Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imre | Structured version Visualization version GIF version |
Description: The imaginary part of a complex number in terms of the real part function. (Contributed by NM, 12-May-2005.) (Revised by Mario Carneiro, 6-Nov-2013.) |
Ref | Expression |
---|---|
imre | ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(-i · 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imval 14519 | . 2 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(𝐴 / i))) | |
2 | ax-icn 10639 | . . . . 5 ⊢ i ∈ ℂ | |
3 | ine0 11118 | . . . . 5 ⊢ i ≠ 0 | |
4 | divrec2 11358 | . . . . 5 ⊢ ((𝐴 ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → (𝐴 / i) = ((1 / i) · 𝐴)) | |
5 | 2, 3, 4 | mp3an23 1450 | . . . 4 ⊢ (𝐴 ∈ ℂ → (𝐴 / i) = ((1 / i) · 𝐴)) |
6 | irec 13619 | . . . . 5 ⊢ (1 / i) = -i | |
7 | 6 | oveq1i 7165 | . . . 4 ⊢ ((1 / i) · 𝐴) = (-i · 𝐴) |
8 | 5, 7 | eqtrdi 2809 | . . 3 ⊢ (𝐴 ∈ ℂ → (𝐴 / i) = (-i · 𝐴)) |
9 | 8 | fveq2d 6666 | . 2 ⊢ (𝐴 ∈ ℂ → (ℜ‘(𝐴 / i)) = (ℜ‘(-i · 𝐴))) |
10 | 1, 9 | eqtrd 2793 | 1 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) = (ℜ‘(-i · 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 ≠ wne 2951 ‘cfv 6339 (class class class)co 7155 ℂcc 10578 0cc0 10580 1c1 10581 ici 10582 · cmul 10585 -cneg 10914 / cdiv 11340 ℜcre 14509 ℑcim 14510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5036 df-opab 5098 df-mpt 5116 df-id 5433 df-po 5446 df-so 5447 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-er 8304 df-en 8533 df-dom 8534 df-sdom 8535 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-div 11341 df-im 14513 |
This theorem is referenced by: imcl 14523 cnpart 14652 sqrtneglem 14679 absimle 14722 recan 14749 tanregt0 25235 asinlem3a 25560 asinsinlem 25581 asinsin 25582 asinbnd 25589 atanbndlem 25615 ftc1anclem6 35441 |
Copyright terms: Public domain | W3C validator |