MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tanregt0 Structured version   Visualization version   GIF version

Theorem tanregt0 26581
Description: The real part of the tangent of a complex number with real part in the open interval (0(,)(π / 2)) is positive. (Contributed by Mario Carneiro, 5-Apr-2015.)
Assertion
Ref Expression
tanregt0 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < (ℜ‘(tan‘𝐴)))

Proof of Theorem tanregt0
StepHypRef Expression
1 ax-1cn 11213 . . . . . . 7 1 ∈ ℂ
2 recl 15149 . . . . . . . . . . 11 (𝐴 ∈ ℂ → (ℜ‘𝐴) ∈ ℝ)
32adantr 480 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘𝐴) ∈ ℝ)
43recnd 11289 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘𝐴) ∈ ℂ)
53rered 15263 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘(ℜ‘𝐴)) = (ℜ‘𝐴))
6 neghalfpire 26507 . . . . . . . . . . . . . 14 -(π / 2) ∈ ℝ
76rexri 11319 . . . . . . . . . . . . 13 -(π / 2) ∈ ℝ*
8 0re 11263 . . . . . . . . . . . . . 14 0 ∈ ℝ
9 pirp 26503 . . . . . . . . . . . . . . . 16 π ∈ ℝ+
10 rphalfcl 13062 . . . . . . . . . . . . . . . 16 (π ∈ ℝ+ → (π / 2) ∈ ℝ+)
11 rpgt0 13047 . . . . . . . . . . . . . . . 16 ((π / 2) ∈ ℝ+ → 0 < (π / 2))
129, 10, 11mp2b 10 . . . . . . . . . . . . . . 15 0 < (π / 2)
13 halfpire 26506 . . . . . . . . . . . . . . . 16 (π / 2) ∈ ℝ
14 lt0neg2 11770 . . . . . . . . . . . . . . . 16 ((π / 2) ∈ ℝ → (0 < (π / 2) ↔ -(π / 2) < 0))
1513, 14ax-mp 5 . . . . . . . . . . . . . . 15 (0 < (π / 2) ↔ -(π / 2) < 0)
1612, 15mpbi 230 . . . . . . . . . . . . . 14 -(π / 2) < 0
176, 8, 16ltleii 11384 . . . . . . . . . . . . 13 -(π / 2) ≤ 0
18 iooss1 13422 . . . . . . . . . . . . 13 ((-(π / 2) ∈ ℝ* ∧ -(π / 2) ≤ 0) → (0(,)(π / 2)) ⊆ (-(π / 2)(,)(π / 2)))
197, 17, 18mp2an 692 . . . . . . . . . . . 12 (0(,)(π / 2)) ⊆ (-(π / 2)(,)(π / 2))
20 simpr 484 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘𝐴) ∈ (0(,)(π / 2)))
2119, 20sselid 3981 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2)))
225, 21eqeltrd 2841 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘(ℜ‘𝐴)) ∈ (-(π / 2)(,)(π / 2)))
23 cosne0 26571 . . . . . . . . . 10 (((ℜ‘𝐴) ∈ ℂ ∧ (ℜ‘(ℜ‘𝐴)) ∈ (-(π / 2)(,)(π / 2))) → (cos‘(ℜ‘𝐴)) ≠ 0)
244, 22, 23syl2anc 584 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (cos‘(ℜ‘𝐴)) ≠ 0)
254, 24tancld 16168 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (tan‘(ℜ‘𝐴)) ∈ ℂ)
26 ax-icn 11214 . . . . . . . . . 10 i ∈ ℂ
27 imcl 15150 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ)
2827adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘𝐴) ∈ ℝ)
2928recnd 11289 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘𝐴) ∈ ℂ)
30 mulcl 11239 . . . . . . . . . 10 ((i ∈ ℂ ∧ (ℑ‘𝐴) ∈ ℂ) → (i · (ℑ‘𝐴)) ∈ ℂ)
3126, 29, 30sylancr 587 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (i · (ℑ‘𝐴)) ∈ ℂ)
32 rpcoshcl 16193 . . . . . . . . . . 11 ((ℑ‘𝐴) ∈ ℝ → (cos‘(i · (ℑ‘𝐴))) ∈ ℝ+)
3328, 32syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (cos‘(i · (ℑ‘𝐴))) ∈ ℝ+)
3433rpne0d 13082 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (cos‘(i · (ℑ‘𝐴))) ≠ 0)
3531, 34tancld 16168 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (tan‘(i · (ℑ‘𝐴))) ∈ ℂ)
3625, 35mulcld 11281 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))) ∈ ℂ)
37 subcl 11507 . . . . . . 7 ((1 ∈ ℂ ∧ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))) ∈ ℂ) → (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) ∈ ℂ)
381, 36, 37sylancr 587 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) ∈ ℂ)
39 replim 15155 . . . . . . . . . . . 12 (𝐴 ∈ ℂ → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
4039adantr 480 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 𝐴 = ((ℜ‘𝐴) + (i · (ℑ‘𝐴))))
4140fveq2d 6910 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (cos‘𝐴) = (cos‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))))
