MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanregt0 Structured version   Visualization version   GIF version

Theorem tanregt0 25125
Description: The real part of the tangent of a complex number with real part in the open interval (0(,)(π / 2)) is positive. (Contributed by Mario Carneiro, 5-Apr-2015.)
Assertion
Ref Expression
tanregt0 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < (ℜ‘(tan‘𝐴)))

Proof of Theorem tanregt0
StepHypRef Expression
1 ax-1cn 10597 . . . . . . 7 1 ∈ ℂ
2 recl 14471 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
32adantr 483 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘𝐴) ∈ ℝ)
43recnd 10671 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘𝐴) ∈ ℂ)
53rered 14585 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘(ℜ‘𝐴)) = (ℜ‘𝐴))
6 neghalfpire 25053 . . . . . . . . . . . . . 14 -(π / 2) ∈ ℝ
76rexri 10701 . . . . . . . . . . . . 13 -(π / 2) ∈ ℝ*
8 0re 10645 . . . . . . . . . . . . . 14 0 ∈ ℝ
9 pirp 25049 . . . . . . . . . . . . . . . 16 π ∈ ℝ+
10 rphalfcl 12419 . . . . . . . . . . . . . . . 16 (π ∈ ℝ+ → (π / 2) ∈ ℝ+)
11 rpgt0 12404 . . . . . . . . . . . . . . . 16 ((π / 2) ∈ ℝ+ → 0 < (π / 2))
129, 10, 11mp2b 10 . . . . . . . . . . . . . . 15 0 < (π / 2)
13 halfpire 25052 . . . . . . . . . . . . . . . 16 (π / 2) ∈ ℝ
14 lt0neg2 11149 . . . . . . . . . . . . . . . 16 ((π / 2) ∈ ℝ → (0 < (π / 2) ↔ -(π / 2) < 0))
1513, 14ax-mp 5 . . . . . . . . . . . . . . 15 (0 < (π / 2) ↔ -(π / 2) < 0)
1612, 15mpbi 232 . . . . . . . . . . . . . 14 -(π / 2) < 0
176, 8, 16ltleii 10765 . . . . . . . . . . . . 13 -(π / 2) ≤ 0
18 iooss1 12776 . . . . . . . . . . . . 13 ((-(π / 2) ∈ ℝ* ∧ -(π / 2) ≤ 0) → (0(,)(π / 2)) ⊆ (-(π / 2)(,)(π / 2)))
197, 17, 18mp2an 690 . . . . . . . . . . . 12 (0(,)(π / 2)) ⊆ (-(π / 2)(,)(π / 2))
20 simpr 487 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘𝐴) ∈ (0(,)(π / 2)))
2119, 20sseldi 3967 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2)))
225, 21eqeltrd 2915 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘(ℜ‘𝐴)) ∈ (-(π / 2)(,)(π / 2)))
23 cosne0 25116 . . . . . . . . . 10 (((ℜ‘𝐴) ∈ ℂ ∧ (ℜ‘(ℜ‘𝐴)) ∈ (-(π / 2)(,)(π / 2))) → (cos‘(ℜ‘𝐴)) ≠ 0)
244, 22, 23syl2anc 586 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (cos‘(ℜ‘𝐴)) ≠ 0)
254, 24tancld 15487 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (tan‘(ℜ‘𝐴)) ∈ ℂ)
26 ax-icn 10598 . . . . . . . . . 10 i ∈ ℂ
27 imcl 14472 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
2827adantr 483 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘𝐴) ∈ ℝ)
2928recnd 10671 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘𝐴) ∈ ℂ)
30 mulcl 10623 . . . . . . . . . 10 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
3126, 29, 30sylancr 589 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (i · (ℑ‘𝐴)) ∈ ℂ)
32 rpcoshcl 15512 . . . . . . . . . . 11 ((ℑ‘𝐴) ∈ ℝ → (cos‘(i · (ℑ‘𝐴))) ∈ ℝ+)
3328, 32syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (cos‘(i · (ℑ‘𝐴))) ∈ ℝ+)
3433rpne0d 12439 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (cos‘(i · (ℑ‘𝐴))) ≠ 0)
3531, 34tancld 15487 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (tan‘(i · (ℑ‘𝐴))) ∈ ℂ)
3625, 35mulcld 10663 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))) ∈ ℂ)
37 subcl 10887 . . . . . . 7 ((1 ∈ ℂ ∧ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))) ∈ ℂ) → (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) ∈ ℂ)
381, 36, 37sylancr 589 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) ∈ ℂ)
39 replim 14477 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
4039adantr 483 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
4140fveq2d 6676 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (cos‘𝐴) = (cos‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))))
42 cosne0 25116 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝐴) ≠ 0)
4321, 42syldan 593 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (cos‘𝐴) ≠ 0)
4441, 43eqnetrrd 3086 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (cos‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) ≠ 0)
45 tanaddlem 15521 . . . . . . . . . 10 ((((ℜ‘𝐴) ∈ ℂ ∧ (i · (ℑ‘𝐴)) ∈ ℂ) ∧ ((cos‘(ℜ‘𝐴)) ≠ 0 ∧ (cos‘(i · (ℑ‘𝐴))) ≠ 0)) → ((cos‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) ≠ 0 ↔ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))) ≠ 1))
464, 31, 24, 34, 45syl22anc 836 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((cos‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) ≠ 0 ↔ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))) ≠ 1))
