Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > coex | Structured version Visualization version GIF version |
Description: The composition of two sets is a set. (Contributed by NM, 15-Dec-2003.) |
Ref | Expression |
---|---|
coex.1 | ⊢ 𝐴 ∈ V |
coex.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
coex | ⊢ (𝐴 ∘ 𝐵) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | coex.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | coexg 7750 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∘ 𝐵) ∈ V) | |
4 | 1, 2, 3 | mp2an 688 | 1 ⊢ (𝐴 ∘ 𝐵) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3422 ∘ ccom 5584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 |
This theorem is referenced by: domtr 8748 enfixsn 8821 wdomtr 9264 cfcoflem 9959 axcc3 10125 axdc4uzlem 13631 hashfacen 14094 hashfacenOLD 14095 cofu1st 17514 cofu2nd 17516 cofucl 17519 fucid 17605 sursubmefmnd 18450 injsubmefmnd 18451 smndex1mgm 18461 gsumzaddlem 19437 cnfldfun 20522 cnfldfunALT 20523 znle 20652 selvval 21238 evls1fval 21395 evls1val 21396 evl1fval 21404 evl1val 21405 xkococnlem 22718 xkococn 22719 efmndtmd 23160 pserulm 25486 imsval 28948 tocycf 31286 eulerpartgbij 32239 derangenlem 33033 subfacp1lem5 33046 poimirlem9 35713 poimirlem15 35719 poimirlem17 35721 poimirlem20 35724 mbfresfi 35750 tendopl2 38718 erngplus2 38745 erngplus2-rN 38753 dvaplusgv 38951 dvhvaddass 39038 dvhlveclem 39049 diblss 39111 diblsmopel 39112 dicvaddcl 39131 dicvscacl 39132 cdlemn7 39144 dihordlem7 39155 dihopelvalcpre 39189 xihopellsmN 39195 dihopellsm 39196 rabren3dioph 40553 fzisoeu 42729 stirlinglem14 43518 fundcmpsurinjpreimafv 44748 isomushgr 45166 isomgrtr 45179 |
Copyright terms: Public domain | W3C validator |