42 cosne0 26571 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (-(π / 2)(,)(π / 2))) → (cos‘𝐴) ≠ 0)
4321, 42syldan 591 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (cos‘𝐴) ≠ 0)
4441, 43eqnetrrd 3009 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (cos‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) ≠ 0)
45 tanaddlem 16202 . . . . . . . . . 10 ((((ℜ‘𝐴) ∈ ℂ ∧ (i · (ℑ‘𝐴)) ∈ ℂ) ∧ ((cos‘(ℜ‘𝐴)) ≠ 0 ∧ (cos‘(i · (ℑ‘𝐴))) ≠ 0)) → ((cos‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) ≠ 0 ↔ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))) ≠ 1))
464, 31, 24, 34, 45syl22anc 839 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((cos‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) ≠ 0 ↔ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))) ≠ 1))
4744, 46mpbid 232 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))) ≠ 1)
4847necomd 2996 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 1 ≠ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))
49 subeq0 11535 . . . . . . . . 9 ((1 ∈ ℂ ∧ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))) ∈ ℂ) → ((1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) = 0 ↔ 1 = ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))
5049necon3bid 2985 . . . . . . . 8 ((1 ∈ ℂ ∧ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))) ∈ ℂ) → ((1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) ≠ 0 ↔ 1 ≠ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))
511, 36, 50sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) ≠ 0 ↔ 1 ≠ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))
5248, 51mpbird 257 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) ≠ 0)
5338, 52absrpcld 15487 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) ∈ ℝ+)
54 2z 12649 . . . . 5 2 ∈ ℤ
55 rpexpcl 14121 . . . . 5 (((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) ∈ ℝ+ ∧ 2 ∈ ℤ) → ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2) ∈ ℝ+)
5653, 54, 55sylancl 586 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2) ∈ ℝ+)
5756rprecred 13088 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) ∈ ℝ)
5838cjcld 15235 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) ∈ ℂ)
5925, 35addcld 11280 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))) ∈ ℂ)
6058, 59mulcld 11281 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))) ∈ ℂ)
6160recld 15233 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))) ∈ ℝ)
6256rpreccld 13087 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) ∈ ℝ+)
6362rpgt0d 13080 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < (1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)))
643, 24retancld 16181 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (tan‘(ℜ‘𝐴)) ∈ ℝ)
65 1re 11261 . . . . . 6 1 ∈ ℝ
66 retanhcl 16195 . . . . . . . 8 ((ℑ‘𝐴) ∈ ℝ → ((tan‘(i · (ℑ‘𝐴))) / i) ∈ ℝ)
6728, 66syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(i · (ℑ‘𝐴))) / i) ∈ ℝ)
6867resqcld 14165 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((tan‘(i · (ℑ‘𝐴))) / i)↑2) ∈ ℝ)
69 resubcl 11573 . . . . . 6 ((1 ∈ ℝ ∧ (((tan‘(i · (ℑ‘𝐴))) / i)↑2) ∈ ℝ) → (1 − (((tan‘(i · (ℑ‘𝐴))) / i)↑2)) ∈ ℝ)
7065, 68, 69sylancr 587 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (1 − (((tan‘(i · (ℑ‘𝐴))) / i)↑2)) ∈ ℝ)
71 tanrpcl 26546 . . . . . . 7 ((ℜ‘𝐴) ∈ (0(,)(π / 2)) → (tan‘(ℜ‘𝐴)) ∈ ℝ+)
7271adantl 481 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (tan‘(ℜ‘𝐴)) ∈ ℝ+)
7372rpgt0d 13080 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < (tan‘(ℜ‘𝐴)))
74 absresq 15341 . . . . . . . 8 (((tan‘(i · (ℑ‘𝐴))) / i) ∈ ℝ → ((abs‘((tan‘(i · (ℑ‘𝐴))) / i))↑2) = (((tan‘(i · (ℑ‘𝐴))) / i)↑2))
7567, 74syl 17 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((abs‘((tan‘(i · (ℑ‘𝐴))) / i))↑2) = (((tan‘(i · (ℑ‘𝐴))) / i)↑2))
