MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpsqrtlem Structured version   Visualization version   GIF version

Theorem cxpsqrtlem 24954
Description: Lemma for cxpsqrt 24955. (Contributed by Mario Carneiro, 2-Aug-2014.)
Assertion
Ref Expression
cxpsqrtlem (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (i · (√‘𝐴)) ∈ ℝ)

Proof of Theorem cxpsqrtlem
StepHypRef Expression
1 ax-icn 10431 . . 3 i ∈ ℂ
2 sqrtcl 14543 . . . 4 (𝐴 ∈ ℂ → (√‘𝐴) ∈ ℂ)
32ad2antrr 722 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (√‘𝐴) ∈ ℂ)
4 mulcl 10456 . . 3 ((i ∈ ℂ ∧ (√‘𝐴) ∈ ℂ) → (i · (√‘𝐴)) ∈ ℂ)
51, 3, 4sylancr 587 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (i · (√‘𝐴)) ∈ ℂ)
6 imval 14288 . . . 4 ((i · (√‘𝐴)) ∈ ℂ → (ℑ‘(i · (√‘𝐴))) = (ℜ‘((i · (√‘𝐴)) / i)))
75, 6syl 17 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (ℑ‘(i · (√‘𝐴))) = (ℜ‘((i · (√‘𝐴)) / i)))
8 ine0 10912 . . . . . 6 i ≠ 0
9 divcan3 11161 . . . . . 6 (((√‘𝐴) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → ((i · (√‘𝐴)) / i) = (√‘𝐴))
101, 8, 9mp3an23 1443 . . . . 5 ((√‘𝐴) ∈ ℂ → ((i · (√‘𝐴)) / i) = (√‘𝐴))
113, 10syl 17 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((i · (√‘𝐴)) / i) = (√‘𝐴))
1211fveq2d 6534 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (ℜ‘((i · (√‘𝐴)) / i)) = (ℜ‘(√‘𝐴)))
13 halfre 11688 . . . . . . . . . . . . 13 (1 / 2) ∈ ℝ
1413recni 10490 . . . . . . . . . . . 12 (1 / 2) ∈ ℂ
15 logcl 24821 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
16 mulcl 10456 . . . . . . . . . . . 12 (((1 / 2) ∈ ℂ ∧ (log‘𝐴) ∈ ℂ) → ((1 / 2) · (log‘𝐴)) ∈ ℂ)
1714, 15, 16sylancr 587 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((1 / 2) · (log‘𝐴)) ∈ ℂ)
1817recld 14375 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℜ‘((1 / 2) · (log‘𝐴))) ∈ ℝ)
1918reefcld 15262 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) ∈ ℝ)
2017imcld 14376 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘((1 / 2) · (log‘𝐴))) ∈ ℝ)
2120recoscld 15318 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) ∈ ℝ)
2218rpefcld 15279 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) ∈ ℝ+)
2322rpge0d 12274 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 0 ≤ (exp‘(ℜ‘((1 / 2) · (log‘𝐴)))))
24 immul2 14318 . . . . . . . . . . . . 13 (((1 / 2) ∈ ℝ ∧ (log‘𝐴) ∈ ℂ) → (ℑ‘((1 / 2) · (log‘𝐴))) = ((1 / 2) · (ℑ‘(log‘𝐴))))
2513, 15, 24sylancr 587 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘((1 / 2) · (log‘𝐴))) = ((1 / 2) · (ℑ‘(log‘𝐴))))
2615imcld 14376 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘(log‘𝐴)) ∈ ℝ)
2726recnd 10504 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘(log‘𝐴)) ∈ ℂ)
28 mulcom 10458 . . . . . . . . . . . . 13 (((1 / 2) ∈ ℂ ∧ (ℑ‘(log‘𝐴)) ∈ ℂ) → ((1 / 2) · (ℑ‘(log‘𝐴))) = ((ℑ‘(log‘𝐴)) · (1 / 2)))
2914, 27, 28sylancr 587 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((1 / 2) · (ℑ‘(log‘𝐴))) = ((ℑ‘(log‘𝐴)) · (1 / 2)))
3025, 29eqtrd 2829 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘((1 / 2) · (log‘𝐴))) = ((ℑ‘(log‘𝐴)) · (1 / 2)))
31 logimcl 24822 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
3231simpld 495 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → -π < (ℑ‘(log‘𝐴)))
33 pire 24715 . . . . . . . . . . . . . . . 16 π ∈ ℝ
3433renegcli 10784 . . . . . . . . . . . . . . 15 -π ∈ ℝ
35 ltle 10565 . . . . . . . . . . . . . . 15 ((-π ∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
3634, 26, 35sylancr 587 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
3732, 36mpd 15 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → -π ≤ (ℑ‘(log‘𝐴)))
