![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > coex | Structured version Visualization version GIF version |
Description: The composition of two sets is a set. (Contributed by NM, 15-Dec-2003.) |
Ref | Expression |
---|---|
coex.1 | ⊢ 𝐴 ∈ V |
coex.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
coex | ⊢ (𝐴 ∘ 𝐵) ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coex.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | coex.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | coexg 7384 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 ∘ 𝐵) ∈ V) | |
4 | 1, 2, 3 | mp2an 683 | 1 ⊢ (𝐴 ∘ 𝐵) ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2164 Vcvv 3414 ∘ ccom 5350 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-opab 4938 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 |
This theorem is referenced by: domtr 8281 enfixsn 8344 wdomtr 8756 cfcoflem 9416 axcc3 9582 axdc4uzlem 13084 hashfacen 13534 cofu1st 16902 cofu2nd 16904 cofucl 16907 fucid 16990 symgplusg 18166 gsumzaddlem 18681 evls1fval 20051 evls1val 20052 evl1fval 20059 evl1val 20060 cnfldfun 20125 cnfldfunALT 20126 znle 20251 xkococnlem 21840 xkococn 21841 symgtgp 22282 pserulm 24582 imsval 28091 eulerpartgbij 30975 derangenlem 31695 subfacp1lem5 31708 poimirlem9 33957 poimirlem15 33963 poimirlem17 33965 poimirlem20 33968 mbfresfi 33994 tendopl2 36847 erngplus2 36874 erngplus2-rN 36882 dvaplusgv 37080 dvhvaddass 37167 dvhlveclem 37178 diblss 37240 diblsmopel 37241 dicvaddcl 37260 dicvscacl 37261 cdlemn7 37273 dihordlem7 37284 dihopelvalcpre 37318 xihopellsmN 37324 dihopellsm 37325 rabren3dioph 38218 fzisoeu 40306 stirlinglem14 41092 isomushgr 42558 isomgrtr 42571 |
Copyright terms: Public domain | W3C validator |