MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanregt0 Structured version   Visualization version   GIF version

Theorem tanregt0 26446
Description: The real part of the tangent of a complex number with real part in the open interval (0(,)(π / 2)) is positive. (Contributed by Mario Carneiro, 5-Apr-2015.)
Assertion
Ref Expression
tanregt0 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < (ℜ‘(tan‘𝐴)))

Proof of Theorem tanregt0
StepHypRef Expression
1 ax-1cn 11067 . . . . . . 7 1 ∈ ℂ
2 recl 15017 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
32adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘𝐴) ∈ ℝ)
43recnd 11143 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘𝐴) ∈ ℂ)
53rered 15131 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘(ℜ‘𝐴)) = (ℜ‘𝐴))
6 neghalfpire 26372 . . . . . . . . . . . . . 14 -(π / 2) ∈ ℝ
76rexri 11173 . . . . . . . . . . . . 13 -(π / 2) ∈ ℝ*
8 0re 11117 . . . . . . . . . . . . . 14 0 ∈ ℝ
9 pirp 26368 . . . . . . . . . . . . . . . 16 π ∈ ℝ+
10 rphalfcl 12922 . . . . . . . . . . . . . . . 16 (π ∈ ℝ+ → (π / 2) ∈ ℝ+)
11 rpgt0 12906 . . . . . . . . . . . . . . . 16 ((π / 2) ∈ ℝ+ → 0 < (π / 2))
129, 10, 11mp2b 10 . . . . . . . . . . . . . . 15 0 < (π / 2)
13 halfpire 26371 . . . . . . . . . . . . . . . 16 (π / 2) ∈ ℝ
14 lt0neg2 11627 . . . . . . . . . . . . . . . 16 ((π / 2) ∈ ℝ → (0 < (π / 2) ↔ -(π / 2) < 0))
1513, 14ax-mp 5 . . . . . . . . . . . . . . 15 (0 < (π / 2) ↔ -(π / 2) < 0)
1612, 15mpbi 230 . . . . . . . . . . . . . 14 -(π / 2) < 0
176, 8, 16ltleii 11239 . . . . . . . . . . . . 13 -(π / 2) ≤ 0
18 iooss1 13283 . . . . . . . . . . . . 13 ((-(π / 2) ∈ ℝ* ∧ -(π / 2) ≤ 0) → (0(,)(π / 2)) ⊆ (-(π / 2)(,)(π / 2)))
197, 17, 18mp2an 692 . . . . . . . . . . . 12 (0(,)(π / 2)) ⊆ (-(π / 2)(,)(π / 2))
20 simpr 484 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘𝐴) ∈ (0(,)(π / 2)))
2119, 20sselid 3933 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2)))
225, 21eqeltrd 2828 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘(ℜ‘𝐴)) ∈ (-(π / 2)(,)(π / 2)))
23 cosne0 26436 . . . . . . . . . 10 (((ℜ‘𝐴) ∈ ℂ ∧ (ℜ‘(ℜ‘𝐴)) ∈ (-(π / 2)(,)(π / 2))) → (cos‘(ℜ‘𝐴)) ≠ 0)
244, 22, 23syl2anc 584 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (cos‘(ℜ‘𝐴)) ≠ 0)
254, 24tancld 16041 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (tan‘(ℜ‘𝐴)) ∈ ℂ)
26 ax-icn 11068 . . . . . . . . . 10 i ∈ ℂ
27 imcl 15018 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
2827adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘𝐴) ∈ ℝ)
2928recnd 11143 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘𝐴) ∈ ℂ)
30 mulcl 11093 . . . . . . . . . 10 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
3126, 29, 30sylancr 587 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (i · (ℑ‘𝐴)) ∈ ℂ)
32 rpcoshcl 16066 . . . . . . . . . . 11 ((ℑ‘𝐴) ∈ ℝ → (cos‘(i · (ℑ‘𝐴))) ∈ ℝ+)
3328, 32syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (cos‘(i · (ℑ‘𝐴))) ∈ ℝ+)
3433rpne0d 12942 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (cos‘(i · (ℑ‘𝐴))) ≠ 0)
3531, 34tancld 16041 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (tan‘(i · (ℑ‘𝐴))) ∈ ℂ)
3625, 35mulcld 11135 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))) ∈ ℂ)
37 subcl 11362 . . . . . . 7 ((1 ∈ ℂ ∧ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))) ∈ ℂ) → (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) ∈ ℂ)
381, 36, 37sylancr 587 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) ∈ ℂ)
39 replim 15023 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
4039adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
4140fveq2d 6826 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (cos‘𝐴) = (cos‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))))
42 cosne0 26436 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝐴) ≠ 0)
4321, 42syldan 591 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (cos‘𝐴) ≠ 0)
4441, 43eqnetrrd 2993 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (cos‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) ≠ 0)
45 tanaddlem 16075 . . . . . . . . . 10 ((((ℜ‘𝐴) ∈ ℂ ∧ (i · (ℑ‘𝐴)) ∈ ℂ) ∧ ((cos‘(ℜ‘𝐴)) ≠ 0 ∧ (cos‘(i · (ℑ‘𝐴))) ≠ 0)) → ((cos‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) ≠ 0 ↔ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))) ≠ 1))
