MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanregt0 Structured version   Visualization version   GIF version

Theorem tanregt0 26596
Description: The real part of the tangent of a complex number with real part in the open interval (0(,)(π / 2)) is positive. (Contributed by Mario Carneiro, 5-Apr-2015.)
Assertion
Ref Expression
tanregt0 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < (ℜ‘(tan‘𝐴)))

Proof of Theorem tanregt0
StepHypRef Expression
1 ax-1cn 11211 . . . . . . 7 1 ∈ ℂ
2 recl 15146 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
32adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘𝐴) ∈ ℝ)
43recnd 11287 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘𝐴) ∈ ℂ)
53rered 15260 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘(ℜ‘𝐴)) = (ℜ‘𝐴))
6 neghalfpire 26522 . . . . . . . . . . . . . 14 -(π / 2) ∈ ℝ
76rexri 11317 . . . . . . . . . . . . 13 -(π / 2) ∈ ℝ*
8 0re 11261 . . . . . . . . . . . . . 14 0 ∈ ℝ
9 pirp 26518 . . . . . . . . . . . . . . . 16 π ∈ ℝ+
10 rphalfcl 13060 . . . . . . . . . . . . . . . 16 (π ∈ ℝ+ → (π / 2) ∈ ℝ+)
11 rpgt0 13045 . . . . . . . . . . . . . . . 16 ((π / 2) ∈ ℝ+ → 0 < (π / 2))
129, 10, 11mp2b 10 . . . . . . . . . . . . . . 15 0 < (π / 2)
13 halfpire 26521 . . . . . . . . . . . . . . . 16 (π / 2) ∈ ℝ
14 lt0neg2 11768 . . . . . . . . . . . . . . . 16 ((π / 2) ∈ ℝ → (0 < (π / 2) ↔ -(π / 2) < 0))
1513, 14ax-mp 5 . . . . . . . . . . . . . . 15 (0 < (π / 2) ↔ -(π / 2) < 0)
1612, 15mpbi 230 . . . . . . . . . . . . . 14 -(π / 2) < 0
176, 8, 16ltleii 11382 . . . . . . . . . . . . 13 -(π / 2) ≤ 0
18 iooss1 13419 . . . . . . . . . . . . 13 ((-(π / 2) ∈ ℝ* ∧ -(π / 2) ≤ 0) → (0(,)(π / 2)) ⊆ (-(π / 2)(,)(π / 2)))
197, 17, 18mp2an 692 . . . . . . . . . . . 12 (0(,)(π / 2)) ⊆ (-(π / 2)(,)(π / 2))
20 simpr 484 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘𝐴) ∈ (0(,)(π / 2)))
2119, 20sselid 3993 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2)))
225, 21eqeltrd 2839 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘(ℜ‘𝐴)) ∈ (-(π / 2)(,)(π / 2)))
23 cosne0 26586 . . . . . . . . . 10 (((ℜ‘𝐴) ∈ ℂ ∧ (ℜ‘(ℜ‘𝐴)) ∈ (-(π / 2)(,)(π / 2))) → (cos‘(ℜ‘𝐴)) ≠ 0)
244, 22, 23syl2anc 584 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (cos‘(ℜ‘𝐴)) ≠ 0)
254, 24tancld 16165 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (tan‘(ℜ‘𝐴)) ∈ ℂ)
26 ax-icn 11212 . . . . . . . . . 10 i ∈ ℂ
27 imcl 15147 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
2827adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘𝐴) ∈ ℝ)
2928recnd 11287 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘𝐴) ∈ ℂ)
30 mulcl 11237 . . . . . . . . . 10 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
3126, 29, 30sylancr 587 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (i · (ℑ‘𝐴)) ∈ ℂ)
32 rpcoshcl 16190 . . . . . . . . . . 11 ((ℑ‘𝐴) ∈ ℝ → (cos‘(i · (ℑ‘𝐴))) ∈ ℝ+)
3328, 32syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (cos‘(i · (ℑ‘𝐴))) ∈ ℝ+)
3433rpne0d 13080 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (cos‘(i · (ℑ‘𝐴))) ≠ 0)
3531, 34tancld 16165 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (tan‘(i · (ℑ‘𝐴))) ∈ ℂ)
3625, 35mulcld 11279 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))) ∈ ℂ)
37 subcl 11505 . . . . . . 7 ((1 ∈ ℂ ∧ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))) ∈ ℂ) → (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) ∈ ℂ)
381, 36, 37sylancr 587 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) ∈ ℂ)
39 replim 15152 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
4039adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
4140fveq2d 6911 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (cos‘𝐴) = (cos‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))))
42 cosne0 26586 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝐴) ≠ 0)
4321, 42syldan 591 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (cos‘𝐴) ≠ 0)
4441, 43eqnetrrd 3007 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (cos‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) ≠ 0)
45 tanaddlem 16199 . . . . . . . . . 10 ((((ℜ‘𝐴) ∈ ℂ ∧ (i · (ℑ‘𝐴)) ∈ ℂ) ∧ ((cos‘(ℜ‘𝐴)) ≠ 0 ∧ (cos‘(i · (ℑ‘𝐴))) ≠ 0)) → ((cos‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) ≠ 0 ↔ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))) ≠ 1))
