Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > hhssims | Structured version Visualization version GIF version |
Description: Induced metric of a subspace. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hhsssh2.1 | ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 |
hhssims.2 | ⊢ 𝐻 ∈ Sℋ |
hhssims.3 | ⊢ 𝐷 = ((normℎ ∘ −ℎ ) ↾ (𝐻 × 𝐻)) |
Ref | Expression |
---|---|
hhssims | ⊢ 𝐷 = (IndMet‘𝑊) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hhssims.3 | . 2 ⊢ 𝐷 = ((normℎ ∘ −ℎ ) ↾ (𝐻 × 𝐻)) | |
2 | hhsssh2.1 | . . . . 5 ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 | |
3 | hhssims.2 | . . . . 5 ⊢ 𝐻 ∈ Sℋ | |
4 | 2, 3 | hhssnv 29762 | . . . 4 ⊢ 𝑊 ∈ NrmCVec |
5 | 2, 3 | hhssvs 29770 | . . . . 5 ⊢ ( −ℎ ↾ (𝐻 × 𝐻)) = ( −𝑣 ‘𝑊) |
6 | 2 | hhssnm 29757 | . . . . 5 ⊢ (normℎ ↾ 𝐻) = (normCV‘𝑊) |
7 | eqid 2737 | . . . . 5 ⊢ (IndMet‘𝑊) = (IndMet‘𝑊) | |
8 | 5, 6, 7 | imsval 29183 | . . . 4 ⊢ (𝑊 ∈ NrmCVec → (IndMet‘𝑊) = ((normℎ ↾ 𝐻) ∘ ( −ℎ ↾ (𝐻 × 𝐻)))) |
9 | 4, 8 | ax-mp 5 | . . 3 ⊢ (IndMet‘𝑊) = ((normℎ ↾ 𝐻) ∘ ( −ℎ ↾ (𝐻 × 𝐻))) |
10 | resco 6176 | . . . 4 ⊢ ((normℎ ∘ −ℎ ) ↾ (𝐻 × 𝐻)) = (normℎ ∘ ( −ℎ ↾ (𝐻 × 𝐻))) | |
11 | 2, 3 | hhssvsf 29771 | . . . . . 6 ⊢ ( −ℎ ↾ (𝐻 × 𝐻)):(𝐻 × 𝐻)⟶𝐻 |
12 | frn 6645 | . . . . . 6 ⊢ (( −ℎ ↾ (𝐻 × 𝐻)):(𝐻 × 𝐻)⟶𝐻 → ran ( −ℎ ↾ (𝐻 × 𝐻)) ⊆ 𝐻) | |
13 | 11, 12 | ax-mp 5 | . . . . 5 ⊢ ran ( −ℎ ↾ (𝐻 × 𝐻)) ⊆ 𝐻 |
14 | cores 6175 | . . . . 5 ⊢ (ran ( −ℎ ↾ (𝐻 × 𝐻)) ⊆ 𝐻 → ((normℎ ↾ 𝐻) ∘ ( −ℎ ↾ (𝐻 × 𝐻))) = (normℎ ∘ ( −ℎ ↾ (𝐻 × 𝐻)))) | |
15 | 13, 14 | ax-mp 5 | . . . 4 ⊢ ((normℎ ↾ 𝐻) ∘ ( −ℎ ↾ (𝐻 × 𝐻))) = (normℎ ∘ ( −ℎ ↾ (𝐻 × 𝐻))) |
16 | 10, 15 | eqtr4i 2768 | . . 3 ⊢ ((normℎ ∘ −ℎ ) ↾ (𝐻 × 𝐻)) = ((normℎ ↾ 𝐻) ∘ ( −ℎ ↾ (𝐻 × 𝐻))) |
17 | 9, 16 | eqtr4i 2768 | . 2 ⊢ (IndMet‘𝑊) = ((normℎ ∘ −ℎ ) ↾ (𝐻 × 𝐻)) |
18 | 1, 17 | eqtr4i 2768 | 1 ⊢ 𝐷 = (IndMet‘𝑊) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 ∈ wcel 2105 ⊆ wss 3897 〈cop 4577 × cxp 5606 ran crn 5609 ↾ cres 5610 ∘ ccom 5612 ⟶wf 6462 ‘cfv 6466 ℂcc 10949 NrmCVeccnv 29082 IndMetcims 29089 +ℎ cva 29418 ·ℎ csm 29419 normℎcno 29421 −ℎ cmv 29423 Sℋ csh 29426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pow 5303 ax-pr 5367 ax-un 7630 ax-cnex 11007 ax-resscn 11008 ax-1cn 11009 ax-icn 