HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhssims Structured version   Visualization version   GIF version

Theorem hhssims 29063
Description: Induced metric of a subspace. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhsssh2.1 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
hhssims.2 𝐻S
hhssims.3 𝐷 = ((norm ∘ − ) ↾ (𝐻 × 𝐻))
Assertion
Ref Expression
hhssims 𝐷 = (IndMet‘𝑊)

Proof of Theorem hhssims
StepHypRef Expression
1 hhssims.3 . 2 𝐷 = ((norm ∘ − ) ↾ (𝐻 × 𝐻))
2 hhsssh2.1 . . . . 5 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
3 hhssims.2 . . . . 5 𝐻S
42, 3hhssnv 29053 . . . 4 𝑊 ∈ NrmCVec
52, 3hhssvs 29061 . . . . 5 ( − ↾ (𝐻 × 𝐻)) = ( −𝑣𝑊)
62hhssnm 29048 . . . . 5 (norm𝐻) = (normCV𝑊)
7 eqid 2824 . . . . 5 (IndMet‘𝑊) = (IndMet‘𝑊)
85, 6, 7imsval 28474 . . . 4 (𝑊 ∈ NrmCVec → (IndMet‘𝑊) = ((norm𝐻) ∘ ( − ↾ (𝐻 × 𝐻))))
94, 8ax-mp 5 . . 3 (IndMet‘𝑊) = ((norm𝐻) ∘ ( − ↾ (𝐻 × 𝐻)))
10 resco 6091 . . . 4 ((norm ∘ − ) ↾ (𝐻 × 𝐻)) = (norm ∘ ( − ↾ (𝐻 × 𝐻)))
112, 3hhssvsf 29062 . . . . . 6 ( − ↾ (𝐻 × 𝐻)):(𝐻 × 𝐻)⟶𝐻
12 frn 6510 . . . . . 6 (( − ↾ (𝐻 × 𝐻)):(𝐻 × 𝐻)⟶𝐻 → ran ( − ↾ (𝐻 × 𝐻)) ⊆ 𝐻)
1311, 12ax-mp 5 . . . . 5 ran ( − ↾ (𝐻 × 𝐻)) ⊆ 𝐻
14 cores 6090 . . . . 5 (ran ( − ↾ (𝐻 × 𝐻)) ⊆ 𝐻 → ((norm𝐻) ∘ ( − ↾ (𝐻 × 𝐻))) = (norm ∘ ( − ↾ (𝐻 × 𝐻))))
1513, 14ax-mp 5 . . . 4 ((norm𝐻) ∘ ( − ↾ (𝐻 × 𝐻))) = (norm ∘ ( − ↾ (𝐻 × 𝐻)))
1610, 15eqtr4i 2850 . . 3 ((norm ∘ − ) ↾ (𝐻 × 𝐻)) = ((norm𝐻) ∘ ( − ↾ (𝐻 × 𝐻)))
179, 16eqtr4i 2850 . 2 (IndMet‘𝑊) = ((norm ∘ − ) ↾ (𝐻 × 𝐻))
181, 17eqtr4i 2850 1 𝐷 = (IndMet‘𝑊)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1538  wcel 2115  wss 3920  cop 4557   × cxp 5541  ran crn 5544  cres 5545  ccom 5547  wf 6340  cfv 6344  cc 10534  NrmCVeccnv 28373  IndMetcims 28380   + cva 28709   · csm 28710  normcno 28712   cmv 28714   S csh 28717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7456  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614  ax-addf 10615  ax-mulf 10616  ax-hilex 28788  ax-hfvadd 28789  ax-hvcom 28790  ax-hvass 28791  ax-hv0cl 28792  ax-hvaddid 28793  ax-hfvmul 28794  ax-hvmulid 28795  ax-hvmulass 28796  ax-hvdistr1 28797  ax-hvdistr2 28798  ax-hvmul0 28799  ax-hfi 28868  ax-his1 28871  ax-his2 28872  ax-his3 28873  ax-his4 28874
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3483  df-sbc 3760  df-csb 3868  df-dif 3923  df-un 3925  df-in 3927  df-ss 3937  df-pss 3939  df-nul 4278  df-if 4452  df-pw 4525  df-sn 4552  df-pr 4554  df-tp 4556  df-op 4558  df-uni 4826  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7576  df-1st 7685  df-2nd 7686  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-er 8286  df-map 8405  df-pm 8406  df-en 8507  df-dom 8508  df-sdom 8509  df-sup 8904  df-inf 8905  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11700  df-3 11701  df-4 11702  df-n0 11898  df-z 11982  df-uz 12244  df-q 12349  df-rp 12390  df-xneg 12507  df-xadd 12508  df-xmul 12509  df-icc 12745  df-seq 13377  df-exp 13438  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-topgen 16720  df-psmet 20540  df-xmet 20541  df-met 20542  df-bl 20543  df-mopn 20544  df-top 21505  df-topon 21522  df-bases 21557  df-lm 21840  df-haus 21926  df-grpo 28282  df-gid 28283  df-ginv 28284  df-gdiv 28285  df-ablo 28334  df-vc 28348  df-nv 28381  df-va 28384  df-ba 28385  df-sm 28386  df-0v 28387  df-vs 28388  df-nmcv 28389  df-ims 28390  df-ssp 28511  df-hnorm 28757  df-hba 28758  df-hvsub 28760  df-hlim 28761  df-sh 28996  df-ch 29010  df-ch0 29042
This theorem is referenced by:  hhssims2  29064
  Copyright terms: Public domain W3C validator