MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpsqrtlem Structured version   Visualization version   GIF version

Theorem cxpsqrtlem 24753
Description: Lemma for cxpsqrt 24754. (Contributed by Mario Carneiro, 2-Aug-2014.)
Assertion
Ref Expression
cxpsqrtlem (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (i · (√‘𝐴)) ∈ ℝ)

Proof of Theorem cxpsqrtlem
StepHypRef Expression
1 ax-icn 10252 . . 3 i ∈ ℂ
2 sqrtcl 14400 . . . 4 (𝐴 ∈ ℂ → (√‘𝐴) ∈ ℂ)
32ad2antrr 717 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (√‘𝐴) ∈ ℂ)
4 mulcl 10277 . . 3 ((i ∈ ℂ ∧ (√‘𝐴) ∈ ℂ) → (i · (√‘𝐴)) ∈ ℂ)
51, 3, 4sylancr 581 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (i · (√‘𝐴)) ∈ ℂ)
6 imval 14146 . . . 4 ((i · (√‘𝐴)) ∈ ℂ → (ℑ‘(i · (√‘𝐴))) = (ℜ‘((i · (√‘𝐴)) / i)))
75, 6syl 17 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (ℑ‘(i · (√‘𝐴))) = (ℜ‘((i · (√‘𝐴)) / i)))
8 ine0 10723 . . . . . 6 i ≠ 0
9 divcan3 10969 . . . . . 6 (((√‘𝐴) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → ((i · (√‘𝐴)) / i) = (√‘𝐴))
101, 8, 9mp3an23 1577 . . . . 5 ((√‘𝐴) ∈ ℂ → ((i · (√‘𝐴)) / i) = (√‘𝐴))
113, 10syl 17 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((i · (√‘𝐴)) / i) = (√‘𝐴))
1211fveq2d 6383 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (ℜ‘((i · (√‘𝐴)) / i)) = (ℜ‘(√‘𝐴)))
13 halfre 11496 . . . . . . . . . . . . 13 (1 / 2) ∈ ℝ
1413recni 10312 . . . . . . . . . . . 12 (1 / 2) ∈ ℂ
15 logcl 24620 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
16 mulcl 10277 . . . . . . . . . . . 12 (((1 / 2) ∈ ℂ ∧ (log‘𝐴) ∈ ℂ) → ((1 / 2) · (log‘𝐴)) ∈ ℂ)
1714, 15, 16sylancr 581 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((1 / 2) · (log‘𝐴)) ∈ ℂ)
1817recld 14233 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℜ‘((1 / 2) · (log‘𝐴))) ∈ ℝ)
1918reefcld 15114 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) ∈ ℝ)
2017imcld 14234 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘((1 / 2) · (log‘𝐴))) ∈ ℝ)
2120recoscld 15170 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) ∈ ℝ)
2218rpefcld 15131 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) ∈ ℝ+)
2322rpge0d 12079 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 0 ≤ (exp‘(ℜ‘((1 / 2) · (log‘𝐴)))))
24 immul2 14176 . . . . . . . . . . . . 13 (((1 / 2) ∈ ℝ ∧ (log‘𝐴) ∈ ℂ) → (ℑ‘((1 / 2) · (log‘𝐴))) = ((1 / 2) · (ℑ‘(log‘𝐴))))
2513, 15, 24sylancr 581 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘((1 / 2) · (log‘𝐴))) = ((1 / 2) · (ℑ‘(log‘𝐴))))
2615imcld 14234 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘(log‘𝐴)) ∈ ℝ)
2726recnd 10326 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘(log‘𝐴)) ∈ ℂ)
28 mulcom 10279 . . . . . . . . . . . . 13 (((1 / 2) ∈ ℂ ∧ (ℑ‘(log‘𝐴)) ∈ ℂ) → ((1 / 2) · (ℑ‘(log‘𝐴))) = ((ℑ‘(log‘𝐴)) · (1 / 2)))
2914, 27, 28sylancr 581 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((1 / 2) · (ℑ‘(log‘𝐴))) = ((ℑ‘(log‘𝐴)) · (1 / 2)))
3025, 29eqtrd 2799 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘((1 / 2) · (log‘𝐴))) = ((ℑ‘(log‘𝐴)) · (1 / 2)))
31 logimcl 24621 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
3231simpld 488 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → -π < (ℑ‘(log‘𝐴)))
33 pire 24516 . . . . . . . . . . . . . . . 16 π ∈ ℝ
3433renegcli 10600 . . . . . . . . . . . . . . 15 -π ∈ ℝ
35 ltle 10384 . . . . . . . . . . . . . . 15 ((-π ∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
3634, 26, 35sylancr 581 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
3732, 36mpd 15 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → -π ≤ (ℑ‘(log‘𝐴)))
