MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imre Structured version   Visualization version   GIF version

Theorem imre 14457
Description: The imaginary part of a complex number in terms of the real part function. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 6-Nov-2013.)
Assertion
Ref Expression
imre (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(-i · 𝐴)))

Proof of Theorem imre
StepHypRef Expression
1 imval 14456 . 2 (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(𝐴 / i)))
2 ax-icn 10585 . . . . 5 i ∈ ℂ
3 ine0 11064 . . . . 5 i ≠ 0
4 divrec2 11304 . . . . 5 ((𝐴 ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → (𝐴 / i) = ((1 / i) · 𝐴))
52, 3, 4mp3an23 1446 . . . 4 (𝐴 ∈ ℂ → (𝐴 / i) = ((1 / i) · 𝐴))
6 irec 13554 . . . . 5 (1 / i) = -i
76oveq1i 7158 . . . 4 ((1 / i) · 𝐴) = (-i · 𝐴)
85, 7syl6eq 2877 . . 3 (𝐴 ∈ ℂ → (𝐴 / i) = (-i · 𝐴))
98fveq2d 6671 . 2 (𝐴 ∈ ℂ → (ℜ‘(𝐴 / i)) = (ℜ‘(-i · 𝐴)))
101, 9eqtrd 2861 1 (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(-i · 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1530  wcel 2107  wne 3021  cfv 6352  (class class class)co 7148  cc 10524  0cc0 10526  1c1 10527  ici 10528   · cmul 10531  -cneg 10860   / cdiv 11286  cre 14446  cim 14447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-po 5473  df-so 5474  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-im 14450
This theorem is referenced by:  imcl  14460  cnpart  14589  sqrtneglem  14616  absimle  14659  recan  14686  tanregt0  25036  asinlem3a  25361  asinsinlem  25382  asinsin  25383  asinbnd  25390  atanbndlem  25416  ftc1anclem6  34839
  Copyright terms: Public domain W3C validator