|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > reim | Structured version Visualization version GIF version | ||
| Description: The real part of a complex number in terms of the imaginary part function. (Contributed by Mario Carneiro, 31-Mar-2015.) | 
| Ref | Expression | 
|---|---|
| reim | ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) = (ℑ‘(i · 𝐴))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ax-icn 11214 | . . . 4 ⊢ i ∈ ℂ | |
| 2 | mulcl 11239 | . . . 4 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ) | |
| 3 | 1, 2 | mpan 690 | . . 3 ⊢ (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ) | 
| 4 | imval 15146 | . . 3 ⊢ ((i · 𝐴) ∈ ℂ → (ℑ‘(i · 𝐴)) = (ℜ‘((i · 𝐴) / i))) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ (𝐴 ∈ ℂ → (ℑ‘(i · 𝐴)) = (ℜ‘((i · 𝐴) / i))) | 
| 6 | ine0 11698 | . . . 4 ⊢ i ≠ 0 | |
| 7 | divcan3 11948 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → ((i · 𝐴) / i) = 𝐴) | |
| 8 | 1, 6, 7 | mp3an23 1455 | . . 3 ⊢ (𝐴 ∈ ℂ → ((i · 𝐴) / i) = 𝐴) | 
| 9 | 8 | fveq2d 6910 | . 2 ⊢ (𝐴 ∈ ℂ → (ℜ‘((i · 𝐴) / i)) = (ℜ‘𝐴)) | 
| 10 | 5, 9 | eqtr2d 2778 | 1 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) = (ℑ‘(i · 𝐴))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ‘cfv 6561 (class class class)co 7431 ℂcc 11153 0cc0 11155 ici 11157 · cmul 11160 / cdiv 11920 ℜcre 15136 ℑcim 15137 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-po 5592 df-so 5593 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-im 15140 | 
| This theorem is referenced by: eqsqrt2d 15407 logi 26629 logimul 26656 logneg2 26657 atancj 26953 atanlogaddlem 26956 atanlogsublem 26958 atantan 26966 sqrtcval 43654 | 
| Copyright terms: Public domain | W3C validator |