| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coex | Structured version Visualization version GIF version | ||
| Description: The composition of two sets is a set. (Contributed by NM, 15-Dec-2003.) |
| Ref | Expression |
|---|---|
| coex.1 | ⊢ 𝐴 ∈ V |
| coex.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| coex | ⊢ (𝐴 ∘ 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | coex.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | coexg 7908 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∘ 𝐵) ∈ V) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 ∘ 𝐵) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3450 ∘ ccom 5645 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 |
| This theorem is referenced by: domtr 8981 enfixsn 9055 wdomtr 9535 cfcoflem 10232 axcc3 10398 axdc4uzlem 13955 hashfacen 14426 cofu1st 17852 cofu2nd 17854 cofucl 17857 fucid 17943 sursubmefmnd 18830 injsubmefmnd 18831 smndex1mgm 18841 gsumzaddlem 19858 cnfldfun 21285 cnfldfunALT 21286 cnfldfunOLD 21298 cnfldfunALTOLD 21299 znle 21453 selvval 22029 evls1fval 22213 evls1val 22214 evl1fval 22222 evl1val 22223 xkococnlem 23553 xkococn 23554 efmndtmd 23995 pserulm 26338 imsval 30621 tocycf 33081 eulerpartgbij 34370 derangenlem 35165 subfacp1lem5 35178 poimirlem9 37630 poimirlem15 37636 poimirlem17 37638 poimirlem20 37641 mbfresfi 37667 tendopl2 40778 erngplus2 40805 erngplus2-rN 40813 dvaplusgv 41011 dvhvaddass 41098 dvhlveclem 41109 diblss 41171 diblsmopel 41172 dicvaddcl 41191 dicvscacl 41192 cdlemn7 41204 dihordlem7 41215 dihopelvalcpre 41249 xihopellsmN 41255 dihopellsm 41256 rabren3dioph 42810 fzisoeu 45305 stirlinglem14 46092 fundcmpsurinjpreimafv 47413 grimco 47893 gricushgr 47921 cycldlenngric 47932 uspgrlim 47995 grlictr 48011 fuco22natlem 49338 |
| Copyright terms: Public domain | W3C validator |