464, 31, 24, 34, 45syl22anc 838 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((cos‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) ≠ 0 ↔ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))) ≠ 1))
4744, 46mpbid 232 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))) ≠ 1)
4847necomd 2980 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 1 ≠ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))
49 subeq0 11390 . . . . . . . . 9 ((1 ∈ ℂ ∧ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))) ∈ ℂ) → ((1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) = 0 ↔ 1 = ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))
5049necon3bid 2969 . . . . . . . 8 ((1 ∈ ℂ ∧ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))) ∈ ℂ) → ((1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) ≠ 0 ↔ 1 ≠ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))
511, 36, 50sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) ≠ 0 ↔ 1 ≠ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))
5248, 51mpbird 257 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) ≠ 0)
5338, 52absrpcld 15358 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) ∈ ℝ+)
54 2z 12507 . . . . 5 2 ∈ ℤ
55 rpexpcl 13987 . . . . 5 (((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2) ∈ ℝ+)
5653, 54, 55sylancl 586 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2) ∈ ℝ+)
5756rprecred 12948 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) ∈ ℝ)
5838cjcld 15103 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) ∈ ℂ)
5925, 35addcld 11134 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))) ∈ ℂ)
6058, 59mulcld 11135 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))) ∈ ℂ)
6160recld 15101 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))) ∈ ℝ)
6256rpreccld 12947 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) ∈ ℝ+)
6362rpgt0d 12940 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < (1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)))
643, 24retancld 16054 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (tan‘(ℜ‘𝐴)) ∈ ℝ)
65 1re 11115 . . . . . 6 1 ∈ ℝ
66 retanhcl 16068 . . . . . . . 8 ((ℑ‘𝐴) ∈ ℝ → ((tan‘(i · (ℑ‘𝐴))) / i) ∈ ℝ)
6728, 66syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(i · (ℑ‘𝐴))) / i) ∈ ℝ)
6867resqcld 14032 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((tan‘(i · (ℑ‘𝐴))) / i)↑2) ∈ ℝ)
69 resubcl 11428 . . . . . 6 ((1 ∈ ℝ ∧ (((tan‘(i · (ℑ‘𝐴))) / i)↑2) ∈ ℝ) → (1 − (((tan‘(i · (ℑ‘𝐴))) / i)↑2)) ∈ ℝ)
7065, 68, 69sylancr 587 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (1 − (((tan‘(i · (ℑ‘𝐴))) / i)↑2)) ∈ ℝ)
71 tanrpcl 26411 . . . . . . 7 ((ℜ‘𝐴) ∈ (0(,)(π / 2)) → (tan‘(ℜ‘𝐴)) ∈ ℝ+)
7271adantl 481 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (tan‘(ℜ‘𝐴)) ∈ ℝ+)
7372rpgt0d 12940 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < (tan‘(ℜ‘𝐴)))
74 absresq 15209 . . . . . . . 8 (((tan‘(i · (ℑ‘𝐴))) / i) ∈ ℝ → ((abs‘((tan‘(i · (ℑ‘𝐴))) / i))↑2) = (((tan‘(i · (ℑ‘𝐴))) / i)↑2))
7567, 74syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((abs‘((tan‘(i · (ℑ‘𝐴))) / i))↑2) = (((tan‘(i · (ℑ‘𝐴))) / i)↑2))
76 tanhbnd 16070 . . . . . . . . . . . 12 ((ℑ‘𝐴) ∈ ℝ → ((tan‘(i · (ℑ‘𝐴))) / i) ∈ (-1(,)1))
7728, 76syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(i · (ℑ‘𝐴))) / i) ∈ (-1(,)1))
78 eliooord 13308 . . . . . . . . . . 11 (((tan‘(i · (ℑ‘𝐴))) / i) ∈ (-1(,)1) → (-1 < ((tan‘(i · (ℑ‘𝐴))) / i) ∧ ((tan‘(i · (ℑ‘𝐴))) / i) < 1))
7977, 78syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (-1 < ((tan‘(i · (ℑ‘𝐴))) / i) ∧ ((tan‘(i · (ℑ‘𝐴))) / i) < 1))
80 abslt 15222 . . . . . . . . . . 11 ((((tan‘(i · (ℑ‘𝐴))) / i) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘((tan‘(i · (ℑ‘𝐴))) / i)) < 1 ↔ (-1 < ((tan‘(i · (ℑ‘𝐴))) / i) ∧ ((tan‘(i · (ℑ‘𝐴))) / i) < 1)))
8167, 65, 80sylancl 586 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((abs‘((tan‘(i · (ℑ‘𝐴))) / i)) < 1 ↔ (-1 < ((tan‘(i · (ℑ‘𝐴))) / i) ∧ ((tan‘(i · (ℑ‘𝐴))) / i) < 1)))
8279, 81mpbird 257 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (abs‘((tan‘(i · (ℑ‘𝐴))) / i)) < 1)
8367recnd 11143 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(i · (ℑ‘𝐴))) / i) ∈ ℂ)
8483abscld 15346 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (abs‘((tan‘(i · (ℑ‘𝐴))) / i)) ∈ ℝ)
