| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imsdf | Structured version Visualization version GIF version | ||
| Description: Mapping for the induced metric distance function of a normed complex vector space. (Contributed by NM, 29-Nov-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| imsdfn.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| imsdfn.8 | ⊢ 𝐷 = (IndMet‘𝑈) |
| Ref | Expression |
|---|---|
| imsdf | ⊢ (𝑈 ∈ NrmCVec → 𝐷:(𝑋 × 𝑋)⟶ℝ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | imsdfn.1 | . . . 4 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 2 | eqid 2729 | . . . 4 ⊢ (normCV‘𝑈) = (normCV‘𝑈) | |
| 3 | 1, 2 | nvf 30589 | . . 3 ⊢ (𝑈 ∈ NrmCVec → (normCV‘𝑈):𝑋⟶ℝ) |
| 4 | eqid 2729 | . . . 4 ⊢ ( −𝑣 ‘𝑈) = ( −𝑣 ‘𝑈) | |
| 5 | 1, 4 | nvmf 30574 | . . 3 ⊢ (𝑈 ∈ NrmCVec → ( −𝑣 ‘𝑈):(𝑋 × 𝑋)⟶𝑋) |
| 6 | fco 6712 | . . 3 ⊢ (((normCV‘𝑈):𝑋⟶ℝ ∧ ( −𝑣 ‘𝑈):(𝑋 × 𝑋)⟶𝑋) → ((normCV‘𝑈) ∘ ( −𝑣 ‘𝑈)):(𝑋 × 𝑋)⟶ℝ) | |
| 7 | 3, 5, 6 | syl2anc 584 | . 2 ⊢ (𝑈 ∈ NrmCVec → ((normCV‘𝑈) ∘ ( −𝑣 ‘𝑈)):(𝑋 × 𝑋)⟶ℝ) |
| 8 | imsdfn.8 | . . . 4 ⊢ 𝐷 = (IndMet‘𝑈) | |
| 9 | 4, 2, 8 | imsval 30614 | . . 3 ⊢ (𝑈 ∈ NrmCVec → 𝐷 = ((normCV‘𝑈) ∘ ( −𝑣 ‘𝑈))) |
| 10 | 9 | feq1d 6670 | . 2 ⊢ (𝑈 ∈ NrmCVec → (𝐷:(𝑋 × 𝑋)⟶ℝ ↔ ((normCV‘𝑈) ∘ ( −𝑣 ‘𝑈)):(𝑋 × 𝑋)⟶ℝ)) |
| 11 | 7, 10 | mpbird 257 | 1 ⊢ (𝑈 ∈ NrmCVec → 𝐷:(𝑋 × 𝑋)⟶ℝ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 × cxp 5636 ∘ ccom 5642 ⟶wf 6507 ‘cfv 6511 ℝcr 11067 NrmCVeccnv 30513 BaseSetcba 30515 −𝑣 cnsb 30518 normCVcnmcv 30519 IndMetcims 30520 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-sub 11407 df-neg 11408 df-grpo 30422 df-gid 30423 df-ginv 30424 df-gdiv 30425 df-ablo 30474 df-vc 30488 df-nv 30521 df-va 30524 df-ba 30525 df-sm 30526 df-0v 30527 df-vs 30528 df-nmcv 30529 df-ims 30530 |
| This theorem is referenced by: imsmetlem 30619 sspims 30668 |
| Copyright terms: Public domain | W3C validator |