3831simprd 489 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘(log‘𝐴)) ≤ π)
3934, 33elicc2i 12446 . . . . . . . . . . . . 13 ((ℑ‘(log‘𝐴)) ∈ (-π[,]π) ↔ ((ℑ‘(log‘𝐴)) ∈ ℝ ∧ -π ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
4026, 37, 38, 39syl3anbrc 1443 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘(log‘𝐴)) ∈ (-π[,]π))
41 halfgt0 11498 . . . . . . . . . . . . . 14 0 < (1 / 2)
4213, 41elrpii 12036 . . . . . . . . . . . . 13 (1 / 2) ∈ ℝ+
4333recni 10312 . . . . . . . . . . . . . . 15 π ∈ ℂ
44 2cn 11351 . . . . . . . . . . . . . . 15 2 ∈ ℂ
45 2ne0 11387 . . . . . . . . . . . . . . 15 2 ≠ 0
46 divneg 10977 . . . . . . . . . . . . . . 15 ((π ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(π / 2) = (-π / 2))
4743, 44, 45, 46mp3an 1585 . . . . . . . . . . . . . 14 -(π / 2) = (-π / 2)
4834recni 10312 . . . . . . . . . . . . . . 15 -π ∈ ℂ
4948, 44, 45divreci 11028 . . . . . . . . . . . . . 14 (-π / 2) = (-π · (1 / 2))
5047, 49eqtr2i 2788 . . . . . . . . . . . . 13 (-π · (1 / 2)) = -(π / 2)
5143, 44, 45divreci 11028 . . . . . . . . . . . . . 14 (π / 2) = (π · (1 / 2))
5251eqcomi 2774 . . . . . . . . . . . . 13 (π · (1 / 2)) = (π / 2)
5334, 33, 42, 50, 52iccdili 12523 . . . . . . . . . . . 12 ((ℑ‘(log‘𝐴)) ∈ (-π[,]π) → ((ℑ‘(log‘𝐴)) · (1 / 2)) ∈ (-(π / 2)[,](π / 2)))
5440, 53syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((ℑ‘(log‘𝐴)) · (1 / 2)) ∈ (-(π / 2)[,](π / 2)))
5530, 54eqeltrd 2844 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘((1 / 2) · (log‘𝐴))) ∈ (-(π / 2)[,](π / 2)))
56 cosq14ge0 24569 . . . . . . . . . 10 ((ℑ‘((1 / 2) · (log‘𝐴))) ∈ (-(π / 2)[,](π / 2)) → 0 ≤ (cos‘(ℑ‘((1 / 2) · (log‘𝐴)))))
5755, 56syl 17 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 0 ≤ (cos‘(ℑ‘((1 / 2) · (log‘𝐴)))))
5819, 21, 23, 57mulge0d 10862 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 0 ≤ ((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · (cos‘(ℑ‘((1 / 2) · (log‘𝐴))))))
59 cxpef 24716 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (1 / 2) ∈ ℂ) → (𝐴𝑐(1 / 2)) = (exp‘((1 / 2) · (log‘𝐴))))
6014, 59mp3an3 1574 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴𝑐(1 / 2)) = (exp‘((1 / 2) · (log‘𝐴))))
61 efeul 15188 . . . . . . . . . . . 12 (((1 / 2) · (log‘𝐴)) ∈ ℂ → (exp‘((1 / 2) · (log‘𝐴))) = ((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · ((cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) + (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴))))))))
6217, 61syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘((1 / 2) · (log‘𝐴))) = ((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · ((cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) + (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴))))))))
6360, 62eqtrd 2799 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴𝑐(1 / 2)) = ((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · ((cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) + (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴))))))))
6463fveq2d 6383 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℜ‘(𝐴𝑐(1 / 2))) = (ℜ‘((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · ((cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) + (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴)))))))))
6521recnd 10326 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) ∈ ℂ)
6620resincld 15169 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (sin‘(ℑ‘((1 / 2) · (log‘𝐴)))) ∈ ℝ)
6766recnd 10326 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (sin‘(ℑ‘((1 / 2) · (log‘𝐴)))) ∈ ℂ)
