| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coex | Structured version Visualization version GIF version | ||
| Description: The composition of two sets is a set. (Contributed by NM, 15-Dec-2003.) |
| Ref | Expression |
|---|---|
| coex.1 | ⊢ 𝐴 ∈ V |
| coex.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| coex | ⊢ (𝐴 ∘ 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | coex.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | coexg 7923 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∘ 𝐵) ∈ V) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 ∘ 𝐵) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 Vcvv 3459 ∘ ccom 5658 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 |
| This theorem is referenced by: domtr 9019 enfixsn 9093 wdomtr 9587 cfcoflem 10284 axcc3 10450 axdc4uzlem 13999 hashfacen 14470 cofu1st 17894 cofu2nd 17896 cofucl 17899 fucid 17985 sursubmefmnd 18872 injsubmefmnd 18873 smndex1mgm 18883 gsumzaddlem 19900 cnfldfun 21327 cnfldfunALT 21328 cnfldfunOLD 21340 cnfldfunALTOLD 21341 znle 21495 selvval 22071 evls1fval 22255 evls1val 22256 evl1fval 22264 evl1val 22265 xkococnlem 23595 xkococn 23596 efmndtmd 24037 pserulm 26381 imsval 30612 tocycf 33074 eulerpartgbij 34350 derangenlem 35139 subfacp1lem5 35152 poimirlem9 37599 poimirlem15 37605 poimirlem17 37607 poimirlem20 37610 mbfresfi 37636 tendopl2 40742 erngplus2 40769 erngplus2-rN 40777 dvaplusgv 40975 dvhvaddass 41062 dvhlveclem 41073 diblss 41135 diblsmopel 41136 dicvaddcl 41155 dicvscacl 41156 cdlemn7 41168 dihordlem7 41179 dihopelvalcpre 41213 xihopellsmN 41219 dihopellsm 41220 rabren3dioph 42785 fzisoeu 45277 stirlinglem14 46064 fundcmpsurinjpreimafv 47370 grimco 47850 gricushgr 47878 cycldlenngric 47889 uspgrlim 47952 grlictr 47968 fuco22natlem 49204 |
| Copyright terms: Public domain | W3C validator |