4744, 46mpbid 234 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))) ≠ 1)
4847necomd 3073 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 1 ≠ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))
49 subeq0 10914 . . . . . . . . 9 ((1 ∈ ℂ ∧ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))) ∈ ℂ) → ((1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) = 0 ↔ 1 = ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))
5049necon3bid 3062 . . . . . . . 8 ((1 ∈ ℂ ∧ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))) ∈ ℂ) → ((1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) ≠ 0 ↔ 1 ≠ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))
511, 36, 50sylancr 589 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) ≠ 0 ↔ 1 ≠ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))
5248, 51mpbird 259 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) ≠ 0)
5338, 52absrpcld 14810 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) ∈ ℝ+)
54 2z 12017 . . . . 5 2 ∈ ℤ
55 rpexpcl 13451 . . . . 5 (((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2) ∈ ℝ+)
5653, 54, 55sylancl 588 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2) ∈ ℝ+)
5756rprecred 12445 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) ∈ ℝ)
5838cjcld 14557 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) ∈ ℂ)
5925, 35addcld 10662 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))) ∈ ℂ)
6058, 59mulcld 10663 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))) ∈ ℂ)
6160recld 14555 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))) ∈ ℝ)
6256rpreccld 12444 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) ∈ ℝ+)
6362rpgt0d 12437 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < (1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)))
643, 24retancld 15500 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (tan‘(ℜ‘𝐴)) ∈ ℝ)
65 1re 10643 . . . . . 6 1 ∈ ℝ
66 retanhcl 15514 . . . . . . . 8 ((ℑ‘𝐴) ∈ ℝ → ((tan‘(i · (ℑ‘𝐴))) / i) ∈ ℝ)
6728, 66syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(i · (ℑ‘𝐴))) / i) ∈ ℝ)
6867resqcld 13614 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((tan‘(i · (ℑ‘𝐴))) / i)↑2) ∈ ℝ)
69 resubcl 10952 . . . . . 6 ((1 ∈ ℝ ∧ (((tan‘(i · (ℑ‘𝐴))) / i)↑2) ∈ ℝ) → (1 − (((tan‘(i · (ℑ‘𝐴))) / i)↑2)) ∈ ℝ)
7065, 68, 69sylancr 589 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (1 − (((tan‘(i · (ℑ‘𝐴))) / i)↑2)) ∈ ℝ)
71 tanrpcl 25092 . . . . . . 7 ((ℜ‘𝐴) ∈ (0(,)(π / 2)) → (tan‘(ℜ‘𝐴)) ∈ ℝ+)
7271adantl 484 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (tan‘(ℜ‘𝐴)) ∈ ℝ+)
7372rpgt0d 12437 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < (tan‘(ℜ‘𝐴)))
74 absresq 14664 . . . . . . . 8 (((tan‘(i · (ℑ‘𝐴))) / i) ∈ ℝ → ((abs‘((tan‘(i · (ℑ‘𝐴))) / i))↑2) = (((tan‘(i · (ℑ‘𝐴))) / i)↑2))
7567, 74syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((abs‘((tan‘(i · (ℑ‘𝐴))) / i))↑2) = (((tan‘(i · (ℑ‘𝐴))) / i)↑2))
76 tanhbnd 15516 . . . . . . . . . . . 12 ((ℑ‘𝐴) ∈ ℝ → ((tan‘(i · (ℑ‘𝐴))) / i) ∈ (-1(,)1))
7728, 76syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(i · (ℑ‘𝐴))) / i) ∈ (-1(,)1))
78 eliooord 12799 . . . . . . . . . . 11 (((tan‘(i · (ℑ‘𝐴))) / i) ∈ (-1(,)1) → (-1 < ((tan‘(i · (ℑ‘𝐴))) / i) ∧ ((tan‘(i · (ℑ‘𝐴))) / i) < 1))
7977, 78syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (-1 < ((tan‘(i · (ℑ‘𝐴))) / i) ∧ ((tan‘(i · (ℑ‘𝐴))) / i) < 1))
80 abslt 14676 . . . . . . . . . . 11 ((((tan‘(i · (ℑ‘𝐴))) / i) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘((tan‘(i · (ℑ‘𝐴))) / i)) < 1 ↔ (-1 < ((tan‘(i · (ℑ‘𝐴))) / i) ∧ ((tan‘(i · (ℑ‘𝐴))) / i) < 1)))
8167, 65, 80sylancl 588 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((abs‘((tan‘(i · (ℑ‘𝐴))) / i)) < 1 ↔ (-1 < ((tan‘(i · (ℑ‘𝐴))) / i) ∧ ((tan‘(i · (ℑ‘𝐴))) / i) < 1)))
8279, 81mpbird 259 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (abs‘((tan‘(i · (ℑ‘𝐴))) / i)) < 1)
8367recnd 10671 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(i · (ℑ‘𝐴))) / i) ∈ ℂ)
8483abscld 14798 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (abs‘((tan‘(i · (ℑ‘𝐴))) / i)) ∈ ℝ)
8565a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 1 ∈ ℝ)
8683absge0d 14806 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 ≤ (abs‘((tan‘(i · (ℑ‘𝐴))) / i)))
87 0le1 11165 . . . . . . . . . . 11 0 ≤ 1
8887a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 ≤ 1)