8565a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 1 ∈ ℝ)
8683absge0d 15354 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 ≤ (abs‘((tan‘(i · (ℑ‘𝐴))) / i)))
87 0le1 11643 . . . . . . . . . . 11 0 ≤ 1
8887a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 ≤ 1)
8984, 85, 86, 88lt2sqd 14163 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((abs‘((tan‘(i · (ℑ‘𝐴))) / i)) < 1 ↔ ((abs‘((tan‘(i · (ℑ‘𝐴))) / i))↑2) < (1↑2)))
9082, 89mpbid 232 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((abs‘((tan‘(i · (ℑ‘𝐴))) / i))↑2) < (1↑2))
91 sq1 14102 . . . . . . . 8 (1↑2) = 1
9290, 91breqtrdi 5133 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((abs‘((tan‘(i · (ℑ‘𝐴))) / i))↑2) < 1)
9375, 92eqbrtrrd 5116 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((tan‘(i · (ℑ‘𝐴))) / i)↑2) < 1)
94 posdif 11613 . . . . . . 7 (((((tan‘(i · (ℑ‘𝐴))) / i)↑2) ∈ ℝ ∧ 1 ∈ ℝ) → ((((tan‘(i · (ℑ‘𝐴))) / i)↑2) < 1 ↔ 0 < (1 − (((tan‘(i · (ℑ‘𝐴))) / i)↑2))))
9568, 65, 94sylancl 586 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((((tan‘(i · (ℑ‘𝐴))) / i)↑2) < 1 ↔ 0 < (1 − (((tan‘(i · (ℑ‘𝐴))) / i)↑2))))
9693, 95mpbid 232 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < (1 − (((tan‘(i · (ℑ‘𝐴))) / i)↑2)))
9764, 70, 73, 96mulgt0d 11271 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < ((tan‘(ℜ‘𝐴)) · (1 − (((tan‘(i · (ℑ‘𝐴))) / i)↑2))))
9838recjd 15111 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) = (ℜ‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))))
99 resub 15034 . . . . . . . . . 10 ((1 ∈ ℂ ∧ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))) ∈ ℂ) → (ℜ‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = ((ℜ‘1) − (ℜ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))))
1001, 36, 99sylancr 587 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = ((ℜ‘1) − (ℜ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))))
101 re1 15061 . . . . . . . . . . 11 (ℜ‘1) = 1
102101oveq1i 7359 . . . . . . . . . 10 ((ℜ‘1) − (ℜ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = (1 − (ℜ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))
10364, 35remul2d 15134 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) = ((tan‘(ℜ‘𝐴)) · (ℜ‘(tan‘(i · (ℑ‘𝐴))))))
104 negicn 11364 . . . . . . . . . . . . . . . . . 18 -i ∈ ℂ
105104a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → -i ∈ ℂ)
106 ine0 11555 . . . . . . . . . . . . . . . . . . 19 i ≠ 0
10726, 106negne0i 11439 . . . . . . . . . . . . . . . . . 18 -i ≠ 0
108107a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → -i ≠ 0)
10935, 105, 108divcld 11900 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(i · (ℑ‘𝐴))) / -i) ∈ ℂ)
110 imre 15015 . . . . . . . . . . . . . . . 16 (((tan‘(i · (ℑ‘𝐴))) / -i) ∈ ℂ → (ℑ‘((tan‘(i · (ℑ‘𝐴))) / -i)) = (ℜ‘(-i · ((tan‘(i · (ℑ‘𝐴))) / -i))))
111109, 110syl 17 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘((tan‘(i · (ℑ‘𝐴))) / -i)) = (ℜ‘(-i · ((tan‘(i · (ℑ‘𝐴))) / -i))))
11226a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → i ∈ ℂ)
113106a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → i ≠ 0)
11435, 112, 113divneg2d 11914 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → -((tan‘(i · (ℑ‘𝐴))) / i) = ((tan‘(i · (ℑ‘𝐴))) / -i))
11567renegcld 11547 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → -((tan‘(i · (ℑ‘𝐴))) / i) ∈ ℝ)
116114, 115eqeltrrd 2829 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(i · (ℑ‘𝐴))) / -i) ∈ ℝ)
117116reim0d 15132 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘((tan‘(i · (ℑ‘𝐴))) / -i)) = 0)
11835, 105, 108divcan2d 11902 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (-i · ((tan‘(i · (ℑ‘𝐴))) / -i)) = (tan‘(i · (ℑ‘𝐴))))
119118fveq2d 6826 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘(-i · ((tan‘(i · (ℑ‘𝐴))) / -i))) = (ℜ‘(tan‘(i · (ℑ‘𝐴)))))
120111, 117, 1193eqtr3rd 2773 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘(tan‘(i · (ℑ‘𝐴)))) = 0)
121120oveq2d 7365 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) · (ℜ‘(tan‘(i · (ℑ‘𝐴))))) = ((tan‘(ℜ‘𝐴)) · 0))
12225mul01d 11315 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) · 0) = 0)
123103, 121, 1223eqtrd 2768 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) = 0)
124123oveq2d 7365 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (1 − (ℜ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = (1 − 0))
