MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crim Structured version   Visualization version   GIF version

Theorem crim 15155
Description: The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
crim ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℑ‘(𝐴 + (i · 𝐵))) = 𝐵)

Proof of Theorem crim
StepHypRef Expression
1 recn 11246 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 ax-icn 11215 . . . . 5 i ∈ ℂ
3 recn 11246 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
4 mulcl 11240 . . . . 5 ((i ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · 𝐵) ∈ ℂ)
52, 3, 4sylancr 587 . . . 4 (𝐵 ∈ ℝ → (i · 𝐵) ∈ ℂ)
6 addcl 11238 . . . 4 ((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (𝐴 + (i · 𝐵)) ∈ ℂ)
71, 5, 6syl2an 596 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + (i · 𝐵)) ∈ ℂ)
8 imval 15147 . . 3 ((𝐴 + (i · 𝐵)) ∈ ℂ → (ℑ‘(𝐴 + (i · 𝐵))) = (ℜ‘((𝐴 + (i · 𝐵)) / i)))
97, 8syl 17 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℑ‘(𝐴 + (i · 𝐵))) = (ℜ‘((𝐴 + (i · 𝐵)) / i)))
102, 4mpan 690 . . . . . 6 (𝐵 ∈ ℂ → (i · 𝐵) ∈ ℂ)
11 ine0 11699 . . . . . . 7 i ≠ 0
12 divdir 11948 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ ∧ (i ∈ ℂ ∧ i ≠ 0)) → ((𝐴 + (i · 𝐵)) / i) = ((𝐴 / i) + ((i · 𝐵) / i)))
13123expa 1118 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) ∧ (i ∈ ℂ ∧ i ≠ 0)) → ((𝐴 + (i · 𝐵)) / i) = ((𝐴 / i) + ((i · 𝐵) / i)))
142, 11, 13mpanr12 705 . . . . . 6 ((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → ((𝐴 + (i · 𝐵)) / i) = ((𝐴 / i) + ((i · 𝐵) / i)))
1510, 14sylan2 593 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + (i · 𝐵)) / i) = ((𝐴 / i) + ((i · 𝐵) / i)))
16 divrec2 11940 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → (𝐴 / i) = ((1 / i) · 𝐴))
172, 11, 16mp3an23 1454 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴 / i) = ((1 / i) · 𝐴))
18 irec 14241 . . . . . . . . 9 (1 / i) = -i
1918oveq1i 7442 . . . . . . . 8 ((1 / i) · 𝐴) = (-i · 𝐴)
2019a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → ((1 / i) · 𝐴) = (-i · 𝐴))
21 mulneg12 11702 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) = (i · -𝐴))
222, 21mpan 690 . . . . . . 7 (𝐴 ∈ ℂ → (-i · 𝐴) = (i · -𝐴))
2317, 20, 223eqtrd 2780 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 / i) = (i · -𝐴))
24 divcan3 11949 . . . . . . 7 ((𝐵 ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → ((i · 𝐵) / i) = 𝐵)
252, 11, 24mp3an23 1454 . . . . . 6 (𝐵 ∈ ℂ → ((i · 𝐵) / i) = 𝐵)
2623, 25oveqan12d 7451 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 / i) + ((i · 𝐵) / i)) = ((i · -𝐴) + 𝐵))
27 negcl 11509 . . . . . . 7 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
28 mulcl 11240 . . . . . . 7 ((i ∈ ℂ ∧ -𝐴 ∈ ℂ) → (i · -𝐴) ∈ ℂ)
292, 27, 28sylancr 587 . . . . . 6 (𝐴 ∈ ℂ → (i · -𝐴) ∈ ℂ)
30 addcom 11448 . . . . . 6 (((i · -𝐴) ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · -𝐴) + 𝐵) = (𝐵 + (i · -𝐴)))
3129, 30sylan 580 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · -𝐴) + 𝐵) = (𝐵 + (i · -𝐴)))
3215, 26, 313eqtrrd 2781 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + (i · -𝐴)) = ((𝐴 + (i · 𝐵)) / i))
331, 3, 32syl2an 596 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 + (i · -𝐴)) = ((𝐴 + (i · 𝐵)) / i))
3433fveq2d 6909 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℜ‘(𝐵 + (i · -𝐴))) = (ℜ‘((𝐴 + (i · 𝐵)) / i)))
35 id 22 . . 3 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ)
36 renegcl 11573 . . 3 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
37 crre 15154 . . 3 ((𝐵 ∈ ℝ ∧ -𝐴 ∈ ℝ) → (ℜ‘(𝐵 + (i · -𝐴))) = 𝐵)
3835, 36, 37syl2anr 597 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℜ‘(𝐵 + (i · -𝐴))) = 𝐵)
399, 34, 383eqtr2d 2782 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℑ‘(𝐴 + (i · 𝐵))) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2939  cfv 6560  (class class class)co 7432  cc 11154  cr 11155  0cc0 11156  1c1 11157  ici 11158   + caddc 11159   · cmul 11161  -cneg 11494   / cdiv 11921  cre 15137  cim 15138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-div 11922  df-nn 12268  df-2 12330  df-cj 15139  df-re 15140  df-im 15141
This theorem is referenced by:  replim  15156  reim0  15158  remullem  15168  imcj  15172  imneg  15173  imadd  15174  imi  15197  crimi  15233  crimd  15272  absreimsq  15332  4sqlem4  16991  logneg  26631  lognegb  26633  basellem3  27127  2sqlem2  27463  cnre2csqima  33911
  Copyright terms: Public domain W3C validator