76 tanhbnd 16197 . . . . . . . . . . . 12 ((ℑ‘𝐴) ∈ ℝ → ((tan‘(i · (ℑ‘𝐴))) / i) ∈ (-1(,)1))
7728, 76syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(i · (ℑ‘𝐴))) / i) ∈ (-1(,)1))
78 eliooord 13446 . . . . . . . . . . 11 (((tan‘(i · (ℑ‘𝐴))) / i) ∈ (-1(,)1) → (-1 < ((tan‘(i · (ℑ‘𝐴))) / i) ∧ ((tan‘(i · (ℑ‘𝐴))) / i) < 1))
7977, 78syl 17 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (-1 < ((tan‘(i · (ℑ‘𝐴))) / i) ∧ ((tan‘(i · (ℑ‘𝐴))) / i) < 1))
80 abslt 15353 . . . . . . . . . . 11 ((((tan‘(i · (ℑ‘𝐴))) / i) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘((tan‘(i · (ℑ‘𝐴))) / i)) < 1 ↔ (-1 < ((tan‘(i · (ℑ‘𝐴))) / i) ∧ ((tan‘(i · (ℑ‘𝐴))) / i) < 1)))
8167, 65, 80sylancl 586 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((abs‘((tan‘(i · (ℑ‘𝐴))) / i)) < 1 ↔ (-1 < ((tan‘(i · (ℑ‘𝐴))) / i) ∧ ((tan‘(i · (ℑ‘𝐴))) / i) < 1)))
8279, 81mpbird 257 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (abs‘((tan‘(i · (ℑ‘𝐴))) / i)) < 1)
8367recnd 11289 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(i · (ℑ‘𝐴))) / i) ∈ ℂ)
8483abscld 15475 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (abs‘((tan‘(i · (ℑ‘𝐴))) / i)) ∈ ℝ)
8565a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 1 ∈ ℝ)
8683absge0d 15483 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 ≤ (abs‘((tan‘(i · (ℑ‘𝐴))) / i)))
87 0le1 11786 . . . . . . . . . . 11 0 ≤ 1
8887a1i 11 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 ≤ 1)
8984, 85, 86, 88lt2sqd 14295 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((abs‘((tan‘(i · (ℑ‘𝐴))) / i)) < 1 ↔ ((abs‘((tan‘(i · (ℑ‘𝐴))) / i))↑2) < (1↑2)))
9082, 89mpbid 232 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((abs‘((tan‘(i · (ℑ‘𝐴))) / i))↑2) < (1↑2))
91 sq1 14234 . . . . . . . 8 (1↑2) = 1
9290, 91breqtrdi 5184 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((abs‘((tan‘(i · (ℑ‘𝐴))) / i))↑2) < 1)
9375, 92eqbrtrrd 5167 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((tan‘(i · (ℑ‘𝐴))) / i)↑2) < 1)
94 posdif 11756 . . . . . . 7 (((((tan‘(i · (ℑ‘𝐴))) / i)↑2) ∈ ℝ ∧ 1 ∈ ℝ) → ((((tan‘(i · (ℑ‘𝐴))) / i)↑2) < 1 ↔ 0 < (1 − (((tan‘(i · (ℑ‘𝐴))) / i)↑2))))
9568, 65, 94sylancl 586 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((((tan‘(i · (ℑ‘𝐴))) / i)↑2) < 1 ↔ 0 < (1 − (((tan‘(i · (ℑ‘𝐴))) / i)↑2))))
9693, 95mpbid 232 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < (1 − (((tan‘(i · (ℑ‘𝐴))) / i)↑2)))
9764, 70, 73, 96mulgt0d 11416 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < ((tan‘(ℜ‘𝐴)) · (1 − (((tan‘(i · (ℑ‘𝐴))) / i)↑2))))
9838recjd 15243 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) = (ℜ‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))))
99 resub 15166 . . . . . . . . . 10 ((1 ∈ ℂ ∧ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))) ∈ ℂ) → (ℜ‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = ((ℜ‘1) − (ℜ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))))
1001, 36, 99sylancr 587 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = ((ℜ‘1) − (ℜ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))))
101 re1 15193 . . . . . . . . . . 11 (ℜ‘1) = 1
102101oveq1i 7441 . . . . . . . . . 10 ((ℜ‘1) − (ℜ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = (1 − (ℜ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))
10364, 35remul2d 15266 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) = ((tan‘(ℜ‘𝐴)) · (ℜ‘(tan‘(i · (ℑ‘𝐴))))))
104 negicn 11509 . . . . . . . . . . . . . . . . . 18 -i ∈ ℂ
105104a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → -i ∈ ℂ)
106 ine0 11698 . . . . . . . . . . . . . . . . . . 19 i ≠ 0
10726, 106negne0i 11584 . . . . . . . . . . . . . . . . . 18 -i ≠ 0
108107a1i 11 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → -i ≠ 0)
