| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > coex | Structured version Visualization version GIF version | ||
| Description: The composition of two sets is a set. (Contributed by NM, 15-Dec-2003.) |
| Ref | Expression |
|---|---|
| coex.1 | ⊢ 𝐴 ∈ V |
| coex.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| coex | ⊢ (𝐴 ∘ 𝐵) ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coex.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | coex.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | coexg 7905 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∘ 𝐵) ∈ V) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴 ∘ 𝐵) ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3447 ∘ ccom 5642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 |
| This theorem is referenced by: domtr 8978 enfixsn 9050 wdomtr 9528 cfcoflem 10225 axcc3 10391 axdc4uzlem 13948 hashfacen 14419 cofu1st 17845 cofu2nd 17847 cofucl 17850 fucid 17936 sursubmefmnd 18823 injsubmefmnd 18824 smndex1mgm 18834 gsumzaddlem 19851 cnfldfun 21278 cnfldfunALT 21279 cnfldfunOLD 21291 cnfldfunALTOLD 21292 znle 21446 selvval 22022 evls1fval 22206 evls1val 22207 evl1fval 22215 evl1val 22216 xkococnlem 23546 xkococn 23547 efmndtmd 23988 pserulm 26331 imsval 30614 tocycf 33074 eulerpartgbij 34363 derangenlem 35158 subfacp1lem5 35171 poimirlem9 37623 poimirlem15 37629 poimirlem17 37631 poimirlem20 37634 mbfresfi 37660 tendopl2 40771 erngplus2 40798 erngplus2-rN 40806 dvaplusgv 41004 dvhvaddass 41091 dvhlveclem 41102 diblss 41164 diblsmopel 41165 dicvaddcl 41184 dicvscacl 41185 cdlemn7 41197 dihordlem7 41208 dihopelvalcpre 41242 xihopellsmN 41248 dihopellsm 41249 rabren3dioph 42803 fzisoeu 45298 stirlinglem14 46085 fundcmpsurinjpreimafv 47409 grimco 47889 gricushgr 47917 cycldlenngric 47928 uspgrlim 47991 grlictr 48007 fuco22natlem 49334 |
| Copyright terms: Public domain | W3C validator |