464, 31, 24, 34, 45syl22anc 839 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((cos‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) ≠ 0 ↔ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))) ≠ 1))
4744, 46mpbid 232 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))) ≠ 1)
4847necomd 2994 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 1 ≠ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))
49 subeq0 11533 . . . . . . . . 9 ((1 ∈ ℂ ∧ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))) ∈ ℂ) → ((1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) = 0 ↔ 1 = ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))
5049necon3bid 2983 . . . . . . . 8 ((1 ∈ ℂ ∧ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))) ∈ ℂ) → ((1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) ≠ 0 ↔ 1 ≠ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))
511, 36, 50sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) ≠ 0 ↔ 1 ≠ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))
5248, 51mpbird 257 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) ≠ 0)
5338, 52absrpcld 15484 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) ∈ ℝ+)
54 2z 12647 . . . . 5 2 ∈ ℤ
55 rpexpcl 14118 . . . . 5 (((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2) ∈ ℝ+)
5653, 54, 55sylancl 586 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2) ∈ ℝ+)
5756rprecred 13086 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) ∈ ℝ)
5838cjcld 15232 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) ∈ ℂ)
5925, 35addcld 11278 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))) ∈ ℂ)
6058, 59mulcld 11279 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))) ∈ ℂ)
6160recld 15230 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))) ∈ ℝ)
6256rpreccld 13085 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) ∈ ℝ+)
6362rpgt0d 13078 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < (1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)))
643, 24retancld 16178 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (tan‘(ℜ‘𝐴)) ∈ ℝ)
65 1re 11259 . . . . . 6 1 ∈ ℝ
66 retanhcl 16192 . . . . . . . 8 ((ℑ‘𝐴) ∈ ℝ → ((tan‘(i · (ℑ‘𝐴))) / i) ∈ ℝ)
6728, 66syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(i · (ℑ‘𝐴))) / i) ∈ ℝ)
6867resqcld 14162 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((tan‘(i · (ℑ‘𝐴))) / i)↑2) ∈ ℝ)
69 resubcl 11571 . . . . . 6 ((1 ∈ ℝ ∧ (((tan‘(i · (ℑ‘𝐴))) / i)↑2) ∈ ℝ) → (1 − (((tan‘(i · (ℑ‘𝐴))) / i)↑2)) ∈ ℝ)
7065, 68, 69sylancr 587 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (1 − (((tan‘(i · (ℑ‘𝐴))) / i)↑2)) ∈ ℝ)
71 tanrpcl 26561 . . . . . . 7 ((ℜ‘𝐴) ∈ (0(,)(π / 2)) → (tan‘(ℜ‘𝐴)) ∈ ℝ+)
7271adantl 481 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (tan‘(ℜ‘𝐴)) ∈ ℝ+)
7372rpgt0d 13078 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < (tan‘(ℜ‘𝐴)))
74 absresq 15338 . . . . . . . 8 (((tan‘(i · (ℑ‘𝐴))) / i) ∈ ℝ → ((abs‘((tan‘(i · (ℑ‘𝐴))) / i))↑2) = (((tan‘(i · (ℑ‘𝐴))) / i)↑2))
7567, 74syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((abs‘((tan‘(i · (ℑ‘𝐴))) / i))↑2) = (((tan‘(i · (ℑ‘𝐴))) / i)↑2))
76 tanhbnd 16194 . . . . . . . . . . . 12 ((ℑ‘𝐴) ∈ ℝ → ((tan‘(i · (ℑ‘𝐴))) / i) ∈ (-1(,)1))
7728, 76syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(i · (ℑ‘𝐴))) / i) ∈ (-1(,)1))
78 eliooord 13443 . . . . . . . . . . 11 (((tan‘(i · (ℑ‘𝐴))) / i) ∈ (-1(,)1) → (-1 < ((tan‘(i · (ℑ‘𝐴))) / i) ∧ ((tan‘(i · (ℑ‘𝐴))) / i) < 1))
7977, 78syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (-1 < ((tan‘(i · (ℑ‘𝐴))) / i) ∧ ((tan‘(i · (ℑ‘𝐴))) / i) < 1))
80 abslt 15350 . . . . . . . . . . 11 ((((tan‘(i · (ℑ‘𝐴))) / i) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘((tan‘(i · (ℑ‘𝐴))) / i)) < 1 ↔ (-1 < ((tan‘(i · (ℑ‘𝐴))) / i) ∧ ((tan‘(i · (ℑ‘𝐴))) / i) < 1)))
8167, 65, 80sylancl 586 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((abs‘((tan‘(i · (ℑ‘𝐴))) / i)) < 1 ↔ (-1 < ((tan‘(i · (ℑ‘𝐴))) / i) ∧ ((tan‘(i · (ℑ‘𝐴))) / i) < 1)))
8279, 81mpbird 257 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (abs‘((tan‘(i · (ℑ‘𝐴))) / i)) < 1)
8367recnd 11287 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(i · (ℑ‘𝐴))) / i) ∈ ℂ)
8483abscld 15472 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (abs‘((tan‘(i · (ℑ‘𝐴))) / i)) ∈ ℝ)
