| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coex | Structured version Visualization version GIF version | ||
| Description: The composition of two sets is a set. (Contributed by NM, 15-Dec-2003.) |
| Ref | Expression |
|---|---|
| coex.1 | ⊢ 𝐴 ∈ V |
| coex.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| coex | ⊢ (𝐴 ∘ 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | coex.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | coexg 7885 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∘ 𝐵) ∈ V) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 ∘ 𝐵) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3444 ∘ ccom 5635 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 |
| This theorem is referenced by: domtr 8955 enfixsn 9027 wdomtr 9504 cfcoflem 10201 axcc3 10367 axdc4uzlem 13924 hashfacen 14395 cofu1st 17821 cofu2nd 17823 cofucl 17826 fucid 17912 sursubmefmnd 18799 injsubmefmnd 18800 smndex1mgm 18810 gsumzaddlem 19827 cnfldfun 21254 cnfldfunALT 21255 cnfldfunOLD 21267 cnfldfunALTOLD 21268 znle 21422 selvval 21998 evls1fval 22182 evls1val 22183 evl1fval 22191 evl1val 22192 xkococnlem 23522 xkococn 23523 efmndtmd 23964 pserulm 26307 imsval 30587 tocycf 33047 eulerpartgbij 34336 derangenlem 35131 subfacp1lem5 35144 poimirlem9 37596 poimirlem15 37602 poimirlem17 37604 poimirlem20 37607 mbfresfi 37633 tendopl2 40744 erngplus2 40771 erngplus2-rN 40779 dvaplusgv 40977 dvhvaddass 41064 dvhlveclem 41075 diblss 41137 diblsmopel 41138 dicvaddcl 41157 dicvscacl 41158 cdlemn7 41170 dihordlem7 41181 dihopelvalcpre 41215 xihopellsmN 41221 dihopellsm 41222 rabren3dioph 42776 fzisoeu 45271 stirlinglem14 46058 fundcmpsurinjpreimafv 47382 grimco 47862 gricushgr 47890 cycldlenngric 47901 uspgrlim 47964 grlictr 47980 fuco22natlem 49307 |
| Copyright terms: Public domain | W3C validator |