MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crim Structured version   Visualization version   GIF version

Theorem crim 14462
Description: The real part of a complex number representation. Definition 10-3.1 of [Gleason] p. 132. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 7-Nov-2013.)
Assertion
Ref Expression
crim ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℑ‘(𝐴 + (i · 𝐵))) = 𝐵)

Proof of Theorem crim
StepHypRef Expression
1 recn 10615 . . . 4 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2 ax-icn 10584 . . . . 5 i ∈ ℂ
3 recn 10615 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
4 mulcl 10609 . . . . 5 ((i ∈ ℂ ∧ 𝐵 ∈ ℂ) → (i · 𝐵) ∈ ℂ)
52, 3, 4sylancr 587 . . . 4 (𝐵 ∈ ℝ → (i · 𝐵) ∈ ℂ)
6 addcl 10607 . . . 4 ((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → (𝐴 + (i · 𝐵)) ∈ ℂ)
71, 5, 6syl2an 595 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + (i · 𝐵)) ∈ ℂ)
8 imval 14454 . . 3 ((𝐴 + (i · 𝐵)) ∈ ℂ → (ℑ‘(𝐴 + (i · 𝐵))) = (ℜ‘((𝐴 + (i · 𝐵)) / i)))
97, 8syl 17 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℑ‘(𝐴 + (i · 𝐵))) = (ℜ‘((𝐴 + (i · 𝐵)) / i)))
102, 4mpan 686 . . . . . 6 (𝐵 ∈ ℂ → (i · 𝐵) ∈ ℂ)
11 ine0 11063 . . . . . . 7 i ≠ 0
12 divdir 11311 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ ∧ (i ∈ ℂ ∧ i ≠ 0)) → ((𝐴 + (i · 𝐵)) / i) = ((𝐴 / i) + ((i · 𝐵) / i)))
13123expa 1110 . . . . . . 7 (((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) ∧ (i ∈ ℂ ∧ i ≠ 0)) → ((𝐴 + (i · 𝐵)) / i) = ((𝐴 / i) + ((i · 𝐵) / i)))
142, 11, 13mpanr12 701 . . . . . 6 ((𝐴 ∈ ℂ ∧ (i · 𝐵) ∈ ℂ) → ((𝐴 + (i · 𝐵)) / i) = ((𝐴 / i) + ((i · 𝐵) / i)))
1510, 14sylan2 592 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 + (i · 𝐵)) / i) = ((𝐴 / i) + ((i · 𝐵) / i)))
16 divrec2 11303 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → (𝐴 / i) = ((1 / i) · 𝐴))
172, 11, 16mp3an23 1444 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴 / i) = ((1 / i) · 𝐴))
18 irec 13552 . . . . . . . . 9 (1 / i) = -i
1918oveq1i 7155 . . . . . . . 8 ((1 / i) · 𝐴) = (-i · 𝐴)
2019a1i 11 . . . . . . 7 (𝐴 ∈ ℂ → ((1 / i) · 𝐴) = (-i · 𝐴))
21 mulneg12 11066 . . . . . . . 8 ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (-i · 𝐴) = (i · -𝐴))
222, 21mpan 686 . . . . . . 7 (𝐴 ∈ ℂ → (-i · 𝐴) = (i · -𝐴))
2317, 20, 223eqtrd 2857 . . . . . 6 (𝐴 ∈ ℂ → (𝐴 / i) = (i · -𝐴))
24 divcan3 11312 . . . . . . 7 ((𝐵 ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → ((i · 𝐵) / i) = 𝐵)
252, 11, 24mp3an23 1444 . . . . . 6 (𝐵 ∈ ℂ → ((i · 𝐵) / i) = 𝐵)
2623, 25oveqan12d 7164 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((𝐴 / i) + ((i · 𝐵) / i)) = ((i · -𝐴) + 𝐵))
27 negcl 10874 . . . . . . 7 (𝐴 ∈ ℂ → -𝐴 ∈ ℂ)
28 mulcl 10609 . . . . . . 7 ((i ∈ ℂ ∧ -𝐴 ∈ ℂ) → (i · -𝐴) ∈ ℂ)
292, 27, 28sylancr 587 . . . . . 6 (𝐴 ∈ ℂ → (i · -𝐴) ∈ ℂ)
30 addcom 10814 . . . . . 6 (((i · -𝐴) ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · -𝐴) + 𝐵) = (𝐵 + (i · -𝐴)))
3129, 30sylan 580 . . . . 5 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → ((i · -𝐴) + 𝐵) = (𝐵 + (i · -𝐴)))
3215, 26, 313eqtrrd 2858 . . . 4 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐵 + (i · -𝐴)) = ((𝐴 + (i · 𝐵)) / i))
331, 3, 32syl2an 595 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐵 + (i · -𝐴)) = ((𝐴 + (i · 𝐵)) / i))
3433fveq2d 6667 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℜ‘(𝐵 + (i · -𝐴))) = (ℜ‘((𝐴 + (i · 𝐵)) / i)))
35 id 22 . . 3 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ)
36 renegcl 10937 . . 3 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
37 crre 14461 . . 3 ((𝐵 ∈ ℝ ∧ -𝐴 ∈ ℝ) → (ℜ‘(𝐵 + (i · -𝐴))) = 𝐵)
3835, 36, 37syl2anr 596 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℜ‘(𝐵 + (i · -𝐴))) = 𝐵)
399, 34, 383eqtr2d 2859 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (ℑ‘(𝐴 + (i · 𝐵))) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  wne 3013  cfv 6348  (class class class)co 7145  cc 10523  cr 10524  0cc0 10525  1c1 10526  ici 10527   + caddc 10528   · cmul 10530  -cneg 10859   / cdiv 11285  cre 14444  cim 14445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-po 5467  df-so 5468  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-2 11688  df-cj 14446  df-re 14447  df-im 14448
This theorem is referenced by:  replim  14463  reim0  14465  remullem  14475  imcj  14479  imneg  14480  imadd  14481  imi  14504  crimi  14540  crimd  14579  absreimsq  14640  4sqlem4  16276  logneg  25098  lognegb  25100  basellem3  25587  2sqlem2  25921  cnre2csqima  31053
  Copyright terms: Public domain W3C validator