MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imsdf Structured version   Visualization version   GIF version

Theorem imsdf 30617
Description: Mapping for the induced metric distance function of a normed complex vector space. (Contributed by NM, 29-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
imsdfn.1 𝑋 = (BaseSet‘𝑈)
imsdfn.8 𝐷 = (IndMet‘𝑈)
Assertion
Ref Expression
imsdf (𝑈 ∈ NrmCVec → 𝐷:(𝑋 × 𝑋)⟶ℝ)

Proof of Theorem imsdf
StepHypRef Expression
1 imsdfn.1 . . . 4 𝑋 = (BaseSet‘𝑈)
2 eqid 2726 . . . 4 (normCV𝑈) = (normCV𝑈)
31, 2nvf 30588 . . 3 (𝑈 ∈ NrmCVec → (normCV𝑈):𝑋⟶ℝ)
4 eqid 2726 . . . 4 ( −𝑣𝑈) = ( −𝑣𝑈)
51, 4nvmf 30573 . . 3 (𝑈 ∈ NrmCVec → ( −𝑣𝑈):(𝑋 × 𝑋)⟶𝑋)
6 fco 6742 . . 3 (((normCV𝑈):𝑋⟶ℝ ∧ ( −𝑣𝑈):(𝑋 × 𝑋)⟶𝑋) → ((normCV𝑈) ∘ ( −𝑣𝑈)):(𝑋 × 𝑋)⟶ℝ)
73, 5, 6syl2anc 582 . 2 (𝑈 ∈ NrmCVec → ((normCV𝑈) ∘ ( −𝑣𝑈)):(𝑋 × 𝑋)⟶ℝ)
8 imsdfn.8 . . . 4 𝐷 = (IndMet‘𝑈)
94, 2, 8imsval 30613 . . 3 (𝑈 ∈ NrmCVec → 𝐷 = ((normCV𝑈) ∘ ( −𝑣𝑈)))
109feq1d 6703 . 2 (𝑈 ∈ NrmCVec → (𝐷:(𝑋 × 𝑋)⟶ℝ ↔ ((normCV𝑈) ∘ ( −𝑣𝑈)):(𝑋 × 𝑋)⟶ℝ))
117, 10mpbird 256 1 (𝑈 ∈ NrmCVec → 𝐷:(𝑋 × 𝑋)⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wcel 2099   × cxp 5671  ccom 5677  wf 6540  cfv 6544  cr 11146  NrmCVeccnv 30512  BaseSetcba 30514  𝑣 cnsb 30517  normCVcnmcv 30518  IndMetcims 30519
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7736  ax-resscn 11204  ax-1cn 11205  ax-icn 11206  ax-addcl 11207  ax-addrcl 11208  ax-mulcl 11209  ax-mulrcl 11210  ax-mulcom 11211  ax-addass 11212  ax-mulass 11213  ax-distr 11214  ax-i2m1 11215  ax-1ne0 11216  ax-1rid 11217  ax-rnegex 11218  ax-rrecex 11219  ax-cnre 11220  ax-pre-lttri 11221  ax-pre-lttrn 11222  ax-pre-ltadd 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3366  df-rab 3421  df-v 3465  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4907  df-iun 4996  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5571  df-po 5585  df-so 5586  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7993  df-2nd 7994  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11289  df-mnf 11290  df-ltxr 11292  df-sub 11485  df-neg 11486  df-grpo 30421  df-gid 30422  df-ginv 30423  df-gdiv 30424  df-ablo 30473  df-vc 30487  df-nv 30520  df-va 30523  df-ba 30524  df-sm 30525  df-0v 30526  df-vs 30527  df-nmcv 30528  df-ims 30529
This theorem is referenced by:  imsmetlem  30618  sspims  30667
  Copyright terms: Public domain W3C validator