3831simprd 496 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘(log‘𝐴)) ≤ π)
3934, 33elicc2i 12641 . . . . . . . . . . . . 13 ((ℑ‘(log‘𝐴)) ∈ (-π[,]π) ↔ ((ℑ‘(log‘𝐴)) ∈ ℝ ∧ -π ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
4026, 37, 38, 39syl3anbrc 1334 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘(log‘𝐴)) ∈ (-π[,]π))
41 halfgt0 11690 . . . . . . . . . . . . . 14 0 < (1 / 2)
4213, 41elrpii 12231 . . . . . . . . . . . . 13 (1 / 2) ∈ ℝ+
4333recni 10490 . . . . . . . . . . . . . . 15 π ∈ ℂ
44 2cn 11549 . . . . . . . . . . . . . . 15 2 ∈ ℂ
45 2ne0 11578 . . . . . . . . . . . . . . 15 2 ≠ 0
46 divneg 11169 . . . . . . . . . . . . . . 15 ((π ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(π / 2) = (-π / 2))
4743, 44, 45, 46mp3an 1451 . . . . . . . . . . . . . 14 -(π / 2) = (-π / 2)
4834recni 10490 . . . . . . . . . . . . . . 15 -π ∈ ℂ
4948, 44, 45divreci 11222 . . . . . . . . . . . . . 14 (-π / 2) = (-π · (1 / 2))
5047, 49eqtr2i 2818 . . . . . . . . . . . . 13 (-π · (1 / 2)) = -(π / 2)
5143, 44, 45divreci 11222 . . . . . . . . . . . . . 14 (π / 2) = (π · (1 / 2))
5251eqcomi 2802 . . . . . . . . . . . . 13 (π · (1 / 2)) = (π / 2)
5334, 33, 42, 50, 52iccdili 12716 . . . . . . . . . . . 12 ((ℑ‘(log‘𝐴)) ∈ (-π[,]π) → ((ℑ‘(log‘𝐴)) · (1 / 2)) ∈ (-(π / 2)[,](π / 2)))
5440, 53syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((ℑ‘(log‘𝐴)) · (1 / 2)) ∈ (-(π / 2)[,](π / 2)))
5530, 54eqeltrd 2881 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘((1 / 2) · (log‘𝐴))) ∈ (-(π / 2)[,](π / 2)))
56 cosq14ge0 24768 . . . . . . . . . 10 ((ℑ‘((1 / 2) · (log‘𝐴))) ∈ (-(π / 2)[,](π / 2)) → 0 ≤ (cos‘(ℑ‘((1 / 2) · (log‘𝐴)))))
5755, 56syl 17 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 0 ≤ (cos‘(ℑ‘((1 / 2) · (log‘𝐴)))))
5819, 21, 23, 57mulge0d 11054 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 0 ≤ ((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · (cos‘(ℑ‘((1 / 2) · (log‘𝐴))))))
59 cxpef 24917 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (1 / 2) ∈ ℂ) → (𝐴𝑐(1 / 2)) = (exp‘((1 / 2) · (log‘𝐴))))
6014, 59mp3an3 1440 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴𝑐(1 / 2)) = (exp‘((1 / 2) · (log‘𝐴))))
61 efeul 15336 . . . . . . . . . . . 12 (((1 / 2) · (log‘𝐴)) ∈ ℂ → (exp‘((1 / 2) · (log‘𝐴))) = ((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · ((cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) + (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴))))))))
6217, 61syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘((1 / 2) · (log‘𝐴))) = ((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · ((cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) + (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴))))))))
6360, 62eqtrd 2829 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴𝑐(1 / 2)) = ((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · ((cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) + (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴))))))))
6463fveq2d 6534 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℜ‘(𝐴𝑐(1 / 2))) = (ℜ‘((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · ((cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) + (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴)))))))))
6521recnd 10504 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) ∈ ℂ)
6620resincld 15317 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (sin‘(ℑ‘((1 / 2) · (log‘𝐴)))) ∈ ℝ)
6766recnd 10504 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (sin‘(ℑ‘((1 / 2) · (log‘𝐴)))) ∈ ℂ)
