MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanregt0 Structured version   Visualization version   GIF version

Theorem tanregt0 25977
Description: The real part of the tangent of a complex number with real part in the open interval (0(,)(π / 2)) is positive. (Contributed by Mario Carneiro, 5-Apr-2015.)
Assertion
Ref Expression
tanregt0 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < (ℜ‘(tan‘𝐴)))

Proof of Theorem tanregt0
StepHypRef Expression
1 ax-1cn 11150 . . . . . . 7 1 ∈ ℂ
2 recl 15039 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
32adantr 481 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘𝐴) ∈ ℝ)
43recnd 11224 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘𝐴) ∈ ℂ)
53rered 15153 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘(ℜ‘𝐴)) = (ℜ‘𝐴))
6 neghalfpire 25904 . . . . . . . . . . . . . 14 -(π / 2) ∈ ℝ
76rexri 11254 . . . . . . . . . . . . 13 -(π / 2) ∈ ℝ*
8 0re 11198 . . . . . . . . . . . . . 14 0 ∈ ℝ
9 pirp 25900 . . . . . . . . . . . . . . . 16 π ∈ ℝ+
10 rphalfcl 12983 . . . . . . . . . . . . . . . 16 (π ∈ ℝ+ → (π / 2) ∈ ℝ+)
11 rpgt0 12968 . . . . . . . . . . . . . . . 16 ((π / 2) ∈ ℝ+ → 0 < (π / 2))
129, 10, 11mp2b 10 . . . . . . . . . . . . . . 15 0 < (π / 2)
13 halfpire 25903 . . . . . . . . . . . . . . . 16 (π / 2) ∈ ℝ
14 lt0neg2 11703 . . . . . . . . . . . . . . . 16 ((π / 2) ∈ ℝ → (0 < (π / 2) ↔ -(π / 2) < 0))
1513, 14ax-mp 5 . . . . . . . . . . . . . . 15 (0 < (π / 2) ↔ -(π / 2) < 0)
1612, 15mpbi 229 . . . . . . . . . . . . . 14 -(π / 2) < 0
176, 8, 16ltleii 11319 . . . . . . . . . . . . 13 -(π / 2) ≤ 0
18 iooss1 13341 . . . . . . . . . . . . 13 ((-(π / 2) ∈ ℝ* ∧ -(π / 2) ≤ 0) → (0(,)(π / 2)) ⊆ (-(π / 2)(,)(π / 2)))
197, 17, 18mp2an 690 . . . . . . . . . . . 12 (0(,)(π / 2)) ⊆ (-(π / 2)(,)(π / 2))
20 simpr 485 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘𝐴) ∈ (0(,)(π / 2)))
2119, 20sselid 3976 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2)))
225, 21eqeltrd 2832 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘(ℜ‘𝐴)) ∈ (-(π / 2)(,)(π / 2)))
23 cosne0 25967 . . . . . . . . . 10 (((ℜ‘𝐴) ∈ ℂ ∧ (ℜ‘(ℜ‘𝐴)) ∈ (-(π / 2)(,)(π / 2))) → (cos‘(ℜ‘𝐴)) ≠ 0)
244, 22, 23syl2anc 584 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (cos‘(ℜ‘𝐴)) ≠ 0)
254, 24tancld 16057 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (tan‘(ℜ‘𝐴)) ∈ ℂ)
26 ax-icn 11151 . . . . . . . . . 10 i ∈ ℂ
27 imcl 15040 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
2827adantr 481 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘𝐴) ∈ ℝ)
2928recnd 11224 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘𝐴) ∈ ℂ)
30 mulcl 11176 . . . . . . . . . 10 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
3126, 29, 30sylancr 587 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (i · (ℑ‘𝐴)) ∈ ℂ)
32 rpcoshcl 16082 . . . . . . . . . . 11 ((ℑ‘𝐴) ∈ ℝ → (cos‘(i · (ℑ‘𝐴))) ∈ ℝ+)
3328, 32syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (cos‘(i · (ℑ‘𝐴))) ∈ ℝ+)
3433rpne0d 13003 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (cos‘(i · (ℑ‘𝐴))) ≠ 0)
3531, 34tancld 16057 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (tan‘(i · (ℑ‘𝐴))) ∈ ℂ)
3625, 35mulcld 11216 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))) ∈ ℂ)
37 subcl 11441 . . . . . . 7 ((1 ∈ ℂ ∧ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))) ∈ ℂ) → (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) ∈ ℂ)
381, 36, 37sylancr 587 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) ∈ ℂ)
39 replim 15045 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
4039adantr 481 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
4140fveq2d 6882 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (cos‘𝐴) = (cos‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))))
42 cosne0 25967 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝐴) ≠ 0)
4321, 42syldan 591 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (cos‘𝐴) ≠ 0)
