Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > coex | Structured version Visualization version GIF version |
Description: The composition of two sets is a set. (Contributed by NM, 15-Dec-2003.) |
Ref | Expression |
---|---|
coex.1 | ⊢ 𝐴 ∈ V |
coex.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
coex | ⊢ (𝐴 ∘ 𝐵) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | coex.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | coexg 7776 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∘ 𝐵) ∈ V) | |
4 | 1, 2, 3 | mp2an 689 | 1 ⊢ (𝐴 ∘ 𝐵) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3432 ∘ ccom 5593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 |
This theorem is referenced by: domtr 8793 enfixsn 8868 wdomtr 9334 cfcoflem 10028 axcc3 10194 axdc4uzlem 13703 hashfacen 14166 hashfacenOLD 14167 cofu1st 17598 cofu2nd 17600 cofucl 17603 fucid 17689 sursubmefmnd 18535 injsubmefmnd 18536 smndex1mgm 18546 gsumzaddlem 19522 cnfldfun 20609 cnfldfunALT 20610 cnfldfunALTOLD 20611 znle 20740 selvval 21328 evls1fval 21485 evls1val 21486 evl1fval 21494 evl1val 21495 xkococnlem 22810 xkococn 22811 efmndtmd 23252 pserulm 25581 imsval 29047 tocycf 31384 eulerpartgbij 32339 derangenlem 33133 subfacp1lem5 33146 poimirlem9 35786 poimirlem15 35792 poimirlem17 35794 poimirlem20 35797 mbfresfi 35823 tendopl2 38791 erngplus2 38818 erngplus2-rN 38826 dvaplusgv 39024 dvhvaddass 39111 dvhlveclem 39122 diblss 39184 diblsmopel 39185 dicvaddcl 39204 dicvscacl 39205 cdlemn7 39217 dihordlem7 39228 dihopelvalcpre 39262 xihopellsmN 39268 dihopellsm 39269 rabren3dioph 40637 fzisoeu 42839 stirlinglem14 43628 fundcmpsurinjpreimafv 44860 isomushgr 45278 isomgrtr 45291 |
Copyright terms: Public domain | W3C validator |