125 1m0e1 12244 . . . . . . . . . . 11 (1 − 0) = 1
126124, 125eqtrdi 2780 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (1 − (ℜ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = 1)
127102, 126eqtrid 2776 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((ℜ‘1) − (ℜ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = 1)
12898, 100, 1273eqtrd 2768 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) = 1)
12935, 112, 113divcan2d 11902 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (i · ((tan‘(i · (ℑ‘𝐴))) / i)) = (tan‘(i · (ℑ‘𝐴))))
130129oveq2d 7365 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) + (i · ((tan‘(i · (ℑ‘𝐴))) / i))) = ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))
131130fveq2d 6826 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((tan‘(ℜ‘𝐴)) + (i · ((tan‘(i · (ℑ‘𝐴))) / i)))) = (ℜ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))
13264, 67crred 15138 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((tan‘(ℜ‘𝐴)) + (i · ((tan‘(i · (ℑ‘𝐴))) / i)))) = (tan‘(ℜ‘𝐴)))
133131, 132eqtr3d 2766 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))) = (tan‘(ℜ‘𝐴)))
134128, 133oveq12d 7367 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((ℜ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) · (ℜ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))) = (1 · (tan‘(ℜ‘𝐴))))
135 mulcom 11095 . . . . . . . 8 ((1 ∈ ℂ ∧ (tan‘(ℜ‘𝐴)) ∈ ℂ) → (1 · (tan‘(ℜ‘𝐴))) = ((tan‘(ℜ‘𝐴)) · 1))
1361, 25, 135sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (1 · (tan‘(ℜ‘𝐴))) = ((tan‘(ℜ‘𝐴)) · 1))
137134, 136eqtrd 2764 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((ℜ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) · (ℜ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))) = ((tan‘(ℜ‘𝐴)) · 1))
13825, 83, 83mulassd 11138 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)) · ((tan‘(i · (ℑ‘𝐴))) / i)) = ((tan‘(ℜ‘𝐴)) · (((tan‘(i · (ℑ‘𝐴))) / i) · ((tan‘(i · (ℑ‘𝐴))) / i))))
13938imcjd 15112 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) = -(ℑ‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))))
140 imsub 15042 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))) ∈ ℂ) → (ℑ‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = ((ℑ‘1) − (ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))))
1411, 36, 140sylancr 587 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = ((ℑ‘1) − (ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))))
142 im1 15062 . . . . . . . . . . . . . 14 (ℑ‘1) = 0
143142oveq1i 7359 . . . . . . . . . . . . 13 ((ℑ‘1) − (ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = (0 − (ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))
144 df-neg 11350 . . . . . . . . . . . . 13 -(ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) = (0 − (ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))
145143, 144eqtr4i 2755 . . . . . . . . . . . 12 ((ℑ‘1) − (ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = -(ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))
14664, 35immul2d 15135 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) = ((tan‘(ℜ‘𝐴)) · (ℑ‘(tan‘(i · (ℑ‘𝐴))))))
147 imval 15014 . . . . . . . . . . . . . . . . 17 ((tan‘(i · (ℑ‘𝐴))) ∈ ℂ → (ℑ‘(tan‘(i · (ℑ‘𝐴)))) = (ℜ‘((tan‘(i · (ℑ‘𝐴))) / i)))
14835, 147syl 17 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘(tan‘(i · (ℑ‘𝐴)))) = (ℜ‘((tan‘(i · (ℑ‘𝐴))) / i)))
14967rered 15131 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((tan‘(i · (ℑ‘𝐴))) / i)) = ((tan‘(i · (ℑ‘𝐴))) / i))
150148, 149eqtrd 2764 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘(tan‘(i · (ℑ‘𝐴)))) = ((tan‘(i · (ℑ‘𝐴))) / i))
151150oveq2d 7365 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) · (ℑ‘(tan‘(i · (ℑ‘𝐴))))) = ((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)))
152146, 151eqtrd 2764 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) = ((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)))
153152negeqd 11357 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → -(ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) = -((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)))
154145, 153eqtrid 2776 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((ℑ‘1) − (ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = -((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)))