8565a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 1 ∈ ℝ)
8683absge0d 15480 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 ≤ (abs‘((tan‘(i · (ℑ‘𝐴))) / i)))
87 0le1 11784 . . . . . . . . . . 11 0 ≤ 1
8887a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 ≤ 1)
8984, 85, 86, 88lt2sqd 14292 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((abs‘((tan‘(i · (ℑ‘𝐴))) / i)) < 1 ↔ ((abs‘((tan‘(i · (ℑ‘𝐴))) / i))↑2) < (1↑2)))
9082, 89mpbid 232 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((abs‘((tan‘(i · (ℑ‘𝐴))) / i))↑2) < (1↑2))
91 sq1 14231 . . . . . . . 8 (1↑2) = 1
9290, 91breqtrdi 5189 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((abs‘((tan‘(i · (ℑ‘𝐴))) / i))↑2) < 1)
9375, 92eqbrtrrd 5172 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((tan‘(i · (ℑ‘𝐴))) / i)↑2) < 1)
94 posdif 11754 . . . . . . 7 (((((tan‘(i · (ℑ‘𝐴))) / i)↑2) ∈ ℝ ∧ 1 ∈ ℝ) → ((((tan‘(i · (ℑ‘𝐴))) / i)↑2) < 1 ↔ 0 < (1 − (((tan‘(i · (ℑ‘𝐴))) / i)↑2))))
9568, 65, 94sylancl 586 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((((tan‘(i · (ℑ‘𝐴))) / i)↑2) < 1 ↔ 0 < (1 − (((tan‘(i · (ℑ‘𝐴))) / i)↑2))))
9693, 95mpbid 232 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < (1 − (((tan‘(i · (ℑ‘𝐴))) / i)↑2)))
9764, 70, 73, 96mulgt0d 11414 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < ((tan‘(ℜ‘𝐴)) · (1 − (((tan‘(i · (ℑ‘𝐴))) / i)↑2))))
9838recjd 15240 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) = (ℜ‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))))
99 resub 15163 . . . . . . . . . 10 ((1 ∈ ℂ ∧ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))) ∈ ℂ) → (ℜ‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = ((ℜ‘1) − (ℜ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))))
1001, 36, 99sylancr 587 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = ((ℜ‘1) − (ℜ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))))
101 re1 15190 . . . . . . . . . . 11 (ℜ‘1) = 1
102101oveq1i 7441 . . . . . . . . . 10 ((ℜ‘1) − (ℜ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = (1 − (ℜ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))
10364, 35remul2d 15263 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) = ((tan‘(ℜ‘𝐴)) · (ℜ‘(tan‘(i · (ℑ‘𝐴))))))
104 negicn 11507 . . . . . . . . . . . . . . . . . 18 -i ∈ ℂ
105104a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → -i ∈ ℂ)
106 ine0 11696 . . . . . . . . . . . . . . . . . . 19 i ≠ 0
10726, 106negne0i 11582 . . . . . . . . . . . . . . . . . 18 -i ≠ 0
108107a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → -i ≠ 0)
10935, 105, 108divcld 12041 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(i · (ℑ‘𝐴))) / -i) ∈ ℂ)
110 imre 15144 . . . . . . . . . . . . . . . 16 (((tan‘(i · (ℑ‘𝐴))) / -i) ∈ ℂ → (ℑ‘((tan‘(i · (ℑ‘𝐴))) / -i)) = (ℜ‘(-i · ((tan‘(i · (ℑ‘𝐴))) / -i))))
111109, 110syl 17 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘((tan‘(i · (ℑ‘𝐴))) / -i)) = (ℜ‘(-i · ((tan‘(i · (ℑ‘𝐴))) / -i))))
11226a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → i ∈ ℂ)
113106a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → i ≠ 0)
11435, 112, 113divneg2d 12055 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → -((tan‘(i · (ℑ‘𝐴))) / i) = ((tan‘(i · (ℑ‘𝐴))) / -i))
11567renegcld 11688 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → -((tan‘(i · (ℑ‘𝐴))) / i) ∈ ℝ)
116114, 115eqeltrrd 2840 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(i · (ℑ‘𝐴))) / -i) ∈ ℝ)
117116reim0d 15261 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘((tan‘(i · (ℑ‘𝐴))) / -i)) = 0)
11835, 105, 108divcan2d 12043 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (-i · ((tan‘(i · (ℑ‘𝐴))) / -i)) = (tan‘(i · (ℑ‘𝐴))))
119118fveq2d 6911 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘(-i · ((tan‘(i · (ℑ‘𝐴))) / -i))) = (ℜ‘(tan‘(i · (ℑ‘𝐴)))))
120111, 117, 1193eqtr3rd 2784 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘(tan‘(i · (ℑ‘𝐴)))) = 0)
121120oveq2d 7447 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) · (ℜ‘(tan‘(i · (ℑ‘𝐴))))) = ((tan‘(ℜ‘𝐴)) · 0))
12225mul01d 11458 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) · 0) = 0)
123103, 121, 1223eqtrd 2779 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) = 0)