4441, 43eqnetrrd 3008 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (cos‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) ≠ 0)
45 tanaddlem 16091 . . . . . . . . . 10 ((((ℜ‘𝐴) ∈ ℂ ∧ (i · (ℑ‘𝐴)) ∈ ℂ) ∧ ((cos‘(ℜ‘𝐴)) ≠ 0 ∧ (cos‘(i · (ℑ‘𝐴))) ≠ 0)) → ((cos‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) ≠ 0 ↔ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))) ≠ 1))
464, 31, 24, 34, 45syl22anc 837 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((cos‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) ≠ 0 ↔ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))) ≠ 1))
4744, 46mpbid 231 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))) ≠ 1)
4847necomd 2995 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 1 ≠ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))
49 subeq0 11468 . . . . . . . . 9 ((1 ∈ ℂ ∧ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))) ∈ ℂ) → ((1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) = 0 ↔ 1 = ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))
5049necon3bid 2984 . . . . . . . 8 ((1 ∈ ℂ ∧ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))) ∈ ℂ) → ((1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) ≠ 0 ↔ 1 ≠ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))
511, 36, 50sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) ≠ 0 ↔ 1 ≠ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))
5248, 51mpbird 256 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) ≠ 0)
5338, 52absrpcld 15377 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) ∈ ℝ+)
54 2z 12576 . . . . 5 2 ∈ ℤ
55 rpexpcl 14028 . . . . 5 (((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2) ∈ ℝ+)
5653, 54, 55sylancl 586 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2) ∈ ℝ+)
5756rprecred 13009 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) ∈ ℝ)
5838cjcld 15125 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) ∈ ℂ)
5925, 35addcld 11215 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))) ∈ ℂ)
6058, 59mulcld 11216 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))) ∈ ℂ)
6160recld 15123 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))) ∈ ℝ)
6256rpreccld 13008 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) ∈ ℝ+)
6362rpgt0d 13001 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < (1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)))
643, 24retancld 16070 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (tan‘(ℜ‘𝐴)) ∈ ℝ)
65 1re 11196 . . . . . 6 1 ∈ ℝ
66 retanhcl 16084 . . . . . . . 8 ((ℑ‘𝐴) ∈ ℝ → ((tan‘(i · (ℑ‘𝐴))) / i) ∈ ℝ)
6728, 66syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(i · (ℑ‘𝐴))) / i) ∈ ℝ)
6867resqcld 14072 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((tan‘(i · (ℑ‘𝐴))) / i)↑2) ∈ ℝ)
69 resubcl 11506 . . . . . 6 ((1 ∈ ℝ ∧ (((tan‘(i · (ℑ‘𝐴))) / i)↑2) ∈ ℝ) → (1 − (((tan‘(i · (ℑ‘𝐴))) / i)↑2)) ∈ ℝ)
7065, 68, 69sylancr 587 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (1 − (((tan‘(i · (ℑ‘𝐴))) / i)↑2)) ∈ ℝ)
71 tanrpcl 25943 . . . . . . 7 ((ℜ‘𝐴) ∈ (0(,)(π / 2)) → (tan‘(ℜ‘𝐴)) ∈ ℝ+)
7271adantl 482 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (tan‘(ℜ‘𝐴)) ∈ ℝ+)
7372rpgt0d 13001 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < (tan‘(ℜ‘𝐴)))
74 absresq 15231 . . . . . . . 8 (((tan‘(i · (ℑ‘𝐴))) / i) ∈ ℝ → ((abs‘((tan‘(i · (ℑ‘𝐴))) / i))↑2) = (((tan‘(i · (ℑ‘𝐴))) / i)↑2))
7567, 74syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((abs‘((tan‘(i · (ℑ‘𝐴))) / i))↑2) = (((tan‘(i · (ℑ‘𝐴))) / i)↑2))
76 tanhbnd 16086 . . . . . . . . . . . 12 ((ℑ‘𝐴) ∈ ℝ → ((tan‘(i · (ℑ‘𝐴))) / i) ∈ (-1(,)1))
7728, 76syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(i · (ℑ‘𝐴))) / i) ∈ (-1(,)1))
78 eliooord 13365 . . . . . . . . . . 11 (((tan‘(i · (ℑ‘𝐴))) / i) ∈ (-1(,)1) → (-1 < ((tan‘(i · (ℑ‘𝐴))) / i) ∧ ((tan‘(i · (ℑ‘𝐴))) / i) < 1))
7977, 78syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (-1 < ((tan‘(i · (ℑ‘𝐴))) / i) ∧ ((tan‘(i · (ℑ‘𝐴))) / i) < 1))