155141, 154eqtrd 2764 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = -((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)))
156155negeqd 11357 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → -(ℑ‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = --((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)))
15764, 67remulcld 11145 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)) ∈ ℝ)
158157recnd 11143 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)) ∈ ℂ)
159158negnegd 11466 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → --((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)) = ((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)))
160139, 156, 1593eqtrd 2768 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) = ((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)))
161130fveq2d 6826 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘((tan‘(ℜ‘𝐴)) + (i · ((tan‘(i · (ℑ‘𝐴))) / i)))) = (ℑ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))
16264, 67crimd 15139 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘((tan‘(ℜ‘𝐴)) + (i · ((tan‘(i · (ℑ‘𝐴))) / i)))) = ((tan‘(i · (ℑ‘𝐴))) / i))
163161, 162eqtr3d 2766 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))) = ((tan‘(i · (ℑ‘𝐴))) / i))
164160, 163oveq12d 7367 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((ℑ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) · (ℑ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))) = (((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)) · ((tan‘(i · (ℑ‘𝐴))) / i)))
16583sqvald 14050 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((tan‘(i · (ℑ‘𝐴))) / i)↑2) = (((tan‘(i · (ℑ‘𝐴))) / i) · ((tan‘(i · (ℑ‘𝐴))) / i)))
166165oveq2d 7365 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) · (((tan‘(i · (ℑ‘𝐴))) / i)↑2)) = ((tan‘(ℜ‘𝐴)) · (((tan‘(i · (ℑ‘𝐴))) / i) · ((tan‘(i · (ℑ‘𝐴))) / i))))
167138, 164, 1663eqtr4d 2774 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((ℑ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) · (ℑ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))) = ((tan‘(ℜ‘𝐴)) · (((tan‘(i · (ℑ‘𝐴))) / i)↑2)))
168137, 167oveq12d 7367 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((ℜ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) · (ℜ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))) − ((ℑ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) · (ℑ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))) = (((tan‘(ℜ‘𝐴)) · 1) − ((tan‘(ℜ‘𝐴)) · (((tan‘(i · (ℑ‘𝐴))) / i)↑2))))
16958, 59remuld 15125 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))) = (((ℜ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) · (ℜ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))) − ((ℑ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) · (ℑ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))))
1701a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 1 ∈ ℂ)
17183sqcld 14051 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((tan‘(i · (ℑ‘𝐴))) / i)↑2) ∈ ℂ)
17225, 170, 171subdid 11576 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) · (1 − (((tan‘(i · (ℑ‘𝐴))) / i)↑2))) = (((tan‘(ℜ‘𝐴)) · 1) − ((tan‘(ℜ‘𝐴)) · (((tan‘(i · (ℑ‘𝐴))) / i)↑2))))
173168, 169, 1723eqtr4d 2774 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))) = ((tan‘(ℜ‘𝐴)) · (1 − (((tan‘(i · (ℑ‘𝐴))) / i)↑2))))
17497, 173breqtrrd 5120 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < (ℜ‘((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))))
17557, 61, 63, 174mulgt0d 11271 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < ((1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) · (ℜ‘((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))))
17640fveq2d 6826 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (tan‘𝐴) = (tan‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))))
177 tanadd 16076 . . . . . . 7 ((((ℜ‘𝐴) ∈ ℂ ∧ (i · (ℑ‘𝐴)) ∈ ℂ) ∧ ((cos‘(ℜ‘𝐴)) ≠ 0 ∧ (cos‘(i · (ℑ‘𝐴))) ≠ 0 ∧ (cos‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) ≠ 0)) → (tan‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = (((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))) / (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))))
