![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coex | Structured version Visualization version GIF version |
Description: The composition of two sets is a set. (Contributed by NM, 15-Dec-2003.) |
Ref | Expression |
---|---|
coex.1 | ⊢ 𝐴 ∈ V |
coex.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
coex | ⊢ (𝐴 ∘ 𝐵) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | coex.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | coexg 7969 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∘ 𝐵) ∈ V) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ (𝐴 ∘ 𝐵) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 ∘ ccom 5704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 |
This theorem is referenced by: domtr 9067 enfixsn 9147 wdomtr 9644 cfcoflem 10341 axcc3 10507 axdc4uzlem 14034 hashfacen 14503 cofu1st 17947 cofu2nd 17949 cofucl 17952 fucid 18041 sursubmefmnd 18931 injsubmefmnd 18932 smndex1mgm 18942 gsumzaddlem 19963 cnfldfun 21401 cnfldfunALT 21402 cnfldfunOLD 21414 cnfldfunALTOLD 21415 cnfldfunALTOLDOLD 21416 znle 21574 selvval 22162 evls1fval 22344 evls1val 22345 evl1fval 22353 evl1val 22354 xkococnlem 23688 xkococn 23689 efmndtmd 24130 pserulm 26483 imsval 30717 tocycf 33110 eulerpartgbij 34337 derangenlem 35139 subfacp1lem5 35152 poimirlem9 37589 poimirlem15 37595 poimirlem17 37597 poimirlem20 37600 mbfresfi 37626 tendopl2 40734 erngplus2 40761 erngplus2-rN 40769 dvaplusgv 40967 dvhvaddass 41054 dvhlveclem 41065 diblss 41127 diblsmopel 41128 dicvaddcl 41147 dicvscacl 41148 cdlemn7 41160 dihordlem7 41171 dihopelvalcpre 41205 xihopellsmN 41211 dihopellsm 41212 rabren3dioph 42771 fzisoeu 45215 stirlinglem14 46008 fundcmpsurinjpreimafv 47282 grimco 47764 gricushgr 47770 uspgrlim 47816 grlictr 47832 |
Copyright terms: Public domain | W3C validator |