| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coex | Structured version Visualization version GIF version | ||
| Description: The composition of two sets is a set. (Contributed by NM, 15-Dec-2003.) |
| Ref | Expression |
|---|---|
| coex.1 | ⊢ 𝐴 ∈ V |
| coex.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| coex | ⊢ (𝐴 ∘ 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | coex.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | coexg 7868 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∘ 𝐵) ∈ V) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 ∘ 𝐵) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2113 Vcvv 3437 ∘ ccom 5625 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 |
| This theorem is referenced by: domtr 8940 enfixsn 9010 wdomtr 9472 cfcoflem 10174 axcc3 10340 axdc4uzlem 13897 hashfacen 14368 cofu1st 17798 cofu2nd 17800 cofucl 17803 fucid 17889 sursubmefmnd 18812 injsubmefmnd 18813 smndex1mgm 18823 gsumzaddlem 19841 cnfldfun 21314 cnfldfunALT 21315 cnfldfunOLD 21327 cnfldfunALTOLD 21328 znle 21482 selvval 22069 evls1fval 22254 evls1val 22255 evl1fval 22263 evl1val 22264 xkococnlem 23594 xkococn 23595 efmndtmd 24036 pserulm 26378 imsval 30686 tocycf 33127 eulerpartgbij 34457 derangenlem 35287 subfacp1lem5 35300 poimirlem9 37742 poimirlem15 37748 poimirlem17 37750 poimirlem20 37753 mbfresfi 37779 tendopl2 40949 erngplus2 40976 erngplus2-rN 40984 dvaplusgv 41182 dvhvaddass 41269 dvhlveclem 41280 diblss 41342 diblsmopel 41343 dicvaddcl 41362 dicvscacl 41363 cdlemn7 41375 dihordlem7 41386 dihopelvalcpre 41420 xihopellsmN 41426 dihopellsm 41427 rabren3dioph 42972 fzisoeu 45464 stirlinglem14 46247 fundcmpsurinjpreimafv 47570 grimco 48051 gricushgr 48079 cycldlenngric 48090 uspgrlim 48154 grlictr 48177 fuco22natlem 49506 |
| Copyright terms: Public domain | W3C validator |