8984, 85, 86, 88lt2sqd 13622 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((abs‘((tan‘(i · (ℑ‘𝐴))) / i)) < 1 ↔ ((abs‘((tan‘(i · (ℑ‘𝐴))) / i))↑2) < (1↑2)))
9082, 89mpbid 234 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((abs‘((tan‘(i · (ℑ‘𝐴))) / i))↑2) < (1↑2))
91 sq1 13561 . . . . . . . 8 (1↑2) = 1
9290, 91breqtrdi 5109 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((abs‘((tan‘(i · (ℑ‘𝐴))) / i))↑2) < 1)
9375, 92eqbrtrrd 5092 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((tan‘(i · (ℑ‘𝐴))) / i)↑2) < 1)
94 posdif 11135 . . . . . . 7 (((((tan‘(i · (ℑ‘𝐴))) / i)↑2) ∈ ℝ ∧ 1 ∈ ℝ) → ((((tan‘(i · (ℑ‘𝐴))) / i)↑2) < 1 ↔ 0 < (1 − (((tan‘(i · (ℑ‘𝐴))) / i)↑2))))
9568, 65, 94sylancl 588 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((((tan‘(i · (ℑ‘𝐴))) / i)↑2) < 1 ↔ 0 < (1 − (((tan‘(i · (ℑ‘𝐴))) / i)↑2))))
9693, 95mpbid 234 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < (1 − (((tan‘(i · (ℑ‘𝐴))) / i)↑2)))
9764, 70, 73, 96mulgt0d 10797 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < ((tan‘(ℜ‘𝐴)) · (1 − (((tan‘(i · (ℑ‘𝐴))) / i)↑2))))
9838recjd 14565 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) = (ℜ‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))))
99 resub 14488 . . . . . . . . . 10 ((1 ∈ ℂ ∧ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))) ∈ ℂ) → (ℜ‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = ((ℜ‘1) − (ℜ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))))
1001, 36, 99sylancr 589 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = ((ℜ‘1) − (ℜ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))))
101 re1 14515 . . . . . . . . . . 11 (ℜ‘1) = 1
102101oveq1i 7168 . . . . . . . . . 10 ((ℜ‘1) − (ℜ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = (1 − (ℜ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))
10364, 35remul2d 14588 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) = ((tan‘(ℜ‘𝐴)) · (ℜ‘(tan‘(i · (ℑ‘𝐴))))))
104 negicn 10889 . . . . . . . . . . . . . . . . . 18 -i ∈ ℂ
105104a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → -i ∈ ℂ)
106 ine0 11077 . . . . . . . . . . . . . . . . . . 19 i ≠ 0
10726, 106negne0i 10963 . . . . . . . . . . . . . . . . . 18 -i ≠ 0
108107a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → -i ≠ 0)
10935, 105, 108divcld 11418 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(i · (ℑ‘𝐴))) / -i) ∈ ℂ)
110 imre 14469 . . . . . . . . . . . . . . . 16 (((tan‘(i · (ℑ‘𝐴))) / -i) ∈ ℂ → (ℑ‘((tan‘(i · (ℑ‘𝐴))) / -i)) = (ℜ‘(-i · ((tan‘(i · (ℑ‘𝐴))) / -i))))
111109, 110syl 17 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘((tan‘(i · (ℑ‘𝐴))) / -i)) = (ℜ‘(-i · ((tan‘(i · (ℑ‘𝐴))) / -i))))
11226a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → i ∈ ℂ)
113106a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → i ≠ 0)
11435, 112, 113divneg2d 11432 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → -((tan‘(i · (ℑ‘𝐴))) / i) = ((tan‘(i · (ℑ‘𝐴))) / -i))
11567renegcld 11069 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → -((tan‘(i · (ℑ‘𝐴))) / i) ∈ ℝ)
116114, 115eqeltrrd 2916 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(i · (ℑ‘𝐴))) / -i) ∈ ℝ)
117116reim0d 14586 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘((tan‘(i · (ℑ‘𝐴))) / -i)) = 0)
11835, 105, 108divcan2d 11420 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (-i · ((tan‘(i · (ℑ‘𝐴))) / -i)) = (tan‘(i · (ℑ‘𝐴))))
119118fveq2d 6676 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘(-i · ((tan‘(i · (ℑ‘𝐴))) / -i))) = (ℜ‘(tan‘(i · (ℑ‘𝐴)))))
120111, 117, 1193eqtr3rd 2867 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘(tan‘(i · (ℑ‘𝐴)))) = 0)
121120oveq2d 7174 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) · (ℜ‘(tan‘(i · (ℑ‘𝐴))))) = ((tan‘(ℜ‘𝐴)) · 0))
12225mul01d 10841 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) · 0) = 0)
123103, 121, 1223eqtrd 2862 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) = 0)
124123oveq2d 7174 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (1 − (ℜ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = (1 − 0))
125 1m0e1 11761 . . . . . . . . . . 11 (1 − 0) = 1
126124, 125syl6eq 2874 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (1 − (ℜ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = 1)
127102, 126syl5eq 2870 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((ℜ‘1) − (ℜ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = 1)
