MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coex Structured version   Visualization version   GIF version

Theorem coex 7869
Description: The composition of two sets is a set. (Contributed by NM, 15-Dec-2003.)
Hypotheses
Ref Expression
coex.1 𝐴 ∈ V
coex.2 𝐵 ∈ V
Assertion
Ref Expression
coex (𝐴𝐵) ∈ V

Proof of Theorem coex
StepHypRef Expression
1 coex.1 . 2 𝐴 ∈ V
2 coex.2 . 2 𝐵 ∈ V
3 coexg 7868 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵) ∈ V)
41, 2, 3mp2an 692 1 (𝐴𝐵) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2113  Vcvv 3437  ccom 5625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632
This theorem is referenced by:  domtr  8940  enfixsn  9010  wdomtr  9472  cfcoflem  10174  axcc3  10340  axdc4uzlem  13897  hashfacen  14368  cofu1st  17798  cofu2nd  17800  cofucl  17803  fucid  17889  sursubmefmnd  18812  injsubmefmnd  18813  smndex1mgm  18823  gsumzaddlem  19841  cnfldfun  21314  cnfldfunALT  21315  cnfldfunOLD  21327  cnfldfunALTOLD  21328  znle  21482  selvval  22069  evls1fval  22254  evls1val  22255  evl1fval  22263  evl1val  22264  xkococnlem  23594  xkococn  23595  efmndtmd  24036  pserulm  26378  imsval  30686  tocycf  33127  eulerpartgbij  34457  derangenlem  35287  subfacp1lem5  35300  poimirlem9  37742  poimirlem15  37748  poimirlem17  37750  poimirlem20  37753  mbfresfi  37779  tendopl2  40949  erngplus2  40976  erngplus2-rN  40984  dvaplusgv  41182  dvhvaddass  41269  dvhlveclem  41280  diblss  41342  diblsmopel  41343  dicvaddcl  41362  dicvscacl  41363  cdlemn7  41375  dihordlem7  41386  dihopelvalcpre  41420  xihopellsmN  41426  dihopellsm  41427  rabren3dioph  42972  fzisoeu  45464  stirlinglem14  46247  fundcmpsurinjpreimafv  47570  grimco  48051  gricushgr  48079  cycldlenngric  48090  uspgrlim  48154  grlictr  48177  fuco22natlem  49506
  Copyright terms: Public domain W3C validator