80 abslt 15243 . . . . . . . . . . 11 ((((tan‘(i · (ℑ‘𝐴))) / i) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘((tan‘(i · (ℑ‘𝐴))) / i)) < 1 ↔ (-1 < ((tan‘(i · (ℑ‘𝐴))) / i) ∧ ((tan‘(i · (ℑ‘𝐴))) / i) < 1)))
8167, 65, 80sylancl 586 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((abs‘((tan‘(i · (ℑ‘𝐴))) / i)) < 1 ↔ (-1 < ((tan‘(i · (ℑ‘𝐴))) / i) ∧ ((tan‘(i · (ℑ‘𝐴))) / i) < 1)))
8279, 81mpbird 256 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (abs‘((tan‘(i · (ℑ‘𝐴))) / i)) < 1)
8367recnd 11224 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(i · (ℑ‘𝐴))) / i) ∈ ℂ)
8483abscld 15365 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (abs‘((tan‘(i · (ℑ‘𝐴))) / i)) ∈ ℝ)
8565a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 1 ∈ ℝ)
8683absge0d 15373 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 ≤ (abs‘((tan‘(i · (ℑ‘𝐴))) / i)))
87 0le1 11719 . . . . . . . . . . 11 0 ≤ 1
8887a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 ≤ 1)
8984, 85, 86, 88lt2sqd 14201 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((abs‘((tan‘(i · (ℑ‘𝐴))) / i)) < 1 ↔ ((abs‘((tan‘(i · (ℑ‘𝐴))) / i))↑2) < (1↑2)))
9082, 89mpbid 231 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((abs‘((tan‘(i · (ℑ‘𝐴))) / i))↑2) < (1↑2))
91 sq1 14141 . . . . . . . 8 (1↑2) = 1
9290, 91breqtrdi 5182 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((abs‘((tan‘(i · (ℑ‘𝐴))) / i))↑2) < 1)
9375, 92eqbrtrrd 5165 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((tan‘(i · (ℑ‘𝐴))) / i)↑2) < 1)
94 posdif 11689 . . . . . . 7 (((((tan‘(i · (ℑ‘𝐴))) / i)↑2) ∈ ℝ ∧ 1 ∈ ℝ) → ((((tan‘(i · (ℑ‘𝐴))) / i)↑2) < 1 ↔ 0 < (1 − (((tan‘(i · (ℑ‘𝐴))) / i)↑2))))
9568, 65, 94sylancl 586 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((((tan‘(i · (ℑ‘𝐴))) / i)↑2) < 1 ↔ 0 < (1 − (((tan‘(i · (ℑ‘𝐴))) / i)↑2))))
9693, 95mpbid 231 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < (1 − (((tan‘(i · (ℑ‘𝐴))) / i)↑2)))
9764, 70, 73, 96mulgt0d 11351 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < ((tan‘(ℜ‘𝐴)) · (1 − (((tan‘(i · (ℑ‘𝐴))) / i)↑2))))
9838recjd 15133 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) = (ℜ‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))))
99 resub 15056 . . . . . . . . . 10 ((1 ∈ ℂ ∧ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))) ∈ ℂ) → (ℜ‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = ((ℜ‘1) − (ℜ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))))
1001, 36, 99sylancr 587 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = ((ℜ‘1) − (ℜ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))))
101 re1 15083 . . . . . . . . . . 11 (ℜ‘1) = 1
102101oveq1i 7403 . . . . . . . . . 10 ((ℜ‘1) − (ℜ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = (1 − (ℜ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))
10364, 35remul2d 15156 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) = ((tan‘(ℜ‘𝐴)) · (ℜ‘(tan‘(i · (ℑ‘𝐴))))))
104 negicn 11443 . . . . . . . . . . . . . . . . . 18 -i ∈ ℂ
105104a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → -i ∈ ℂ)
106 ine0 11631 . . . . . . . . . . . . . . . . . . 19 i ≠ 0
10726, 106negne0i 11517 . . . . . . . . . . . . . . . . . 18 -i ≠ 0
108107a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → -i ≠ 0)
10935, 105, 108divcld 11972 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(i · (ℑ‘𝐴))) / -i) ∈ ℂ)
110 imre 15037 . . . . . . . . . . . . . . . 16 (((tan‘(i · (ℑ‘𝐴))) / -i) ∈ ℂ → (ℑ‘((tan‘(i · (ℑ‘𝐴))) / -i)) = (ℜ‘(-i · ((tan‘(i · (ℑ‘𝐴))) / -i))))
111109, 110syl 17 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘((tan‘(i · (ℑ‘𝐴))) / -i)) = (ℜ‘(-i · ((tan‘(i · (ℑ‘𝐴))) / -i))))
11226a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → i ∈ ℂ)
113106a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → i ≠ 0)
11435, 112, 113divneg2d 11986 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → -((tan‘(i · (ℑ‘𝐴))) / i) = ((tan‘(i · (ℑ‘𝐴))) / -i))
