MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  coex Structured version   Visualization version   GIF version

Theorem coex 7385
Description: The composition of two sets is a set. (Contributed by NM, 15-Dec-2003.)
Hypotheses
Ref Expression
coex.1 𝐴 ∈ V
coex.2 𝐵 ∈ V
Assertion
Ref Expression
coex (𝐴𝐵) ∈ V

Proof of Theorem coex
StepHypRef Expression
1 coex.1 . 2 𝐴 ∈ V
2 coex.2 . 2 𝐵 ∈ V
3 coexg 7384 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝐵) ∈ V)
41, 2, 3mp2an 683 1 (𝐴𝐵) ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2164  Vcvv 3414  ccom 5350
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-br 4876  df-opab 4938  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357
This theorem is referenced by:  domtr  8281  enfixsn  8344  wdomtr  8756  cfcoflem  9416  axcc3  9582  axdc4uzlem  13084  hashfacen  13534  cofu1st  16902  cofu2nd  16904  cofucl  16907  fucid  16990  symgplusg  18166  gsumzaddlem  18681  evls1fval  20051  evls1val  20052  evl1fval  20059  evl1val  20060  cnfldfun  20125  cnfldfunALT  20126  znle  20251  xkococnlem  21840  xkococn  21841  symgtgp  22282  pserulm  24582  imsval  28091  eulerpartgbij  30975  derangenlem  31695  subfacp1lem5  31708  poimirlem9  33957  poimirlem15  33963  poimirlem17  33965  poimirlem20  33968  mbfresfi  33994  tendopl2  36847  erngplus2  36874  erngplus2-rN  36882  dvaplusgv  37080  dvhvaddass  37167  dvhlveclem  37178  diblss  37240  diblsmopel  37241  dicvaddcl  37260  dicvscacl  37261  cdlemn7  37273  dihordlem7  37284  dihopelvalcpre  37318  xihopellsmN  37324  dihopellsm  37325  rabren3dioph  38218  fzisoeu  40306  stirlinglem14  41092  isomushgr  42558  isomgrtr  42571
  Copyright terms: Public domain W3C validator