12898, 100, 1273eqtrd 2862 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) = 1)
12935, 112, 113divcan2d 11420 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (i · ((tan‘(i · (ℑ‘𝐴))) / i)) = (tan‘(i · (ℑ‘𝐴))))
130129oveq2d 7174 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) + (i · ((tan‘(i · (ℑ‘𝐴))) / i))) = ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))
131130fveq2d 6676 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((tan‘(ℜ‘𝐴)) + (i · ((tan‘(i · (ℑ‘𝐴))) / i)))) = (ℜ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))
13264, 67crred 14592 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((tan‘(ℜ‘𝐴)) + (i · ((tan‘(i · (ℑ‘𝐴))) / i)))) = (tan‘(ℜ‘𝐴)))
133131, 132eqtr3d 2860 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))) = (tan‘(ℜ‘𝐴)))
134128, 133oveq12d 7176 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((ℜ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) · (ℜ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))) = (1 · (tan‘(ℜ‘𝐴))))
135 mulcom 10625 . . . . . . . 8 ((1 ∈ ℂ ∧ (tan‘(ℜ‘𝐴)) ∈ ℂ) → (1 · (tan‘(ℜ‘𝐴))) = ((tan‘(ℜ‘𝐴)) · 1))
1361, 25, 135sylancr 589 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (1 · (tan‘(ℜ‘𝐴))) = ((tan‘(ℜ‘𝐴)) · 1))
137134, 136eqtrd 2858 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((ℜ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) · (ℜ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))) = ((tan‘(ℜ‘𝐴)) · 1))
13825, 83, 83mulassd 10666 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)) · ((tan‘(i · (ℑ‘𝐴))) / i)) = ((tan‘(ℜ‘𝐴)) · (((tan‘(i · (ℑ‘𝐴))) / i) · ((tan‘(i · (ℑ‘𝐴))) / i))))
13938imcjd 14566 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) = -(ℑ‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))))
140 imsub 14496 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))) ∈ ℂ) → (ℑ‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = ((ℑ‘1) − (ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))))
1411, 36, 140sylancr 589 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = ((ℑ‘1) − (ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))))
142 im1 14516 . . . . . . . . . . . . . 14 (ℑ‘1) = 0
143142oveq1i 7168 . . . . . . . . . . . . 13 ((ℑ‘1) − (ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = (0 − (ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))
144 df-neg 10875 . . . . . . . . . . . . 13 -(ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) = (0 − (ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))
145143, 144eqtr4i 2849 . . . . . . . . . . . 12 ((ℑ‘1) − (ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = -(ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))
14664, 35immul2d 14589 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) = ((tan‘(ℜ‘𝐴)) · (ℑ‘(tan‘(i · (ℑ‘𝐴))))))
147 imval 14468 . . . . . . . . . . . . . . . . 17 ((tan‘(i · (ℑ‘𝐴))) ∈ ℂ → (ℑ‘(tan‘(i · (ℑ‘𝐴)))) = (ℜ‘((tan‘(i · (ℑ‘𝐴))) / i)))
14835, 147syl 17 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘(tan‘(i · (ℑ‘𝐴)))) = (ℜ‘((tan‘(i · (ℑ‘𝐴))) / i)))
14967rered 14585 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((tan‘(i · (ℑ‘𝐴))) / i)) = ((tan‘(i · (ℑ‘𝐴))) / i))
150148, 149eqtrd 2858 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘(tan‘(i · (ℑ‘𝐴)))) = ((tan‘(i · (ℑ‘𝐴))) / i))
151150oveq2d 7174 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) · (ℑ‘(tan‘(i · (ℑ‘𝐴))))) = ((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)))
152146, 151eqtrd 2858 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) = ((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)))
153152negeqd 10882 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → -(ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) = -((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)))
154145, 153syl5eq 2870 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((ℑ‘1) − (ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = -((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)))
155141, 154eqtrd 2858 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = -((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)))
156155negeqd 10882 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → -(ℑ‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = --((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)))
15764, 67remulcld 10673 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)) ∈ ℝ)