124123oveq2d 7447 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (1 − (ℜ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = (1 − 0))
125 1m0e1 12385 . . . . . . . . . . 11 (1 − 0) = 1
126124, 125eqtrdi 2791 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (1 − (ℜ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = 1)
127102, 126eqtrid 2787 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((ℜ‘1) − (ℜ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = 1)
12898, 100, 1273eqtrd 2779 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) = 1)
12935, 112, 113divcan2d 12043 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (i · ((tan‘(i · (ℑ‘𝐴))) / i)) = (tan‘(i · (ℑ‘𝐴))))
130129oveq2d 7447 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) + (i · ((tan‘(i · (ℑ‘𝐴))) / i))) = ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))
131130fveq2d 6911 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((tan‘(ℜ‘𝐴)) + (i · ((tan‘(i · (ℑ‘𝐴))) / i)))) = (ℜ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))
13264, 67crred 15267 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((tan‘(ℜ‘𝐴)) + (i · ((tan‘(i · (ℑ‘𝐴))) / i)))) = (tan‘(ℜ‘𝐴)))
133131, 132eqtr3d 2777 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))) = (tan‘(ℜ‘𝐴)))
134128, 133oveq12d 7449 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((ℜ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) · (ℜ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))) = (1 · (tan‘(ℜ‘𝐴))))
135 mulcom 11239 . . . . . . . 8 ((1 ∈ ℂ ∧ (tan‘(ℜ‘𝐴)) ∈ ℂ) → (1 · (tan‘(ℜ‘𝐴))) = ((tan‘(ℜ‘𝐴)) · 1))
1361, 25, 135sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (1 · (tan‘(ℜ‘𝐴))) = ((tan‘(ℜ‘𝐴)) · 1))
137134, 136eqtrd 2775 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((ℜ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) · (ℜ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))) = ((tan‘(ℜ‘𝐴)) · 1))
13825, 83, 83mulassd 11282 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)) · ((tan‘(i · (ℑ‘𝐴))) / i)) = ((tan‘(ℜ‘𝐴)) · (((tan‘(i · (ℑ‘𝐴))) / i) · ((tan‘(i · (ℑ‘𝐴))) / i))))
13938imcjd 15241 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) = -(ℑ‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))))
140 imsub 15171 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))) ∈ ℂ) → (ℑ‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = ((ℑ‘1) − (ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))))
1411, 36, 140sylancr 587 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = ((ℑ‘1) − (ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))))
142 im1 15191 . . . . . . . . . . . . . 14 (ℑ‘1) = 0
143142oveq1i 7441 . . . . . . . . . . . . 13 ((ℑ‘1) − (ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = (0 − (ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))
144 df-neg 11493 . . . . . . . . . . . . 13 -(ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) = (0 − (ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))
145143, 144eqtr4i 2766 . . . . . . . . . . . 12 ((ℑ‘1) − (ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = -(ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))
14664, 35immul2d 15264 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) = ((tan‘(ℜ‘𝐴)) · (ℑ‘(tan‘(i · (ℑ‘𝐴))))))
147 imval 15143 . . . . . . . . . . . . . . . . 17 ((tan‘(i · (ℑ‘𝐴))) ∈ ℂ → (ℑ‘(tan‘(i · (ℑ‘𝐴)))) = (ℜ‘((tan‘(i · (ℑ‘𝐴))) / i)))
14835, 147syl 17 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘(tan‘(i · (ℑ‘𝐴)))) = (ℜ‘((tan‘(i · (ℑ‘𝐴))) / i)))
14967rered 15260 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((tan‘(i · (ℑ‘𝐴))) / i)) = ((tan‘(i · (ℑ‘𝐴))) / i))
150148, 149eqtrd 2775 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘(tan‘(i · (ℑ‘𝐴)))) = ((tan‘(i · (ℑ‘𝐴))) / i))
151150oveq2d 7447 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) · (ℑ‘(tan‘(i · (ℑ‘𝐴))))) = ((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)))
152146, 151eqtrd 2775 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) = ((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)))
153152negeqd 11500 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → -(ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) = -((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)))
