![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reim | Structured version Visualization version GIF version |
Description: The real part of a complex number in terms of the imaginary part function. (Contributed by Mario Carneiro, 31-Mar-2015.) |
Ref | Expression |
---|---|
reim | ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) = (ℑ‘(i · 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-icn 11110 | . . . 4 ⊢ i ∈ ℂ | |
2 | mulcl 11135 | . . . 4 ⊢ ((i ∈ ℂ ∧ 𝐴 ∈ ℂ) → (i · 𝐴) ∈ ℂ) | |
3 | 1, 2 | mpan 688 | . . 3 ⊢ (𝐴 ∈ ℂ → (i · 𝐴) ∈ ℂ) |
4 | imval 14992 | . . 3 ⊢ ((i · 𝐴) ∈ ℂ → (ℑ‘(i · 𝐴)) = (ℜ‘((i · 𝐴) / i))) | |
5 | 3, 4 | syl 17 | . 2 ⊢ (𝐴 ∈ ℂ → (ℑ‘(i · 𝐴)) = (ℜ‘((i · 𝐴) / i))) |
6 | ine0 11590 | . . . 4 ⊢ i ≠ 0 | |
7 | divcan3 11839 | . . . 4 ⊢ ((𝐴 ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → ((i · 𝐴) / i) = 𝐴) | |
8 | 1, 6, 7 | mp3an23 1453 | . . 3 ⊢ (𝐴 ∈ ℂ → ((i · 𝐴) / i) = 𝐴) |
9 | 8 | fveq2d 6846 | . 2 ⊢ (𝐴 ∈ ℂ → (ℜ‘((i · 𝐴) / i)) = (ℜ‘𝐴)) |
10 | 5, 9 | eqtr2d 2777 | 1 ⊢ (𝐴 ∈ ℂ → (ℜ‘𝐴) = (ℑ‘(i · 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ≠ wne 2943 ‘cfv 6496 (class class class)co 7357 ℂcc 11049 0cc0 11051 ici 11053 · cmul 11056 / cdiv 11812 ℜcre 14982 ℑcim 14983 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-br 5106 df-opab 5168 df-mpt 5189 df-id 5531 df-po 5545 df-so 5546 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-er 8648 df-en 8884 df-dom 8885 df-sdom 8886 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-im 14986 |
This theorem is referenced by: eqsqrt2d 15253 logimul 25969 logneg2 25970 atancj 26260 atanlogaddlem 26263 atanlogsublem 26265 atantan 26273 logi 34307 sqrtcval 41903 |
Copyright terms: Public domain | W3C validator |