158157recnd 10671 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)) ∈ ℂ)
159158negnegd 10990 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → --((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)) = ((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)))
160139, 156, 1593eqtrd 2862 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) = ((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)))
161130fveq2d 6676 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘((tan‘(ℜ‘𝐴)) + (i · ((tan‘(i · (ℑ‘𝐴))) / i)))) = (ℑ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))
16264, 67crimd 14593 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘((tan‘(ℜ‘𝐴)) + (i · ((tan‘(i · (ℑ‘𝐴))) / i)))) = ((tan‘(i · (ℑ‘𝐴))) / i))
163161, 162eqtr3d 2860 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))) = ((tan‘(i · (ℑ‘𝐴))) / i))
164160, 163oveq12d 7176 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((ℑ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) · (ℑ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))) = (((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)) · ((tan‘(i · (ℑ‘𝐴))) / i)))
16583sqvald 13510 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((tan‘(i · (ℑ‘𝐴))) / i)↑2) = (((tan‘(i · (ℑ‘𝐴))) / i) · ((tan‘(i · (ℑ‘𝐴))) / i)))
166165oveq2d 7174 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) · (((tan‘(i · (ℑ‘𝐴))) / i)↑2)) = ((tan‘(ℜ‘𝐴)) · (((tan‘(i · (ℑ‘𝐴))) / i) · ((tan‘(i · (ℑ‘𝐴))) / i))))
167138, 164, 1663eqtr4d 2868 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((ℑ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) · (ℑ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))) = ((tan‘(ℜ‘𝐴)) · (((tan‘(i · (ℑ‘𝐴))) / i)↑2)))
168137, 167oveq12d 7176 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((ℜ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) · (ℜ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))) − ((ℑ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) · (ℑ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))) = (((tan‘(ℜ‘𝐴)) · 1) − ((tan‘(ℜ‘𝐴)) · (((tan‘(i · (ℑ‘𝐴))) / i)↑2))))
16958, 59remuld 14579 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))) = (((ℜ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) · (ℜ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))) − ((ℑ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) · (ℑ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))))
1701a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 1 ∈ ℂ)
17183sqcld 13511 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((tan‘(i · (ℑ‘𝐴))) / i)↑2) ∈ ℂ)
17225, 170, 171subdid 11098 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) · (1 − (((tan‘(i · (ℑ‘𝐴))) / i)↑2))) = (((tan‘(ℜ‘𝐴)) · 1) − ((tan‘(ℜ‘𝐴)) · (((tan‘(i · (ℑ‘𝐴))) / i)↑2))))
173168, 169, 1723eqtr4d 2868 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))) = ((tan‘(ℜ‘𝐴)) · (1 − (((tan‘(i · (ℑ‘𝐴))) / i)↑2))))
17497, 173breqtrrd 5096 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < (ℜ‘((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))))
17557, 61, 63, 174mulgt0d 10797 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < ((1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) · (ℜ‘((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))))
17640fveq2d 6676 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (tan‘𝐴) = (tan‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))))
177 tanadd 15522 . . . . . . 7 ((((ℜ‘𝐴) ∈ ℂ ∧ (i · (ℑ‘𝐴)) ∈ ℂ) ∧ ((cos‘(ℜ‘𝐴)) ≠ 0 ∧ (cos‘(i · (ℑ‘𝐴))) ≠ 0 ∧ (cos‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) ≠ 0)) → (tan‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = (((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))) / (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))))
1784, 31, 24, 34, 44, 177syl23anc 1373 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (tan‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = (((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))) / (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))))
179 recval 14684 . . . . . . . . 9 (((1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) ∈ ℂ ∧ (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) ≠ 0) → (1 / (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = ((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)))
18038, 52, 179syl2anc 586 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (1 / (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = ((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)))