10935, 105, 108divcld 12043 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(i · (ℑ‘𝐴))) / -i) ∈ ℂ)
110 imre 15147 . . . . . . . . . . . . . . . 16 (((tan‘(i · (ℑ‘𝐴))) / -i) ∈ ℂ → (ℑ‘((tan‘(i · (ℑ‘𝐴))) / -i)) = (ℜ‘(-i · ((tan‘(i · (ℑ‘𝐴))) / -i))))
111109, 110syl 17 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘((tan‘(i · (ℑ‘𝐴))) / -i)) = (ℜ‘(-i · ((tan‘(i · (ℑ‘𝐴))) / -i))))
11226a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → i ∈ ℂ)
113106a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → i ≠ 0)
11435, 112, 113divneg2d 12057 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → -((tan‘(i · (ℑ‘𝐴))) / i) = ((tan‘(i · (ℑ‘𝐴))) / -i))
11567renegcld 11690 . . . . . . . . . . . . . . . . 17 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → -((tan‘(i · (ℑ‘𝐴))) / i) ∈ ℝ)
116114, 115eqeltrrd 2842 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(i · (ℑ‘𝐴))) / -i) ∈ ℝ)
117116reim0d 15264 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘((tan‘(i · (ℑ‘𝐴))) / -i)) = 0)
11835, 105, 108divcan2d 12045 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (-i · ((tan‘(i · (ℑ‘𝐴))) / -i)) = (tan‘(i · (ℑ‘𝐴))))
119118fveq2d 6910 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘(-i · ((tan‘(i · (ℑ‘𝐴))) / -i))) = (ℜ‘(tan‘(i · (ℑ‘𝐴)))))
120111, 117, 1193eqtr3rd 2786 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘(tan‘(i · (ℑ‘𝐴)))) = 0)
121120oveq2d 7447 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) · (ℜ‘(tan‘(i · (ℑ‘𝐴))))) = ((tan‘(ℜ‘𝐴)) · 0))
12225mul01d 11460 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) · 0) = 0)
123103, 121, 1223eqtrd 2781 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) = 0)
124123oveq2d 7447 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (1 − (ℜ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = (1 − 0))
125 1m0e1 12387 . . . . . . . . . . 11 (1 − 0) = 1
126124, 125eqtrdi 2793 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (1 − (ℜ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = 1)
127102, 126eqtrid 2789 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((ℜ‘1) − (ℜ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = 1)
12898, 100, 1273eqtrd 2781 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) = 1)
12935, 112, 113divcan2d 12045 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (i · ((tan‘(i · (ℑ‘𝐴))) / i)) = (tan‘(i · (ℑ‘𝐴))))
130129oveq2d 7447 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) + (i · ((tan‘(i · (ℑ‘𝐴))) / i))) = ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))
131130fveq2d 6910 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((tan‘(ℜ‘𝐴)) + (i · ((tan‘(i · (ℑ‘𝐴))) / i)))) = (ℜ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))
13264, 67crred 15270 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((tan‘(ℜ‘𝐴)) + (i · ((tan‘(i · (ℑ‘𝐴))) / i)))) = (tan‘(ℜ‘𝐴)))
133131, 132eqtr3d 2779 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))) = (tan‘(ℜ‘𝐴)))
134128, 133oveq12d 7449 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((ℜ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) · (ℜ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))) = (1 · (tan‘(ℜ‘𝐴))))
135 mulcom 11241 . . . . . . . 8 ((1 ∈ ℂ ∧ (tan‘(ℜ‘𝐴)) ∈ ℂ) → (1 · (tan‘(ℜ‘𝐴))) = ((tan‘(ℜ‘𝐴)) · 1))
1361, 25, 135sylancr 587 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (1 · (tan‘(ℜ‘𝐴))) = ((tan‘(ℜ‘𝐴)) · 1))
137134, 136eqtrd 2777 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((ℜ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) · (ℜ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))) = ((tan‘(ℜ‘𝐴)) · 1))
13825, 83, 83mulassd 11284 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)) · ((tan‘(i · (ℑ‘𝐴))) / i)) = ((tan‘(ℜ‘𝐴)) · (((tan‘(i · (ℑ‘𝐴))) / i) · ((tan‘(i · (ℑ‘𝐴))) / i))))
