| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coex | Structured version Visualization version GIF version | ||
| Description: The composition of two sets is a set. (Contributed by NM, 15-Dec-2003.) |
| Ref | Expression |
|---|---|
| coex.1 | ⊢ 𝐴 ∈ V |
| coex.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| coex | ⊢ (𝐴 ∘ 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | coex.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | coexg 7854 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∘ 𝐵) ∈ V) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 ∘ 𝐵) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 ∘ ccom 5615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 |
| This theorem is referenced by: domtr 8924 enfixsn 8994 wdomtr 9456 cfcoflem 10158 axcc3 10324 axdc4uzlem 13885 hashfacen 14356 cofu1st 17785 cofu2nd 17787 cofucl 17790 fucid 17876 sursubmefmnd 18799 injsubmefmnd 18800 smndex1mgm 18810 gsumzaddlem 19828 cnfldfun 21300 cnfldfunALT 21301 cnfldfunOLD 21313 cnfldfunALTOLD 21314 znle 21468 selvval 22045 evls1fval 22229 evls1val 22230 evl1fval 22238 evl1val 22239 xkococnlem 23569 xkococn 23570 efmndtmd 24011 pserulm 26353 imsval 30657 tocycf 33078 eulerpartgbij 34377 derangenlem 35207 subfacp1lem5 35220 poimirlem9 37669 poimirlem15 37675 poimirlem17 37677 poimirlem20 37680 mbfresfi 37706 tendopl2 40816 erngplus2 40843 erngplus2-rN 40851 dvaplusgv 41049 dvhvaddass 41136 dvhlveclem 41147 diblss 41209 diblsmopel 41210 dicvaddcl 41229 dicvscacl 41230 cdlemn7 41242 dihordlem7 41253 dihopelvalcpre 41287 xihopellsmN 41293 dihopellsm 41294 rabren3dioph 42848 fzisoeu 45341 stirlinglem14 46125 fundcmpsurinjpreimafv 47439 grimco 47920 gricushgr 47948 cycldlenngric 47959 uspgrlim 48023 grlictr 48046 fuco22natlem 49377 |
| Copyright terms: Public domain | W3C validator |