68 mulcl 10456 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ (sin‘(ℑ‘((1 / 2) · (log‘𝐴)))) ∈ ℂ) → (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴))))) ∈ ℂ)
691, 67, 68sylancr 587 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴))))) ∈ ℂ)
7065, 69addcld 10495 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) + (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴)))))) ∈ ℂ)
7119, 70remul2d 14408 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℜ‘((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · ((cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) + (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴)))))))) = ((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · (ℜ‘((cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) + (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴)))))))))
7221, 66crred 14412 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℜ‘((cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) + (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴))))))) = (cos‘(ℑ‘((1 / 2) · (log‘𝐴)))))
7372oveq2d 7023 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · (ℜ‘((cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) + (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴)))))))) = ((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · (cos‘(ℑ‘((1 / 2) · (log‘𝐴))))))
7464, 71, 733eqtrd 2833 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℜ‘(𝐴𝑐(1 / 2))) = ((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · (cos‘(ℑ‘((1 / 2) · (log‘𝐴))))))
7558, 74breqtrrd 4984 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 0 ≤ (ℜ‘(𝐴𝑐(1 / 2))))
7675adantr 481 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → 0 ≤ (ℜ‘(𝐴𝑐(1 / 2))))
77 simpr 485 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (𝐴𝑐(1 / 2)) = -(√‘𝐴))
7877fveq2d 6534 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (ℜ‘(𝐴𝑐(1 / 2))) = (ℜ‘-(√‘𝐴)))
793renegd 14390 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (ℜ‘-(√‘𝐴)) = -(ℜ‘(√‘𝐴)))
8078, 79eqtrd 2829 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (ℜ‘(𝐴𝑐(1 / 2))) = -(ℜ‘(√‘𝐴)))
8176, 80breqtrd 4982 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → 0 ≤ -(ℜ‘(√‘𝐴)))
823recld 14375 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (ℜ‘(√‘𝐴)) ∈ ℝ)
8382le0neg1d 11048 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((ℜ‘(√‘𝐴)) ≤ 0 ↔ 0 ≤ -(ℜ‘(√‘𝐴))))
8481, 83mpbird 258 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (ℜ‘(√‘𝐴)) ≤ 0)
85 sqrtrege0 14547 . . . . 5 (𝐴 ∈ ℂ → 0 ≤ (ℜ‘(√‘𝐴)))
8685ad2antrr 722 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → 0 ≤ (ℜ‘(√‘𝐴)))
87 0re 10478 . . . . 5 0 ∈ ℝ
88 letri3 10562 . . . . 5 (((ℜ‘(√‘𝐴)) ∈ ℝ ∧ 0 ∈ ℝ) → ((ℜ‘(√‘𝐴)) = 0 ↔ ((ℜ‘(√‘𝐴)) ≤ 0 ∧ 0 ≤ (ℜ‘(√‘𝐴)))))
8982, 87, 88sylancl 586 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((ℜ‘(√‘𝐴)) = 0 ↔ ((ℜ‘(√‘𝐴)) ≤ 0 ∧ 0 ≤ (ℜ‘(√‘𝐴)))))
9084, 86, 89mpbir2and 709 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (ℜ‘(√‘𝐴)) = 0)
917, 12, 903eqtrd 2833 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (ℑ‘(i · (√‘𝐴))) = 0)