13938imcjd 15244 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) = -(ℑ‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))))
140 imsub 15174 . . . . . . . . . . . 12 ((1 ∈ ℂ ∧ ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))) ∈ ℂ) → (ℑ‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = ((ℑ‘1) − (ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))))
1411, 36, 140sylancr 587 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = ((ℑ‘1) − (ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))))
142 im1 15194 . . . . . . . . . . . . . 14 (ℑ‘1) = 0
143142oveq1i 7441 . . . . . . . . . . . . 13 ((ℑ‘1) − (ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = (0 − (ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))
144 df-neg 11495 . . . . . . . . . . . . 13 -(ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) = (0 − (ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))
145143, 144eqtr4i 2768 . . . . . . . . . . . 12 ((ℑ‘1) − (ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = -(ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))
14664, 35immul2d 15267 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) = ((tan‘(ℜ‘𝐴)) · (ℑ‘(tan‘(i · (ℑ‘𝐴))))))
147 imval 15146 . . . . . . . . . . . . . . . . 17 ((tan‘(i · (ℑ‘𝐴))) ∈ ℂ → (ℑ‘(tan‘(i · (ℑ‘𝐴)))) = (ℜ‘((tan‘(i · (ℑ‘𝐴))) / i)))
14835, 147syl 17 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘(tan‘(i · (ℑ‘𝐴)))) = (ℜ‘((tan‘(i · (ℑ‘𝐴))) / i)))
14967rered 15263 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((tan‘(i · (ℑ‘𝐴))) / i)) = ((tan‘(i · (ℑ‘𝐴))) / i))
150148, 149eqtrd 2777 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘(tan‘(i · (ℑ‘𝐴)))) = ((tan‘(i · (ℑ‘𝐴))) / i))
151150oveq2d 7447 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) · (ℑ‘(tan‘(i · (ℑ‘𝐴))))) = ((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)))
152146, 151eqtrd 2777 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) = ((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)))
153152negeqd 11502 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → -(ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) = -((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)))
154145, 153eqtrid 2789 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((ℑ‘1) − (ℑ‘((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = -((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)))
155141, 154eqtrd 2777 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = -((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)))
156155negeqd 11502 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → -(ℑ‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = --((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)))
15764, 67remulcld 11291 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)) ∈ ℝ)
158157recnd 11289 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)) ∈ ℂ)
159158negnegd 11611 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → --((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)) = ((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)))
160139, 156, 1593eqtrd 2781 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) = ((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)))
161130fveq2d 6910 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘((tan‘(ℜ‘𝐴)) + (i · ((tan‘(i · (ℑ‘𝐴))) / i)))) = (ℑ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))
16264, 67crimd 15271 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘((tan‘(ℜ‘𝐴)) + (i · ((tan‘(i · (ℑ‘𝐴))) / i)))) = ((tan‘(i · (ℑ‘𝐴))) / i))
163161, 162eqtr3d 2779 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℑ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))) = ((tan‘(i · (ℑ‘𝐴))) / i))