154145, 153eqtrid 2787 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((ℑ‘1) − (ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = -((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)))
155141, 154eqtrd 2775 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = -((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)))
156155negeqd 11500 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → -(ℑ‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = --((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)))
15764, 67remulcld 11289 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)) ∈ ℝ)
158157recnd 11287 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)) ∈ ℂ)
159158negnegd 11609 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → --((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)) = ((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)))
160139, 156, 1593eqtrd 2779 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) = ((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)))
161130fveq2d 6911 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘((tan‘(ℜ‘𝐴)) + (i · ((tan‘(i · (ℑ‘𝐴))) / i)))) = (ℑ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))
16264, 67crimd 15268 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘((tan‘(ℜ‘𝐴)) + (i · ((tan‘(i · (ℑ‘𝐴))) / i)))) = ((tan‘(i · (ℑ‘𝐴))) / i))
163161, 162eqtr3d 2777 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))) = ((tan‘(i · (ℑ‘𝐴))) / i))
164160, 163oveq12d 7449 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((ℑ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) · (ℑ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))) = (((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)) · ((tan‘(i · (ℑ‘𝐴))) / i)))
16583sqvald 14180 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((tan‘(i · (ℑ‘𝐴))) / i)↑2) = (((tan‘(i · (ℑ‘𝐴))) / i) · ((tan‘(i · (ℑ‘𝐴))) / i)))
166165oveq2d 7447 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) · (((tan‘(i · (ℑ‘𝐴))) / i)↑2)) = ((tan‘(ℜ‘𝐴)) · (((tan‘(i · (ℑ‘𝐴))) / i) · ((tan‘(i · (ℑ‘𝐴))) / i))))
167138, 164, 1663eqtr4d 2785 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((ℑ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) · (ℑ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))) = ((tan‘(ℜ‘𝐴)) · (((tan‘(i · (ℑ‘𝐴))) / i)↑2)))
168137, 167oveq12d 7449 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((ℜ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) · (ℜ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))) − ((ℑ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) · (ℑ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))) = (((tan‘(ℜ‘𝐴)) · 1) − ((tan‘(ℜ‘𝐴)) · (((tan‘(i · (ℑ‘𝐴))) / i)↑2))))
16958, 59remuld 15254 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))) = (((ℜ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) · (ℜ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))) − ((ℑ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) · (ℑ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))))
1701a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 1 ∈ ℂ)
17183sqcld 14181 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((tan‘(i · (ℑ‘𝐴))) / i)↑2) ∈ ℂ)
17225, 170, 171subdid 11717 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) · (1 − (((tan‘(i · (ℑ‘𝐴))) / i)↑2))) = (((tan‘(ℜ‘𝐴)) · 1) − ((tan‘(ℜ‘𝐴)) · (((tan‘(i · (ℑ‘𝐴))) / i)↑2))))
173168, 169, 1723eqtr4d 2785 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))) = ((tan‘(ℜ‘𝐴)) · (1 − (((tan‘(i · (ℑ‘𝐴))) / i)↑2))))
17497, 173breqtrrd 5176 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < (ℜ‘((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))))
17557, 61, 63, 174mulgt0d 11414 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < ((1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) · (ℜ‘((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))))
17640fveq2d 6911 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (tan‘𝐴) = (tan‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))))
177 tanadd 16200 . . . . . . 7 ((((ℜ‘𝐴) ∈ ℂ ∧ (i · (ℑ‘𝐴)) ∈ ℂ) ∧ ((cos‘(ℜ‘𝐴)) ≠ 0 ∧ (cos‘(i · (ℑ‘𝐴))) ≠ 0 ∧ (cos‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) ≠ 0)) → (tan‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = (((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))) / (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))))