925, 91reim0bd 14381 1 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (i · (√‘𝐴)) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1520  wcel 2079  wne 2982   class class class wbr 4956  cfv 6217  (class class class)co 7007  cc 10370  cr 10371  0cc0 10372  1c1 10373  ici 10374   + caddc 10375   · cmul 10377   < clt 10510  cle 10511  -cneg 10707   / cdiv 11134  2c2 11529  [,]cicc 12580  cre 14278  cim 14279  csqrt 14414  expce 15236  sincsin 15238  cosccos 15239  πcpi 15241  logclog 24807  𝑐ccxp 24808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-rep 5075  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310  ax-inf2 8939  ax-cnex 10428  ax-resscn 10429  ax-1cn 10430  ax-icn 10431  ax-addcl 10432  ax-addrcl 10433  ax-mulcl 10434  ax-mulrcl 10435  ax-mulcom 10436  ax-addass 10437  ax-mulass 10438  ax-distr 10439  ax-i2m1 10440  ax-1ne0 10441  ax-1rid 10442  ax-rnegex 10443  ax-rrecex 10444  ax-cnre 10445  ax-pre-lttri 10446  ax-pre-lttrn 10447  ax-pre-ltadd 10448  ax-pre-mulgt0 10449  ax-pre-sup 10450  ax-addf 10451  ax-mulf 10452
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1079  df-3an 1080  df-tru 1523  df-fal 1533  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-nel 3089  df-ral 3108  df-rex 3109  df-reu 3110  df-rmo 3111  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-pss 3871  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-tp 4471  df-op 4473  df-uni 4740  df-int 4777  df-iun 4821  df-iin 4822  df-br 4957  df-opab 5019  df-mpt 5036  df-tr 5058  df-id 5340  df-eprel 5345  df-po 5354  df-so 5355  df-fr 5394  df-se 5395  df-we 5396  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-pred 6015  df-ord 6061  df-on 6062  df-lim 6063  df-suc 6064  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-isom 6226  df-riota 6968  df-ov 7010  df-oprab 7011  df-mpo 7012  df-of 7258  df-om 7428  df-1st 7536  df-2nd 7537  df-supp 7673  df-wrecs 7789  df-recs 7851  df-rdg 7889  df-1o 7944  df-2o 7945  df-oadd 7948  df-er 8130  df-map 8249  df-pm 8250  df-ixp 8301  df-en 8348  df-dom 8349  df-sdom 8350  df-fin 8351  df-fsupp 8670  df-fi 8711  df-sup 8742  df-inf 8743  df-oi 8810  df-card 9203  df-pnf 10512  df-mnf 10513  df-xr 10514  df-ltxr 10515  df-le 10516  df-sub 10708  df-neg 10709  df-div 11135  df-nn 11476  df-2 11537  df-3 11538  df-4 11539  df-5 11540  df-6 11541  df-7 11542  df-8 11543  df-9 11544  df-n0 11735  df-z 11819  df-dec 11937  df-uz 12083  df-q 12187  df-rp 12229  df-xneg 12346  df-xadd 12347  df-xmul 12348  df-ioo 12581  df-ioc 12582  df-ico 12583  df-icc 12584  df-fz 12732  df-fzo 12873  df-fl 13000  df-mod 13076  df-seq 13208  df-exp 13268  df-fac 13472  df-bc 13501  df-hash 13529  df-shft 14248  df-cj 14280  df-re 14281  df-im 14282  df-sqrt 14416  df-abs 14417  df-limsup 14650  df-clim 14667  df-rlim 14668  df-sum 14865  df-ef 15242  df-sin 15244  df-cos 15245  df-pi 15247  df-struct 16302  df-ndx 16303  df-slot 16304  df-base 16306  df-sets 16307  df-ress 16308  df-plusg 16395  df-mulr 16396  df-starv 16397  df-sca 16398  df-vsca 16399  df-ip 16400  df-tset 16401  df-ple 16402  df-ds 16404  df-unif 16405  df-hom 16406  df-cco 16407  df-rest 16513  df-topn 16514  df-0g 16532  df-gsum 16533  df-topgen 16534  df-pt 16535  df-prds 16538  df-xrs 16592  df-qtop 16597  df-imas 16598  df-xps 16600  df-mre 16674  df-mrc 16675  df-acs 16677  df-mgm 17669  df-sgrp 17711  df-mnd 17722  df-submnd 17763  df-mulg 17970  df-cntz 18176  df-cmn 18623  df-psmet 20207  df-xmet 20208  df-met 20209  df-bl 20210  df-mopn 20211  df-fbas 20212  df-fg 20213  df-cnfld 20216  df-top 21174  df-topon 21191  df-topsp 21213  df-bases 21226  df-cld 21299  df-ntr 21300  df-cls 21301  df-nei 21378  df-lp 21416  df-perf 21417  df-cn 21507  df-cnp 21508  df-haus 21595  df-tx 21842  df-hmeo 22035  df-fil 22126  df-fm 22218  df-flim 22219  df-flf 22220  df-xms 22601  df-ms 22602  df-tms 22603  df-cncf 23157  df-limc 24135  df-dv 24136  df-log 24809  df-cxp 24810
This theorem is referenced by:  cxpsqrt  24955
  Copyright terms: Public domain W3C validator