1784, 31, 24, 34, 44, 177syl23anc 1379 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (tan‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = (((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))) / (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))))
179 recval 15230 . . . . . . . . 9 (((1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) ∈ ℂ ∧ (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) ≠ 0) → (1 / (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = ((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)))
18038, 52, 179syl2anc 584 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (1 / (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = ((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)))
181180oveq1d 7364 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((1 / (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))) = (((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))
18259, 38, 52divrec2d 11904 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))) / (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = ((1 / (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))
18338abscld 15346 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) ∈ ℝ)
184183resqcld 14032 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2) ∈ ℝ)
185184recnd 11143 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2) ∈ ℂ)
18656rpne0d 12942 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2) ≠ 0)
18758, 59, 185, 186div23d 11937 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))) / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) = (((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))
188181, 182, 1873eqtr4d 2774 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))) / (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = (((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))) / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)))
189176, 178, 1883eqtrd 2768 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (tan‘𝐴) = (((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))) / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)))
19060, 185, 186divrec2d 11904 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))) / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) = ((1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) · ((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))))
191189, 190eqtrd 2764 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (tan‘𝐴) = ((1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) · ((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))))
192191fveq2d 6826 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘(tan‘𝐴)) = (ℜ‘((1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) · ((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))))
19357, 60remul2d 15134 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) · ((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))) = ((1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) · (ℜ‘((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))))
194192, 193eqtrd 2764 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘(tan‘𝐴)) = ((1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) · (ℜ‘((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))))
195175, 194breqtrrd 5120 1 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < (ℜ‘(tan‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wss 3903   class class class wbr 5092  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  1c1 11010  ici 11011   + caddc 11012   · cmul 11014  *cxr 11148   < clt 11149  cle 11150  cmin 11347  -cneg 11348   / cdiv 11777  2c2 12183  cz 12471  +crp 12893  (,)cioo 13248  cexp 13968  ccj 15003  cre 15004  cim 15005  abscabs 15141  cosccos 15971  tanctan 15972  πcpi 15973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ioc 13253  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-fac 14181  df-bc 14210  df-hash 14238  df-shft 14974  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-ef 15974  df-sin 15976  df-cos 15977  df-tan 15978  df-pi 15979  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-limc 25765  df-dv 25766
This theorem is referenced by:  atantan  26831
  Copyright terms: Public domain W3C validator