11567renegcld 11623 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → -((tan‘(i · (ℑ‘𝐴))) / i) ∈ ℝ)
116114, 115eqeltrrd 2833 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(i · (ℑ‘𝐴))) / -i) ∈ ℝ)
117116reim0d 15154 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘((tan‘(i · (ℑ‘𝐴))) / -i)) = 0)
11835, 105, 108divcan2d 11974 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (-i · ((tan‘(i · (ℑ‘𝐴))) / -i)) = (tan‘(i · (ℑ‘𝐴))))
119118fveq2d 6882 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘(-i · ((tan‘(i · (ℑ‘𝐴))) / -i))) = (ℜ‘(tan‘(i · (ℑ‘𝐴)))))
120111, 117, 1193eqtr3rd 2780 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘(tan‘(i · (ℑ‘𝐴)))) = 0)
121120oveq2d 7409 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) · (ℜ‘(tan‘(i · (ℑ‘𝐴))))) = ((tan‘(ℜ‘𝐴)) · 0))
12225mul01d 11395 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) · 0) = 0)
123103, 121, 1223eqtrd 2775 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) = 0)
124123oveq2d 7409 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (1 − (ℜ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = (1 − 0))
125 1m0e1 12315 . . . . . . . . . . 11 (1 − 0) = 1
126124, 125eqtrdi 2787 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (1 − (ℜ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = 1)
127102, 126eqtrid 2783 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((ℜ‘1) − (ℜ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = 1)
12898, 100, 1273eqtrd 2775 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) = 1)
12935, 112, 113divcan2d 11974 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (i · ((tan‘(i · (ℑ‘𝐴))) / i)) = (tan‘(i · (ℑ‘𝐴))))
130129oveq2d 7409 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) + (i · ((tan‘(i · (ℑ‘𝐴))) / i))) = ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))
131130fveq2d 6882 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((tan‘(ℜ‘𝐴)) + (i · ((tan‘(i · (ℑ‘𝐴))) / i)))) = (ℜ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))
13264, 67crred 15160 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((tan‘(ℜ‘𝐴)) + (i · ((tan‘(i · (ℑ‘𝐴))) / i)))) = (tan‘(ℜ‘𝐴)))
133131, 132eqtr3d 2773 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))) = (tan‘(ℜ‘𝐴)))
134128, 133oveq12d 7411 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((ℜ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) · (ℜ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))) = (1 · (tan‘(ℜ‘𝐴))))
135 mulcom 11178 . . . . . . . 8 ((1 ∈ ℂ ∧ (tan‘(ℜ‘𝐴)) ∈ ℂ) → (1 · (tan‘(ℜ‘𝐴))) = ((tan‘(ℜ‘𝐴)) · 1))
1361, 25, 135sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (1 · (tan‘(ℜ‘𝐴))) = ((tan‘(ℜ‘𝐴)) · 1))
137134, 136eqtrd 2771 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((ℜ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) · (ℜ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))) = ((tan‘(ℜ‘𝐴)) · 1))
13825, 83, 83mulassd 11219 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)) · ((tan‘(i · (ℑ‘𝐴))) / i)) = ((tan‘(ℜ‘𝐴)) · (((tan‘(i · (ℑ‘𝐴))) / i) · ((tan‘(i · (ℑ‘𝐴))) / i))))
13938imcjd 15134 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) = -(ℑ‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))))
140 imsub 15064 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))) ∈ ℂ) → (ℑ‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = ((ℑ‘1) − (ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))))
1411, 36, 140sylancr 587 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = ((ℑ‘1) − (ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))))
142 im1 15084 . . . . . . . . . . . . . 14 (ℑ‘1) = 0
143142oveq1i 7403 . . . . . . . . . . . . 13 ((ℑ‘1) − (ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = (0 − (ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))
144 df-neg 11429 . . . . . . . . . . . . 13 -(ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) = (0 − (ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))