164160, 163oveq12d 7449 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((ℑ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) · (ℑ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))) = (((tan‘(ℜ‘𝐴)) · ((tan‘(i · (ℑ‘𝐴))) / i)) · ((tan‘(i · (ℑ‘𝐴))) / i)))
16583sqvald 14183 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((tan‘(i · (ℑ‘𝐴))) / i)↑2) = (((tan‘(i · (ℑ‘𝐴))) / i) · ((tan‘(i · (ℑ‘𝐴))) / i)))
166165oveq2d 7447 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) · (((tan‘(i · (ℑ‘𝐴))) / i)↑2)) = ((tan‘(ℜ‘𝐴)) · (((tan‘(i · (ℑ‘𝐴))) / i) · ((tan‘(i · (ℑ‘𝐴))) / i))))
167138, 164, 1663eqtr4d 2787 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((ℑ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) · (ℑ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))) = ((tan‘(ℜ‘𝐴)) · (((tan‘(i · (ℑ‘𝐴))) / i)↑2)))
168137, 167oveq12d 7449 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((ℜ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) · (ℜ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))) − ((ℑ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) · (ℑ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))) = (((tan‘(ℜ‘𝐴)) · 1) − ((tan‘(ℜ‘𝐴)) · (((tan‘(i · (ℑ‘𝐴))) / i)↑2))))
16958, 59remuld 15257 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))) = (((ℜ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) · (ℜ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))) − ((ℑ‘(∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))) · (ℑ‘((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))))
1701a1i 11 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 1 ∈ ℂ)
17183sqcld 14184 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((tan‘(i · (ℑ‘𝐴))) / i)↑2) ∈ ℂ)
17225, 170, 171subdid 11719 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((tan‘(ℜ‘𝐴)) · (1 − (((tan‘(i · (ℑ‘𝐴))) / i)↑2))) = (((tan‘(ℜ‘𝐴)) · 1) − ((tan‘(ℜ‘𝐴)) · (((tan‘(i · (ℑ‘𝐴))) / i)↑2))))
173168, 169, 1723eqtr4d 2787 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))) = ((tan‘(ℜ‘𝐴)) · (1 − (((tan‘(i · (ℑ‘𝐴))) / i)↑2))))
17497, 173breqtrrd 5171 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < (ℜ‘((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))))
17557, 61, 63, 174mulgt0d 11416 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < ((1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) · (ℜ‘((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))))
17640fveq2d 6910 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (tan‘𝐴) = (tan‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))))
177 tanadd 16203 . . . . . . 7 ((((ℜ‘𝐴) ∈ ℂ ∧ (i · (ℑ‘𝐴)) ∈ ℂ) ∧ ((cos‘(ℜ‘𝐴)) ≠ 0 ∧ (cos‘(i · (ℑ‘𝐴))) ≠ 0 ∧ (cos‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) ≠ 0)) → (tan‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = (((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))) / (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))))
1784, 31, 24, 34, 44, 177syl23anc 1379 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (tan‘((ℜ‘𝐴) + (i · (ℑ‘𝐴)))) = (((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))) / (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))))
179 recval 15361 . . . . . . . . 9 (((1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) ∈ ℂ ∧ (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))) ≠ 0) → (1 / (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = ((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)))
18038, 52, 179syl2anc 584 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (1 / (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = ((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)))
181180oveq1d 7446 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((1 / (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))) = (((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))
