MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coex Structured version   Visualization version   GIF version

Theorem coex 7886
Description: The composition of two sets is a set. (Contributed by NM, 15-Dec-2003.)
Hypotheses
Ref Expression
coex.1 𝐴 ∈ V
coex.2 𝐵 ∈ V
Assertion
Ref Expression
coex (𝐴𝐵) ∈ V

Proof of Theorem coex
StepHypRef Expression
1 coex.1 . 2 𝐴 ∈ V
2 coex.2 . 2 𝐵 ∈ V
3 coexg 7885 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵) ∈ V)
41, 2, 3mp2an 692 1 (𝐴𝐵) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3444  ccom 5635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642
This theorem is referenced by:  domtr  8955  enfixsn  9027  wdomtr  9504  cfcoflem  10201  axcc3  10367  axdc4uzlem  13924  hashfacen  14395  cofu1st  17821  cofu2nd  17823  cofucl  17826  fucid  17912  sursubmefmnd  18799  injsubmefmnd  18800  smndex1mgm  18810  gsumzaddlem  19827  cnfldfun  21254  cnfldfunALT  21255  cnfldfunOLD  21267  cnfldfunALTOLD  21268  znle  21422  selvval  21998  evls1fval  22182  evls1val  22183  evl1fval  22191  evl1val  22192  xkococnlem  23522  xkococn  23523  efmndtmd  23964  pserulm  26307  imsval  30587  tocycf  33047  eulerpartgbij  34336  derangenlem  35131  subfacp1lem5  35144  poimirlem9  37596  poimirlem15  37602  poimirlem17  37604  poimirlem20  37607  mbfresfi  37633  tendopl2  40744  erngplus2  40771  erngplus2-rN  40779  dvaplusgv  40977  dvhvaddass  41064  dvhlveclem  41075  diblss  41137  diblsmopel  41138  dicvaddcl  41157  dicvscacl  41158  cdlemn7  41170  dihordlem7  41181  dihopelvalcpre  41215  xihopellsmN  41221  dihopellsm  41222  rabren3dioph  42776  fzisoeu  45271  stirlinglem14  46058  fundcmpsurinjpreimafv  47382  grimco  47862  gricushgr  47890  cycldlenngric  47901  uspgrlim  47964  grlictr  47980  fuco22natlem  49307
  Copyright terms: Public domain W3C validator