MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imre Structured version   Visualization version   GIF version

Theorem imre 15010
Description: The imaginary part of a complex number in terms of the real part function. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 6-Nov-2013.)
Assertion
Ref Expression
imre (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(-i · 𝐴)))

Proof of Theorem imre
StepHypRef Expression
1 imval 15009 . 2 (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(𝐴 / i)))
2 ax-icn 11060 . . . . 5 i ∈ ℂ
3 ine0 11547 . . . . 5 i ≠ 0
4 divrec2 11788 . . . . 5 ((𝐴 ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → (𝐴 / i) = ((1 / i) · 𝐴))
52, 3, 4mp3an23 1455 . . . 4 (𝐴 ∈ ℂ → (𝐴 / i) = ((1 / i) · 𝐴))
6 irec 14103 . . . . 5 (1 / i) = -i
76oveq1i 7351 . . . 4 ((1 / i) · 𝐴) = (-i · 𝐴)
85, 7eqtrdi 2782 . . 3 (𝐴 ∈ ℂ → (𝐴 / i) = (-i · 𝐴))
98fveq2d 6821 . 2 (𝐴 ∈ ℂ → (ℜ‘(𝐴 / i)) = (ℜ‘(-i · 𝐴)))
101, 9eqtrd 2766 1 (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(-i · 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  wne 2928  cfv 6476  (class class class)co 7341  cc 10999  0cc0 11001  1c1 11002  ici 11003   · cmul 11006  -cneg 11340   / cdiv 11769  cre 14999  cim 15000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-po 5519  df-so 5520  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-div 11770  df-im 15003
This theorem is referenced by:  imcl  15013  cnpart  15142  sqrtneglem  15168  absimle  15211  recan  15239  tanregt0  26470  asinlem3a  26802  asinsinlem  26823  asinsin  26824  asinbnd  26831  atanbndlem  26857  ftc1anclem6  37738
  Copyright terms: Public domain W3C validator