MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coex Structured version   Visualization version   GIF version

Theorem coex 7906
Description: The composition of two sets is a set. (Contributed by NM, 15-Dec-2003.)
Hypotheses
Ref Expression
coex.1 𝐴 ∈ V
coex.2 𝐵 ∈ V
Assertion
Ref Expression
coex (𝐴𝐵) ∈ V

Proof of Theorem coex
StepHypRef Expression
1 coex.1 . 2 𝐴 ∈ V
2 coex.2 . 2 𝐵 ∈ V
3 coexg 7905 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵) ∈ V)
41, 2, 3mp2an 692 1 (𝐴𝐵) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3447  ccom 5642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649
This theorem is referenced by:  domtr  8978  enfixsn  9050  wdomtr  9528  cfcoflem  10225  axcc3  10391  axdc4uzlem  13948  hashfacen  14419  cofu1st  17845  cofu2nd  17847  cofucl  17850  fucid  17936  sursubmefmnd  18823  injsubmefmnd  18824  smndex1mgm  18834  gsumzaddlem  19851  cnfldfun  21278  cnfldfunALT  21279  cnfldfunOLD  21291  cnfldfunALTOLD  21292  znle  21446  selvval  22022  evls1fval  22206  evls1val  22207  evl1fval  22215  evl1val  22216  xkococnlem  23546  xkococn  23547  efmndtmd  23988  pserulm  26331  imsval  30614  tocycf  33074  eulerpartgbij  34363  derangenlem  35158  subfacp1lem5  35171  poimirlem9  37623  poimirlem15  37629  poimirlem17  37631  poimirlem20  37634  mbfresfi  37660  tendopl2  40771  erngplus2  40798  erngplus2-rN  40806  dvaplusgv  41004  dvhvaddass  41091  dvhlveclem  41102  diblss  41164  diblsmopel  41165  dicvaddcl  41184  dicvscacl  41185  cdlemn7  41197  dihordlem7  41208  dihopelvalcpre  41242  xihopellsmN  41248  dihopellsm  41249  rabren3dioph  42803  fzisoeu  45298  stirlinglem14  46085  fundcmpsurinjpreimafv  47409  grimco  47889  gricushgr  47917  cycldlenngric  47928  uspgrlim  47991  grlictr  48007  fuco22natlem  49334
  Copyright terms: Public domain W3C validator