11010 ax-addcl 11011 ax-addrcl 11012 ax-mulcl 11013 ax-mulrcl 11014 ax-mulcom 11015 ax-addass 11016 ax-mulass 11017 ax-distr 11018 ax-i2m1 11019 ax-1ne0 11020 ax-1rid 11021 ax-rnegex 11022 ax-rrecex 11023 ax-cnre 11024 ax-pre-lttri 11025 ax-pre-lttrn 11026 ax-pre-ltadd 11027 ax-pre-mulgt0 11028 ax-pre-sup 11029 ax-addf 11030 ax-mulf 11031 ax-hilex 29497 ax-hfvadd 29498 ax-hvcom 29499 ax-hvass 29500 ax-hv0cl 29501 ax-hvaddid 29502 ax-hfvmul 29503 ax-hvmulid 29504 ax-hvmulass 29505 ax-hvdistr1 29506 ax-hvdistr2 29507 ax-hvmul0 29508 ax-hfi 29577 ax-his1 29580 ax-his2 29581 ax-his3 29582 ax-his4 29583 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4268 df-if 4472 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-tr 5205 df-id 5507 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5563 df-we 5565 df-xp 5614 df-rel 5615 df-cnv 5616 df-co 5617 df-dm 5618 df-rn 5619 df-res 5620 df-ima 5621 df-pred 6225 df-ord 6292 df-on 6293 df-lim 6294 df-suc 6295 df-iota 6418 df-fun 6468 df-fn 6469 df-f 6470 df-f1 6471 df-fo 6472 df-f1o 6473 df-fv 6474 df-riota 7274 df-ov 7320 df-oprab 7321 df-mpo 7322 df-om 7760 df-1st 7878 df-2nd 7879 df-frecs 8146 df-wrecs 8177 df-recs 8251 df-rdg 8290 df-er 8548 df-map 8667 df-pm 8668 df-en 8784 df-dom 8785 df-sdom 8786 df-sup 9278 df-inf 9279 df-pnf 11091 df-mnf 11092 df-xr 11093 df-ltxr 11094 df-le 11095 df-sub 11287 df-neg 11288 df-div 11713 df-nn 12054 df-2 12116 df-3 12117 df-4 12118 df-n0 12314 df-z 12400 df-uz 12663 df-q 12769 df-rp 12811 df-xneg 12928 df-xadd 12929 df-xmul 12930 df-icc 13166 df-seq 13802 df-exp 13863 df-cj 14889 df-re 14890 df-im 14891 df-sqrt 15025 df-abs 15026 df-topgen 17231 df-psmet 20672 df-xmet 20673 df-met 20674 df-bl 20675 df-mopn 20676 df-top 22126 df-topon 22143 df-bases 22179 df-lm 22463 df-haus 22549 df-grpo 28991 df-gid 28992 df-ginv 28993 df-gdiv 28994 df-ablo 29043 df-vc 29057 df-nv 29090 df-va 29093 df-ba 29094 df-sm 29095 df-0v 29096 df-vs 29097 df-nmcv 29098 df-ims 29099 df-ssp 29220 df-hnorm 29466 df-hba 29467 df-hvsub 29469 df-hlim 29470 df-sh 29705 df-ch 29719 df-ch0 29751 |
This theorem is referenced by: hhssims2 29773 |
Copyright terms: Public domain | W3C validator |