![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > imsdval | Structured version Visualization version GIF version |
Description: Value of the induced metric (distance function) of a normed complex vector space. Equation 1 of [Kreyszig] p. 59. (Contributed by NM, 11-Sep-2007.) (Revised by Mario Carneiro, 27-Dec-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
imsdval.1 | β’ π = (BaseSetβπ) |
imsdval.3 | β’ π = ( βπ£ βπ) |
imsdval.6 | β’ π = (normCVβπ) |
imsdval.8 | β’ π· = (IndMetβπ) |
Ref | Expression |
---|---|
imsdval | β’ ((π β NrmCVec β§ π΄ β π β§ π΅ β π) β (π΄π·π΅) = (πβ(π΄ππ΅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imsdval.3 | . . . . . 6 β’ π = ( βπ£ βπ) | |
2 | imsdval.6 | . . . . . 6 β’ π = (normCVβπ) | |
3 | imsdval.8 | . . . . . 6 β’ π· = (IndMetβπ) | |
4 | 1, 2, 3 | imsval 29938 | . . . . 5 β’ (π β NrmCVec β π· = (π β π)) |
5 | 4 | 3ad2ant1 1134 | . . . 4 β’ ((π β NrmCVec β§ π΄ β π β§ π΅ β π) β π· = (π β π)) |
6 | 5 | fveq1d 6894 | . . 3 β’ ((π β NrmCVec β§ π΄ β π β§ π΅ β π) β (π·ββ¨π΄, π΅β©) = ((π β π)ββ¨π΄, π΅β©)) |
7 | imsdval.1 | . . . . . 6 β’ π = (BaseSetβπ) | |
8 | 7, 1 | nvmf 29898 | . . . . 5 β’ (π β NrmCVec β π:(π Γ π)βΆπ) |
9 | opelxpi 5714 | . . . . 5 β’ ((π΄ β π β§ π΅ β π) β β¨π΄, π΅β© β (π Γ π)) | |
10 | fvco3 6991 | . . . . 5 β’ ((π:(π Γ π)βΆπ β§ β¨π΄, π΅β© β (π Γ π)) β ((π β π)ββ¨π΄, π΅β©) = (πβ(πββ¨π΄, π΅β©))) | |
11 | 8, 9, 10 | syl2an 597 | . . . 4 β’ ((π β NrmCVec β§ (π΄ β π β§ π΅ β π)) β ((π β π)ββ¨π΄, π΅β©) = (πβ(πββ¨π΄, π΅β©))) |
12 | 11 | 3impb 1116 | . . 3 β’ ((π β NrmCVec β§ π΄ β π β§ π΅ β π) β ((π β π)ββ¨π΄, π΅β©) = (πβ(πββ¨π΄, π΅β©))) |
13 | 6, 12 | eqtrd 2773 | . 2 β’ ((π β NrmCVec β§ π΄ β π β§ π΅ β π) β (π·ββ¨π΄, π΅β©) = (πβ(πββ¨π΄, π΅β©))) |
14 | df-ov 7412 | . 2 β’ (π΄π·π΅) = (π·ββ¨π΄, π΅β©) | |
15 | df-ov 7412 | . . 3 β’ (π΄ππ΅) = (πββ¨π΄, π΅β©) | |
16 | 15 | fveq2i 6895 | . 2 β’ (πβ(π΄ππ΅)) = (πβ(πββ¨π΄, π΅β©)) |
17 | 13, 14, 16 | 3eqtr4g 2798 | 1 β’ ((π β NrmCVec β§ π΄ β π β§ π΅ β π) β (π΄π·π΅) = (πβ(π΄ππ΅))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 β§ w3a 1088 = wceq 1542 β wcel 2107 β¨cop 4635 Γ cxp 5675 β ccom 5681 βΆwf 6540 βcfv 6544 (class class class)co 7409 NrmCVeccnv 29837 BaseSetcba 29839 βπ£ cnsb 29842 normCVcnmcv 29843 IndMetcims 29844 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-po 5589 df-so 5590 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-pnf 11250 df-mnf 11251 df-ltxr 11253 df-sub 11446 df-neg 11447 df-grpo 29746 df-gid 29747 df-ginv 29748 df-gdiv 29749 df-ablo 29798 df-vc 29812 df-nv 29845 df-va 29848 df-ba 29849 df-sm 29850 df-0v 29851 df-vs 29852 df-nmcv 29853 df-ims 29854 |
This theorem is referenced by: imsdval2 29940 nvnd 29941 vacn 29947 smcnlem 29950 sspimsval 29991 blometi 30056 blocnilem 30057 ubthlem2 30124 minvecolem2 30128 minvecolem4 30133 minvecolem5 30134 minvecolem6 30135 h2hmetdval 30231 hhssmetdval 30530 |
Copyright terms: Public domain | W3C validator |