1784, 31, 24, 34, 44, 177syl23anc 1376 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (tan‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = (((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))) / (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))))
179 recval 15358 . . . . . . . . 9 (((1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) ∈ ℂ ∧ (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) ≠ 0) → (1 / (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = ((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)))
18038, 52, 179syl2anc 584 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (1 / (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = ((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)))
181180oveq1d 7446 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((1 / (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))) = (((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))
18259, 38, 52divrec2d 12045 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))) / (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = ((1 / (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))
18338abscld 15472 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) ∈ ℝ)
184183resqcld 14162 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2) ∈ ℝ)
185184recnd 11287 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2) ∈ ℂ)
18656rpne0d 13080 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2) ≠ 0)
18758, 59, 185, 186div23d 12078 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))) / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) = (((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))
188181, 182, 1873eqtr4d 2785 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))) / (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = (((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))) / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)))
189176, 178, 1883eqtrd 2779 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (tan‘𝐴) = (((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))) / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)))
19060, 185, 186divrec2d 12045 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))) / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) = ((1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) · ((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))))
191189, 190eqtrd 2775 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (tan‘𝐴) = ((1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) · ((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))))
192191fveq2d 6911 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘(tan‘𝐴)) = (ℜ‘((1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) · ((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))))
19357, 60remul2d 15263 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) · ((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))) = ((1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) · (ℜ‘((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))))
194192, 193eqtrd 2775 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘(tan‘𝐴)) = ((1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) · (ℜ‘((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))))
195175, 194breqtrrd 5176 1 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < (ℜ‘(tan‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  wss 3963   class class class wbr 5148  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154  ici 11155   + caddc 11156   · cmul 11158  *cxr 11292   < clt 11293  cle 11294  cmin 11490  -cneg 11491   / cdiv 11918  2c2 12319  cz 12611  +crp 13032  (,)cioo 13384  cexp 14099  ccj 15132  cre 15133  cim 15134  abscabs 15270  cosccos 16097  tanctan 16098  πcpi 16099
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-shft 15103  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-sum 15720  df-ef 16100  df-sin 16102  df-cos 16103  df-tan 16104  df-pi 16105  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-limc 25916  df-dv 25917
This theorem is referenced by:  atantan  26981
  Copyright terms: Public domain W3C validator