181180oveq1d 7173 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((1 / (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))) = (((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))
18259, 38, 52divrec2d 11422 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))) / (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = ((1 / (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))
18338abscld 14798 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) ∈ ℝ)
184183resqcld 13614 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2) ∈ ℝ)
185184recnd 10671 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2) ∈ ℂ)
18656rpne0d 12439 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2) ≠ 0)
18758, 59, 185, 186div23d 11455 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))) / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) = (((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))
188181, 182, 1873eqtr4d 2868 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))) / (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = (((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))) / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)))
189176, 178, 1883eqtrd 2862 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (tan‘𝐴) = (((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))) / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)))
19060, 185, 186divrec2d 11422 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))) / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) = ((1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) · ((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))))
191189, 190eqtrd 2858 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (tan‘𝐴) = ((1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) · ((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))))
192191fveq2d 6676 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘(tan‘𝐴)) = (ℜ‘((1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) · ((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))))
19357, 60remul2d 14588 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) · ((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))) = ((1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) · (ℜ‘((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))))
194192, 193eqtrd 2858 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘(tan‘𝐴)) = ((1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) · (ℜ‘((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))))
195175, 194breqtrrd 5096 1 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < (ℜ‘(tan‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018  wss 3938   class class class wbr 5068  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539  1c1 10540  ici 10541   + caddc 10542   · cmul 10544  *cxr 10676   < clt 10677  cle 10678  cmin 10872  -cneg 10873   / cdiv 11299  2c2 11695  cz 11984  +crp 12392  (,)cioo 12741  cexp 13432  ccj 14457  cre 14458  cim 14459  abscabs 14595  cosccos 15420  tanctan 15421  πcpi 15422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617  ax-addf 10618  ax-mulf 10619
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-shft 14428  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-limsup 14830  df-clim 14847  df-rlim 14848  df-sum 15045  df-ef 15423  df-sin 15425  df-cos 15426  df-tan 15427  df-pi 15428  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-starv 16582  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-unif 16590  df-hom 16591  df-cco 16592  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-pt 16720  df-prds 16723  df-xrs 16777  df-qtop 16782  df-imas 16783  df-xps 16785  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-mulg 18227  df-cntz 18449  df-cmn 18910  df-psmet 20539  df-xmet 20540  df-met 20541  df-bl 20542  df-mopn 20543  df-fbas 20544  df-fg 20545  df-cnfld 20548  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-cld 21629  df-ntr 21630  df-cls 21631  df-nei 21708  df-lp 21746  df-perf 21747  df-cn 21837  df-cnp 21838  df-haus 21925  df-tx 22172  df-hmeo 22365  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-xms 22932  df-ms 22933  df-tms 22934  df-cncf 23488  df-limc 24466  df-dv 24467
This theorem is referenced by:  atantan  25503
  Copyright terms: Public domain W3C validator