145143, 144eqtr4i 2762 . . . . . . . . . . . 12 ((ℑ‘1) − (ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = -(ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))
14664, 35immul2d 15157 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) = ((tan‘(ℜ‘𝐴)) · (ℑ‘(tan‘(i · (ℑ‘𝐴))))))
147 imval 15036 . . . . . . . . . . . . . . . . 17 ((tan‘(i · (ℑ‘𝐴))) ∈ ℂ → (ℑ‘(tan‘(i · (ℑ‘𝐴)))) = (ℜ‘((tan‘(i · (ℑ‘𝐴))) / i)))
14835, 147syl 17 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘(tan‘(i · (ℑ‘𝐴)))) = (ℜ‘((tan‘(i · (ℑ‘𝐴))) / i)))
14967rered 15153 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((tan‘(i · (ℑ‘𝐴))) / i)) = ((tan‘(i · (ℑ‘𝐴))) / i))
150148, 149eqtrd 2771 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘(tan‘(i · (ℑ‘𝐴)))) = ((tan‘(i · (ℑ‘𝐴))) / i))
151150oveq2d 7409 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) · (ℑ‘(tan‘(i · (ℑ‘𝐴))))) = ((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)))
152146, 151eqtrd 2771 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) = ((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)))
153152negeqd 11436 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → -(ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) = -((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)))
154145, 153eqtrid 2783 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((ℑ‘1) − (ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = -((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)))
155141, 154eqtrd 2771 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = -((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)))
156155negeqd 11436 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → -(ℑ‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = --((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)))
15764, 67remulcld 11226 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)) ∈ ℝ)
158157recnd 11224 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)) ∈ ℂ)
159158negnegd 11544 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → --((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)) = ((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)))
160139, 156, 1593eqtrd 2775 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) = ((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)))
161130fveq2d 6882 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘((tan‘(ℜ‘𝐴)) + (i · ((tan‘(i · (ℑ‘𝐴))) / i)))) = (ℑ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))
16264, 67crimd 15161 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘((tan‘(ℜ‘𝐴)) + (i · ((tan‘(i · (ℑ‘𝐴))) / i)))) = ((tan‘(i · (ℑ‘𝐴))) / i))
163161, 162eqtr3d 2773 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))) = ((tan‘(i · (ℑ‘𝐴))) / i))
164160, 163oveq12d 7411 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((ℑ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) · (ℑ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))) = (((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)) · ((tan‘(i · (ℑ‘𝐴))) / i)))
16583sqvald 14090 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((tan‘(i · (ℑ‘𝐴))) / i)↑2) = (((tan‘(i · (ℑ‘𝐴))) / i) · ((tan‘(i · (ℑ‘𝐴))) / i)))
166165oveq2d 7409 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) · (((tan‘(i · (ℑ‘𝐴))) / i)↑2)) = ((tan‘(ℜ‘𝐴)) · (((tan‘(i · (ℑ‘𝐴))) / i) · ((tan‘(i · (ℑ‘𝐴))) / i))))
167138, 164, 1663eqtr4d 2781 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((ℑ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) · (ℑ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))) = ((tan‘(ℜ‘𝐴)) · (((tan‘(i · (ℑ‘𝐴))) / i)↑2)))
168137, 167oveq12d 7411 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((ℜ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) · (ℜ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))) − ((ℑ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) · (ℑ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))) = (((tan‘(ℜ‘𝐴)) · 1) − ((tan‘(ℜ‘𝐴)) · (((tan‘(i · (ℑ‘𝐴))) / i)↑2))))