68 mulcl 10277 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ (sin‘(ℑ‘((1 / 2) · (log‘𝐴)))) ∈ ℂ) → (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴))))) ∈ ℂ)
691, 67, 68sylancr 581 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴))))) ∈ ℂ)
7065, 69addcld 10317 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) + (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴)))))) ∈ ℂ)
7119, 70remul2d 14266 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℜ‘((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · ((cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) + (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴)))))))) = ((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · (ℜ‘((cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) + (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴)))))))))
7221, 66crred 14270 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℜ‘((cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) + (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴))))))) = (cos‘(ℑ‘((1 / 2) · (log‘𝐴)))))
7372oveq2d 6862 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · (ℜ‘((cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) + (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴)))))))) = ((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · (cos‘(ℑ‘((1 / 2) · (log‘𝐴))))))
7464, 71, 733eqtrd 2803 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℜ‘(𝐴𝑐(1 / 2))) = ((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · (cos‘(ℑ‘((1 / 2) · (log‘𝐴))))))
7558, 74breqtrrd 4839 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 0 ≤ (ℜ‘(𝐴𝑐(1 / 2))))
7675adantr 472 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → 0 ≤ (ℜ‘(𝐴𝑐(1 / 2))))
77 simpr 477 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (𝐴𝑐(1 / 2)) = -(√‘𝐴))
7877fveq2d 6383 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (ℜ‘(𝐴𝑐(1 / 2))) = (ℜ‘-(√‘𝐴)))
793renegd 14248 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (ℜ‘-(√‘𝐴)) = -(ℜ‘(√‘𝐴)))
8078, 79eqtrd 2799 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (ℜ‘(𝐴𝑐(1 / 2))) = -(ℜ‘(√‘𝐴)))
8176, 80breqtrd 4837 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → 0 ≤ -(ℜ‘(√‘𝐴)))
823recld 14233 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (ℜ‘(√‘𝐴)) ∈ ℝ)
8382le0neg1d 10857 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((ℜ‘(√‘𝐴)) ≤ 0 ↔ 0 ≤ -(ℜ‘(√‘𝐴))))
8481, 83mpbird 248 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (ℜ‘(√‘𝐴)) ≤ 0)
85 sqrtrege0 14404 . . . . 5 (𝐴 ∈ ℂ → 0 ≤ (ℜ‘(√‘𝐴)))
8685ad2antrr 717 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → 0 ≤ (ℜ‘(√‘𝐴)))
87 0re 10299 . . . . 5 0 ∈ ℝ
88 letri3 10381 . . . . 5 (((ℜ‘(√‘𝐴)) ∈ ℝ ∧ 0 ∈ ℝ) → ((ℜ‘(√‘𝐴)) = 0 ↔ ((ℜ‘(√‘𝐴)) ≤ 0 ∧ 0 ≤ (ℜ‘(√‘𝐴)))))
8982, 87, 88sylancl 580 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((ℜ‘(√‘𝐴)) = 0 ↔ ((ℜ‘(√‘𝐴)) ≤ 0 ∧ 0 ≤ (ℜ‘(√‘𝐴)))))
9084, 86, 89mpbir2and 704 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (ℜ‘(√‘𝐴)) = 0)
917, 12, 903eqtrd 2803 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (ℑ‘(i · (√‘𝐴))) = 0)
