 df-neg 11354 df-grpo 30475 df-gid 30476 df-ginv 30477 df-gdiv 30478 df-ablo 30527 df-vc 30541 df-nv 30574 df-va 30577 df-ba 30578 df-sm 30579 df-0v 30580 df-vs 30581 df-nmcv 30582 df-ims 30583 |
| This theorem is referenced by: imsdval2 30669 nvnd 30670 vacn 30676 smcnlem 30679 sspimsval 30720 blometi 30785 blocnilem 30786 ubthlem2 30853 minvecolem2 30857 minvecolem4 30862 minvecolem5 30863 minvecolem6 30864 h2hmetdval 30960 hhssmetdval 31259 |
| Copyright terms: Public domain | W3C validator |