16958, 59remuld 15147 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))) = (((ℜ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) · (ℜ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))) − ((ℑ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) · (ℑ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))))
1701a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 1 ∈ ℂ)
17183sqcld 14091 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((tan‘(i · (ℑ‘𝐴))) / i)↑2) ∈ ℂ)
17225, 170, 171subdid 11652 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) · (1 − (((tan‘(i · (ℑ‘𝐴))) / i)↑2))) = (((tan‘(ℜ‘𝐴)) · 1) − ((tan‘(ℜ‘𝐴)) · (((tan‘(i · (ℑ‘𝐴))) / i)↑2))))
173168, 169, 1723eqtr4d 2781 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))) = ((tan‘(ℜ‘𝐴)) · (1 − (((tan‘(i · (ℑ‘𝐴))) / i)↑2))))
17497, 173breqtrrd 5169 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < (ℜ‘((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))))
17557, 61, 63, 174mulgt0d 11351 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < ((1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) · (ℜ‘((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))))
17640fveq2d 6882 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (tan‘𝐴) = (tan‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))))
177 tanadd 16092 . . . . . . 7 ((((ℜ‘𝐴) ∈ ℂ ∧ (i · (ℑ‘𝐴)) ∈ ℂ) ∧ ((cos‘(ℜ‘𝐴)) ≠ 0 ∧ (cos‘(i · (ℑ‘𝐴))) ≠ 0 ∧ (cos‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) ≠ 0)) → (tan‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = (((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))) / (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))))
1784, 31, 24, 34, 44, 177syl23anc 1377 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (tan‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = (((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))) / (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))))
179 recval 15251 . . . . . . . . 9 (((1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) ∈ ℂ ∧ (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) ≠ 0) → (1 / (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = ((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)))
18038, 52, 179syl2anc 584 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (1 / (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = ((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)))
181180oveq1d 7408 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((1 / (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))) = (((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))
18259, 38, 52divrec2d 11976 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))) / (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = ((1 / (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))
18338abscld 15365 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) ∈ ℝ)
184183resqcld 14072 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2) ∈ ℝ)
185184recnd 11224 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2) ∈ ℂ)
18656rpne0d 13003 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2) ≠ 0)
18758, 59, 185, 186div23d 12009 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))) / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) = (((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))
188181, 182, 1873eqtr4d 2781 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))) / (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = (((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))) / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)))
189176, 178, 1883eqtrd 2775 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (tan‘𝐴) = (((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))) / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)))