925, 91reim0bd 14239 1 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (i · (√‘𝐴)) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wne 2937   class class class wbr 4811  cfv 6070  (class class class)co 6846  cc 10191  cr 10192  0cc0 10193  1c1 10194  ici 10195   + caddc 10196   · cmul 10198   < clt 10332  cle 10333  -cneg 10525   / cdiv 10942  2c2 11331  [,]cicc 12385  cre 14136  cim 14137  csqrt 14272  expce 15088  sincsin 15090  cosccos 15091  πcpi 15093  logclog 24606  𝑐ccxp 24607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4932  ax-sep 4943  ax-nul 4951  ax-pow 5003  ax-pr 5064  ax-un 7151  ax-inf2 8757  ax-cnex 10249  ax-resscn 10250  ax-1cn 10251  ax-icn 10252  ax-addcl 10253  ax-addrcl 10254  ax-mulcl 10255  ax-mulrcl 10256  ax-mulcom 10257  ax-addass 10258  ax-mulass 10259  ax-distr 10260  ax-i2m1 10261  ax-1ne0 10262  ax-1rid 10263  ax-rnegex 10264  ax-rrecex 10265  ax-cnre 10266  ax-pre-lttri 10267  ax-pre-lttrn 10268  ax-pre-ltadd 10269  ax-pre-mulgt0 10270  ax-pre-sup 10271  ax-addf 10272  ax-mulf 10273
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3599  df-csb 3694  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-pss 3750  df-nul 4082  df-if 4246  df-pw 4319  df-sn 4337  df-pr 4339  df-tp 4341  df-op 4343  df-uni 4597  df-int 4636  df-iun 4680  df-iin 4681  df-br 4812  df-opab 4874  df-mpt 4891  df-tr 4914  df-id 5187  df-eprel 5192  df-po 5200  df-so 5201  df-fr 5238  df-se 5239  df-we 5240  df-xp 5285  df-rel 5286  df-cnv 5287  df-co 5288  df-dm 5289  df-rn 5290  df-res 5291  df-ima 5292  df-pred 5867  df-ord 5913  df-on 5914  df-lim 5915  df-suc 5916  df-iota 6033  df-fun 6072  df-fn 6073  df-f 6074  df-f1 6075  df-fo 6076  df-f1o 6077  df-fv 6078  df-isom 6079  df-riota 6807  df-ov 6849  df-oprab 6850  df-mpt2 6851  df-of 7099  df-om 7268  df-1st 7370  df-2nd 7371  df-supp 7502  df-wrecs 7614  df-recs 7676  df-rdg 7714  df-1o 7768  df-2o 7769  df-oadd 7772  df-er 7951  df-map 8066  df-pm 8067  df-ixp 8118  df-en 8165  df-dom 8166  df-sdom 8167  df-fin 8168  df-fsupp 8487  df-fi 8528  df-sup 8559  df-inf 8560  df-oi 8626  df-card 9020  df-cda 9247  df-pnf 10334  df-mnf 10335  df-xr 10336  df-ltxr 10337  df-le 10338  df-sub 10526  df-neg 10527  df-div 10943  df-nn 11279  df-2 11339  df-3 11340  df-4 11341  df-5 11342  df-6 11343  df-7 11344  df-8 11345  df-9 11346  df-n0 11543  df-z 11629  df-dec 11746  df-uz 11892  df-q 11995  df-rp 12034  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12386  df-ioc 12387  df-ico 12388  df-icc 12389  df-fz 12539  df-fzo 12679  df-fl 12806  df-mod 12882  df-seq 13014  df-exp 13073  df-fac 13270  df-bc 13299  df-hash 13327  df-shft 14106  df-cj 14138  df-re 14139  df-im 14140  df-sqrt 14274  df-abs 14275  df-limsup 14501  df-clim 14518  df-rlim 14519  df-sum 14716  df-ef 15094  df-sin 15096  df-cos 15097  df-pi 15099  df-struct 16146  df-ndx 16147  df-slot 16148  df-base 16150  df-sets 16151  df-ress 16152  df-plusg 16241  df-mulr 16242  df-starv 16243  df-sca 16244  df-vsca 16245  df-ip 16246  df-tset 16247  df-ple 16248  df-ds 16250  df-unif 16251  df-hom 16252  df-cco 16253  df-rest 16363  df-topn 16364  df-0g 16382  df-gsum 16383  df-topgen 16384  df-pt 16385  df-prds 16388  df-xrs 16442  df-qtop 16447  df-imas 16448  df-xps 16450  df-mre 16526  df-mrc 16527  df-acs 16529  df-mgm 17522  df-sgrp 17564  df-mnd 17575  df-submnd 17616  df-mulg 17822  df-cntz 18027  df-cmn 18475  df-psmet 20025  df-xmet 20026  df-met 20027  df-bl 20028  df-mopn 20029  df-fbas 20030  df-fg 20031  df-cnfld 20034  df-top 20992  df-topon 21009  df-topsp 21031  df-bases 21044  df-cld 21117  df-ntr 21118  df-cls 21119  df-nei 21196  df-lp 21234  df-perf 21235  df-cn 21325  df-cnp 21326  df-haus 21413  df-tx 21659  df-hmeo 21852  df-fil 21943  df-fm 22035  df-flim 22036  df-flf 22037  df-xms 22418  df-ms 22419  df-tms 22420  df-cncf 22974  df-limc 23935  df-dv 23936  df-log 24608  df-cxp 24609
This theorem is referenced by:  cxpsqrt  24754
  Copyright terms: Public domain W3C validator