| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coex | Structured version Visualization version GIF version | ||
| Description: The composition of two sets is a set. (Contributed by NM, 15-Dec-2003.) |
| Ref | Expression |
|---|---|
| coex.1 | ⊢ 𝐴 ∈ V |
| coex.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| coex | ⊢ (𝐴 ∘ 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | coex.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | coexg 7869 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∘ 𝐵) ∈ V) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 ∘ 𝐵) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3438 ∘ ccom 5627 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 |
| This theorem is referenced by: domtr 8939 enfixsn 9010 wdomtr 9486 cfcoflem 10185 axcc3 10351 axdc4uzlem 13909 hashfacen 14380 cofu1st 17809 cofu2nd 17811 cofucl 17814 fucid 17900 sursubmefmnd 18789 injsubmefmnd 18790 smndex1mgm 18800 gsumzaddlem 19819 cnfldfun 21294 cnfldfunALT 21295 cnfldfunOLD 21307 cnfldfunALTOLD 21308 znle 21462 selvval 22039 evls1fval 22223 evls1val 22224 evl1fval 22232 evl1val 22233 xkococnlem 23563 xkococn 23564 efmndtmd 24005 pserulm 26348 imsval 30648 tocycf 33078 eulerpartgbij 34359 derangenlem 35163 subfacp1lem5 35176 poimirlem9 37628 poimirlem15 37634 poimirlem17 37636 poimirlem20 37639 mbfresfi 37665 tendopl2 40776 erngplus2 40803 erngplus2-rN 40811 dvaplusgv 41009 dvhvaddass 41096 dvhlveclem 41107 diblss 41169 diblsmopel 41170 dicvaddcl 41189 dicvscacl 41190 cdlemn7 41202 dihordlem7 41213 dihopelvalcpre 41247 xihopellsmN 41253 dihopellsm 41254 rabren3dioph 42808 fzisoeu 45302 stirlinglem14 46088 fundcmpsurinjpreimafv 47412 grimco 47893 gricushgr 47921 cycldlenngric 47932 uspgrlim 47996 grlictr 48019 fuco22natlem 49350 |
| Copyright terms: Public domain | W3C validator |