19060, 185, 186divrec2d 11976 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))) / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) = ((1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) · ((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))))
191189, 190eqtrd 2771 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (tan‘𝐴) = ((1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) · ((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))))
192191fveq2d 6882 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘(tan‘𝐴)) = (ℜ‘((1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) · ((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))))
19357, 60remul2d 15156 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) · ((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))) = ((1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) · (ℜ‘((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))))
194192, 193eqtrd 2771 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘(tan‘𝐴)) = ((1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) · (ℜ‘((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))))
195175, 194breqtrrd 5169 1 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < (ℜ‘(tan‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2939  wss 3944   class class class wbr 5141  cfv 6532  (class class class)co 7393  cc 11090  cr 11091  0cc0 11092  1c1 11093  ici 11094   + caddc 11095   · cmul 11097  *cxr 11229   < clt 11230  cle 11231  cmin 11426  -cneg 11427   / cdiv 11853  2c2 12249  cz 12540  +crp 12956  (,)cioo 13306  cexp 14009  ccj 15025  cre 15026  cim 15027  abscabs 15163  cosccos 15990  tanctan 15991  πcpi 15992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-inf2 9618  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169  ax-pre-sup 11170  ax-addf 11171  ax-mulf 11172
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-tp 4627  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-isom 6541  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-of 7653  df-om 7839  df-1st 7957  df-2nd 7958  df-supp 8129  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-2o 8449  df-er 8686  df-map 8805  df-pm 8806  df-ixp 8875  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-fsupp 9345  df-fi 9388  df-sup 9419  df-inf 9420  df-oi 9487  df-card 9916  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-div 11854  df-nn 12195  df-2 12257  df-3 12258  df-4 12259  df-5 12260  df-6 12261  df-7 12262  df-8 12263  df-9 12264  df-n0 12455  df-z 12541  df-dec 12660  df-uz 12805  df-q 12915  df-rp 12957  df-xneg 13074  df-xadd 13075  df-xmul 13076  df-ioo 13310  df-ioc 13311  df-ico 13312  df-icc 13313  df-fz 13467  df-fzo 13610  df-fl 13739  df-mod 13817  df-seq 13949  df-exp 14010  df-fac 14216  df-bc 14245  df-hash 14273  df-shft 14996  df-cj 15028  df-re 15029  df-im 15030  df-sqrt 15164  df-abs 15165  df-limsup 15397  df-clim 15414  df-rlim 15415  df-sum 15615  df-ef 15993  df-sin 15995  df-cos 15996  df-tan 15997  df-pi 15998  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17127  df-ress 17156  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17350  df-topn 17351  df-0g 17369  df-gsum 17370  df-topgen 17371  df-pt 17372  df-prds 17375  df-xrs 17430  df-qtop 17435  df-imas 17436  df-xps 17438  df-mre 17512  df-mrc 17513  df-acs 17515  df-mgm 18543  df-sgrp 18592  df-mnd 18603  df-submnd 18648  df-mulg 18923  df-cntz 19147  df-cmn 19614  df-psmet 20870  df-xmet 20871  df-met 20872  df-bl 20873  df-mopn 20874  df-fbas 20875  df-fg 20876  df-cnfld 20879  df-top 22325  df-topon 22342  df-topsp 22364  df-bases 22378  df-cld 22452  df-ntr 22453  df-cls 22454  df-nei 22531  df-lp 22569  df-perf 22570  df-cn 22660  df-cnp 22661  df-haus 22748  df-tx 22995  df-hmeo 23188  df-fil 23279  df-fm 23371  df-flim 23372  df-flf 23373  df-xms 23755  df-ms 23756  df-tms 23757  df-cncf 24323  df-limc 25312  df-dv 25313
This theorem is referenced by:  atantan  26355
  Copyright terms: Public domain W3C validator