Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hhssims | Structured version Visualization version GIF version |
Description: Induced metric of a subspace. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hhsssh2.1 | ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 |
hhssims.2 | ⊢ 𝐻 ∈ Sℋ |
hhssims.3 | ⊢ 𝐷 = ((normℎ ∘ −ℎ ) ↾ (𝐻 × 𝐻)) |
Ref | Expression |
---|---|
hhssims | ⊢ 𝐷 = (IndMet‘𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hhssims.3 | . 2 ⊢ 𝐷 = ((normℎ ∘ −ℎ ) ↾ (𝐻 × 𝐻)) | |
2 | hhsssh2.1 | . . . . 5 ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 | |
3 | hhssims.2 | . . . . 5 ⊢ 𝐻 ∈ Sℋ | |
4 | 2, 3 | hhssnv 29605 | . . . 4 ⊢ 𝑊 ∈ NrmCVec |
5 | 2, 3 | hhssvs 29613 | . . . . 5 ⊢ ( −ℎ ↾ (𝐻 × 𝐻)) = ( −𝑣 ‘𝑊) |
6 | 2 | hhssnm 29600 | . . . . 5 ⊢ (normℎ ↾ 𝐻) = (normCV‘𝑊) |
7 | eqid 2739 | . . . . 5 ⊢ (IndMet‘𝑊) = (IndMet‘𝑊) | |
8 | 5, 6, 7 | imsval 29026 | . . . 4 ⊢ (𝑊 ∈ NrmCVec → (IndMet‘𝑊) = ((normℎ ↾ 𝐻) ∘ ( −ℎ ↾ (𝐻 × 𝐻)))) |
9 | 4, 8 | ax-mp 5 | . . 3 ⊢ (IndMet‘𝑊) = ((normℎ ↾ 𝐻) ∘ ( −ℎ ↾ (𝐻 × 𝐻))) |
10 | resco 6151 | . . . 4 ⊢ ((normℎ ∘ −ℎ ) ↾ (𝐻 × 𝐻)) = (normℎ ∘ ( −ℎ ↾ (𝐻 × 𝐻))) | |
11 | 2, 3 | hhssvsf 29614 | . . . . . 6 ⊢ ( −ℎ ↾ (𝐻 × 𝐻)):(𝐻 × 𝐻)⟶𝐻 |
12 | frn 6603 | . . . . . 6 ⊢ (( −ℎ ↾ (𝐻 × 𝐻)):(𝐻 × 𝐻)⟶𝐻 → ran ( −ℎ ↾ (𝐻 × 𝐻)) ⊆ 𝐻) | |
13 | 11, 12 | ax-mp 5 | . . . . 5 ⊢ ran ( −ℎ ↾ (𝐻 × 𝐻)) ⊆ 𝐻 |
14 | cores 6150 | . . . . 5 ⊢ (ran ( −ℎ ↾ (𝐻 × 𝐻)) ⊆ 𝐻 → ((normℎ ↾ 𝐻) ∘ ( −ℎ ↾ (𝐻 × 𝐻))) = (normℎ ∘ ( −ℎ ↾ (𝐻 × 𝐻)))) | |
15 | 13, 14 | ax-mp 5 | . . . 4 ⊢ ((normℎ ↾ 𝐻) ∘ ( −ℎ ↾ (𝐻 × 𝐻))) = (normℎ ∘ ( −ℎ ↾ (𝐻 × 𝐻))) |
16 | 10, 15 | eqtr4i 2770 | . . 3 ⊢ ((normℎ ∘ −ℎ ) ↾ (𝐻 × 𝐻)) = ((normℎ ↾ 𝐻) ∘ ( −ℎ ↾ (𝐻 × 𝐻))) |
17 | 9, 16 | eqtr4i 2770 | . 2 ⊢ (IndMet‘𝑊) = ((normℎ ∘ −ℎ ) ↾ (𝐻 × 𝐻)) |
18 | 1, 17 | eqtr4i 2770 | 1 ⊢ 𝐷 = (IndMet‘𝑊) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2109 ⊆ wss 3891 〈cop 4572 × cxp 5586 ran crn 5589 ↾ cres 5590 ∘ ccom 5592 ⟶wf 6426 ‘cfv 6430 ℂcc 10853 NrmCVeccnv 28925 IndMetcims 28932 +ℎ cva 29261 ·ℎ csm 29262 normℎcno 29264 −ℎ cmv 29266 Sℋ csh 29269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 ax-addf 10934 ax-mulf 10935 ax-hilex 29340 ax-hfvadd 29341 ax-hvcom 29342 ax-hvass 29343 ax-hv0cl 29344 ax-hvaddid 29345 ax-hfvmul 29346 ax-hvmulid 29347 ax-hvmulass 29348 ax-hvdistr1 29349 ax-hvdistr2 29350 ax-hvmul0 29351 ax-hfi 29420 ax-his1 29423 ax-his2 29424 ax-his3 29425 ax-his4 29426 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-er 8472 df-map 8591 df-pm 8592 df-en 8708 df-dom 8709 df-sdom 8710 df-sup 9162 df-inf 9163 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-n0 12217 df-z 12303 df-uz 12565 df-q 12671 df-rp 12713 df-xneg 12830 df-xadd 12831 df-xmul 12832 df-icc 13068 df-seq 13703 df-exp 13764 df-cj 14791 df-re 14792 df-im 14793 df-sqrt 14927 df-abs 14928 df-topgen 17135 df-psmet 20570 df-xmet 20571 df-met 20572 df-bl 20573 df-mopn 20574 df-top 22024 df-topon 22041 df-bases 22077 df-lm 22361 df-haus 22447 df-grpo 28834 df-gid 28835 df-ginv 28836 df-gdiv 28837 df-ablo 28886 df-vc 28900 df-nv 28933 df-va 28936 df-ba 28937 df-sm 28938 df-0v 28939 df-vs 28940 df-nmcv 28941 df-ims 28942 df-ssp 29063 df-hnorm 29309 df-hba 29310 df-hvsub 29312 df-hlim 29313 df-sh 29548 df-ch 29562 df-ch0 29594 |
This theorem is referenced by: hhssims2 29616 |
Copyright terms: Public domain | W3C validator |