18259, 38, 52divrec2d 12047 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))) / (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = ((1 / (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))
18338abscld 15475 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) ∈ ℝ)
184183resqcld 14165 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2) ∈ ℝ)
185184recnd 11289 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2) ∈ ℂ)
18656rpne0d 13082 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2) ≠ 0)
18758, 59, 185, 186div23d 12080 . . . . . . 7 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))) / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) = (((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))
188181, 182, 1873eqtr4d 2787 . . . . . 6 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))) / (1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) = (((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))) / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)))
189176, 178, 1883eqtrd 2781 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (tan‘𝐴) = (((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))) / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)))
19060, 185, 186divrec2d 12047 . . . . 5 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))) / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) = ((1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) · ((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))))
191189, 190eqtrd 2777 . . . 4 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (tan‘𝐴) = ((1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) · ((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴)))))))
192191fveq2d 6910 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘(tan‘𝐴)) = (ℜ‘((1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) · ((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))))
19357, 60remul2d 15266 . . 3 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘((1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) · ((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))) = ((1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) · (ℜ‘((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))))
194192, 193eqtrd 2777 . 2 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → (ℜ‘(tan‘𝐴)) = ((1 / ((abs‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴))))))↑2)) · (ℜ‘((∗‘(1 − ((tan‘(ℜ‘𝐴)) · (tan‘(i · (ℑ‘𝐴)))))) · ((tan‘(ℜ‘𝐴)) + (tan‘(i · (ℑ‘𝐴))))))))
195175, 194breqtrrd 5171 1 ((𝐴 ∈ ℂ ∧ (ℜ‘𝐴) ∈ (0(,)(π / 2))) → 0 < (ℜ‘(tan‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wss 3951   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  0cc0 11155  1c1 11156  ici 11157   + caddc 11158   · cmul 11160  *cxr 11294   < clt 11295  cle 11296  cmin 11492  -cneg 11493   / cdiv 11920  2c2 12321  cz 12613  +crp 13034  (,)cioo 13387  cexp 14102  ccj 15135  cre 15136  cim 15137  abscabs 15273  cosccos 16100  tanctan 16101  πcpi 16102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-fac 14313  df-bc 14342  df-hash 14370  df-shft 15106  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-ef 16103  df-sin 16105  df-cos 16106  df-tan 16107  df-pi 16108  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-fbas 21361  df-fg 21362  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cld 23027  df-ntr 23028  df-cls 23029  df-nei 23106  df-lp 23144  df-perf 23145  df-cn 23235  df-cnp 23236  df-haus 23323  df-tx 23570  df-hmeo 23763  df-fil 23854  df-fm 23946  df-flim 23947  df-flf 23948  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-limc 25901  df-dv 25902
This theorem is referenced by:  atantan  26966
  Copyright terms: Public domain W3C validator