MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crim Structured version   Visualization version   GIF version

Theorem crim 15151
Description: The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
crim ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℑ‘(𝐴 + (i · 𝐵))) = 𝐵)

Proof of Theorem crim
StepHypRef Expression
1 recn 11243 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 ax-icn 11212 . . . . 5 i ∈ ℂ
3 recn 11243 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
4 mulcl 11237 . . . . 5 ((i ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · 𝐵) ∈ ℂ)
52, 3, 4sylancr 587 . . . 4 (𝐵 ∈ ℝ → (i · 𝐵) ∈ ℂ)
6 addcl 11235 . . . 4 ((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (𝐴 + (i · 𝐵)) ∈ ℂ)
71, 5, 6syl2an 596 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + (i · 𝐵)) ∈ ℂ)
8 imval 15143 . . 3 ((𝐴 + (i · 𝐵)) ∈ ℂ → (ℑ‘(𝐴 + (i · 𝐵))) = (ℜ‘((𝐴 + (i · 𝐵)) / i)))
97, 8syl 17 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℑ‘(𝐴 + (i · 𝐵))) = (ℜ‘((𝐴 + (i · 𝐵)) / i)))
102, 4mpan 690 . . . . . 6 (𝐵 ∈ ℂ → (i · 𝐵) ∈ ℂ)
11 ine0 11696 . . . . . . 7 i ≠ 0
12 divdir 11945 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ ∧ (i ∈ ℂ ∧ i ≠ 0)) → ((𝐴 + (i · 𝐵)) / i) = ((𝐴 / i) + ((i · 𝐵) / i)))
13123expa 1117 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) ∧ (i ∈ ℂ ∧ i ≠ 0)) → ((𝐴 + (i · 𝐵)) / i) = ((𝐴 / i) + ((i · 𝐵) / i)))
142, 11, 13mpanr12 705 . . . . . 6 ((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → ((𝐴 + (i · 𝐵)) / i) = ((𝐴 / i) + ((i · 𝐵) / i)))
1510, 14sylan2 593 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + (i · 𝐵)) / i) = ((𝐴 / i) + ((i · 𝐵) / i)))
16 divrec2 11937 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → (𝐴 / i) = ((1 / i) · 𝐴))
172, 11, 16mp3an23 1452 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴 / i) = ((1 / i) · 𝐴))
18 irec 14237 . . . . . . . . 9 (1 / i) = -i
1918oveq1i 7441 . . . . . . . 8 ((1 / i) · 𝐴) = (-i · 𝐴)
2019a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → ((1 / i) · 𝐴) = (-i · 𝐴))
21 mulneg12 11699 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) = (i · -𝐴))
222, 21mpan 690 . . . . . . 7 (𝐴 ∈ ℂ → (-i · 𝐴) = (i · -𝐴))
2317, 20, 223eqtrd 2779 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 / i) = (i · -𝐴))
24 divcan3 11946 . . . . . . 7 ((𝐵 ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → ((i · 𝐵) / i) = 𝐵)
252, 11, 24mp3an23 1452 . . . . . 6 (𝐵 ∈ ℂ → ((i · 𝐵) / i) = 𝐵)
2623, 25oveqan12d 7450 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 / i) + ((i · 𝐵) / i)) = ((i · -𝐴) + 𝐵))
27 negcl 11506 . . . . . . 7 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
28 mulcl 11237 . . . . . . 7 ((i ∈ ℂ ∧ -𝐴 ∈ ℂ) → (i · -𝐴) ∈ ℂ)
292, 27, 28sylancr 587 . . . . . 6 (𝐴 ∈ ℂ → (i · -𝐴) ∈ ℂ)
30 addcom 11445 . . . . . 6 (((i · -𝐴) ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · -𝐴) + 𝐵) = (𝐵 + (i · -𝐴)))
3129, 30sylan 580 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · -𝐴) + 𝐵) = (𝐵 + (i · -𝐴)))
3215, 26, 313eqtrrd 2780 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + (i · -𝐴)) = ((𝐴 + (i · 𝐵)) / i))
331, 3, 32syl2an 596 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 + (i · -𝐴)) = ((𝐴 + (i · 𝐵)) / i))
3433fveq2d 6911 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℜ‘(𝐵 + (i · -𝐴))) = (ℜ‘((𝐴 + (i · 𝐵)) / i)))
35 id 22 . . 3 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ)
36 renegcl 11570 . . 3 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
37 crre 15150 . . 3 ((𝐵 ∈ ℝ ∧ -𝐴 ∈ ℝ) → (ℜ‘(𝐵 + (i · -𝐴))) = 𝐵)
3835, 36, 37syl2anr 597 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℜ‘(𝐵 + (i · -𝐴))) = 𝐵)
399, 34, 383eqtr2d 2781 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℑ‘(𝐴 + (i · 𝐵))) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154  ici 11155   + caddc 11156   · cmul 11158  -cneg 11491   / cdiv 11918  cre 15133  cim 15134
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-2 12327  df-cj 15135  df-re 15136  df-im 15137
This theorem is referenced by:  replim  15152  reim0  15154  remullem  15164  imcj  15168  imneg  15169  imadd  15170  imi  15193  crimi  15229  crimd  15268  absreimsq  15328  4sqlem4  16986  logneg  26645  lognegb  26647  basellem3  27141  2sqlem2  27477  cnre2csqima  33872
  Copyright terms: Public domain W3C validator