MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imsdf Structured version   Visualization version   GIF version

Theorem imsdf 28478
Description: Mapping for the induced metric distance function of a normed complex vector space. (Contributed by NM, 29-Nov-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
imsdfn.1 𝑋 = (BaseSet‘𝑈)
imsdfn.8 𝐷 = (IndMet‘𝑈)
Assertion
Ref Expression
imsdf (𝑈 ∈ NrmCVec → 𝐷:(𝑋 × 𝑋)⟶ℝ)

Proof of Theorem imsdf
StepHypRef Expression
1 imsdfn.1 . . . 4 𝑋 = (BaseSet‘𝑈)
2 eqid 2824 . . . 4 (normCV𝑈) = (normCV𝑈)
31, 2nvf 28449 . . 3 (𝑈 ∈ NrmCVec → (normCV𝑈):𝑋⟶ℝ)
4 eqid 2824 . . . 4 ( −𝑣𝑈) = ( −𝑣𝑈)
51, 4nvmf 28434 . . 3 (𝑈 ∈ NrmCVec → ( −𝑣𝑈):(𝑋 × 𝑋)⟶𝑋)
6 fco 6521 . . 3 (((normCV𝑈):𝑋⟶ℝ ∧ ( −𝑣𝑈):(𝑋 × 𝑋)⟶𝑋) → ((normCV𝑈) ∘ ( −𝑣𝑈)):(𝑋 × 𝑋)⟶ℝ)
73, 5, 6syl2anc 587 . 2 (𝑈 ∈ NrmCVec → ((normCV𝑈) ∘ ( −𝑣𝑈)):(𝑋 × 𝑋)⟶ℝ)
8 imsdfn.8 . . . 4 𝐷 = (IndMet‘𝑈)
94, 2, 8imsval 28474 . . 3 (𝑈 ∈ NrmCVec → 𝐷 = ((normCV𝑈) ∘ ( −𝑣𝑈)))
109feq1d 6488 . 2 (𝑈 ∈ NrmCVec → (𝐷:(𝑋 × 𝑋)⟶ℝ ↔ ((normCV𝑈) ∘ ( −𝑣𝑈)):(𝑋 × 𝑋)⟶ℝ))
117, 10mpbird 260 1 (𝑈 ∈ NrmCVec → 𝐷:(𝑋 × 𝑋)⟶ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2115   × cxp 5540  ccom 5546  wf 6339  cfv 6343  cr 10534  NrmCVeccnv 28373  BaseSetcba 28375  𝑣 cnsb 28378  normCVcnmcv 28379  IndMetcims 28380
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-po 5461  df-so 5462  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-1st 7684  df-2nd 7685  df-er 8285  df-en 8506  df-dom 8507  df-sdom 8508  df-pnf 10675  df-mnf 10676  df-ltxr 10678  df-sub 10870  df-neg 10871  df-grpo 28282  df-gid 28283  df-ginv 28284  df-gdiv 28285  df-ablo 28334  df-vc 28348  df-nv 28381  df-va 28384  df-ba 28385  df-sm 28386  df-0v 28387  df-vs 28388  df-nmcv 28389  df-ims 28390
This theorem is referenced by:  imsmetlem  28479  sspims  28528
  Copyright terms: Public domain W3C validator