MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cxpsqrtlem Structured version   Visualization version   GIF version

Theorem cxpsqrtlem 26647
Description: Lemma for cxpsqrt 26648. (Contributed by Mario Carneiro, 2-Aug-2014.)
Assertion
Ref Expression
cxpsqrtlem (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (i · (√‘𝐴)) ∈ ℝ)

Proof of Theorem cxpsqrtlem
StepHypRef Expression
1 ax-icn 11180 . . 3 i ∈ ℂ
2 sqrtcl 15367 . . . 4 (𝐴 ∈ ℂ → (√‘𝐴) ∈ ℂ)
32ad2antrr 726 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (√‘𝐴) ∈ ℂ)
4 mulcl 11205 . . 3 ((i ∈ ℂ ∧ (√‘𝐴) ∈ ℂ) → (i · (√‘𝐴)) ∈ ℂ)
51, 3, 4sylancr 587 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (i · (√‘𝐴)) ∈ ℂ)
6 imval 15113 . . . 4 ((i · (√‘𝐴)) ∈ ℂ → (ℑ‘(i · (√‘𝐴))) = (ℜ‘((i · (√‘𝐴)) / i)))
75, 6syl 17 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (ℑ‘(i · (√‘𝐴))) = (ℜ‘((i · (√‘𝐴)) / i)))
8 ine0 11664 . . . . . 6 i ≠ 0
9 divcan3 11914 . . . . . 6 (((√‘𝐴) ∈ ℂ ∧ i ∈ ℂ ∧ i ≠ 0) → ((i · (√‘𝐴)) / i) = (√‘𝐴))
101, 8, 9mp3an23 1454 . . . . 5 ((√‘𝐴) ∈ ℂ → ((i · (√‘𝐴)) / i) = (√‘𝐴))
113, 10syl 17 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((i · (√‘𝐴)) / i) = (√‘𝐴))
1211fveq2d 6876 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (ℜ‘((i · (√‘𝐴)) / i)) = (ℜ‘(√‘𝐴)))
13 halfre 12446 . . . . . . . . . . . . 13 (1 / 2) ∈ ℝ
1413recni 11241 . . . . . . . . . . . 12 (1 / 2) ∈ ℂ
15 logcl 26513 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (log‘𝐴) ∈ ℂ)
16 mulcl 11205 . . . . . . . . . . . 12 (((1 / 2) ∈ ℂ ∧ (log‘𝐴) ∈ ℂ) → ((1 / 2) · (log‘𝐴)) ∈ ℂ)
1714, 15, 16sylancr 587 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((1 / 2) · (log‘𝐴)) ∈ ℂ)
1817recld 15200 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℜ‘((1 / 2) · (log‘𝐴))) ∈ ℝ)
1918reefcld 16091 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) ∈ ℝ)
2017imcld 15201 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘((1 / 2) · (log‘𝐴))) ∈ ℝ)
2120recoscld 16147 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) ∈ ℝ)
2218rpefcld 16108 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) ∈ ℝ+)
2322rpge0d 13047 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 0 ≤ (exp‘(ℜ‘((1 / 2) · (log‘𝐴)))))
24 immul2 15143 . . . . . . . . . . . . 13 (((1 / 2) ∈ ℝ ∧ (log‘𝐴) ∈ ℂ) → (ℑ‘((1 / 2) · (log‘𝐴))) = ((1 / 2) · (ℑ‘(log‘𝐴))))
2513, 15, 24sylancr 587 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘((1 / 2) · (log‘𝐴))) = ((1 / 2) · (ℑ‘(log‘𝐴))))
2615imcld 15201 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘(log‘𝐴)) ∈ ℝ)
2726recnd 11255 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘(log‘𝐴)) ∈ ℂ)
28 mulcom 11207 . . . . . . . . . . . . 13 (((1 / 2) ∈ ℂ ∧ (ℑ‘(log‘𝐴)) ∈ ℂ) → ((1 / 2) · (ℑ‘(log‘𝐴))) = ((ℑ‘(log‘𝐴)) · (1 / 2)))
2914, 27, 28sylancr 587 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((1 / 2) · (ℑ‘(log‘𝐴))) = ((ℑ‘(log‘𝐴)) · (1 / 2)))
3025, 29eqtrd 2769 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘((1 / 2) · (log‘𝐴))) = ((ℑ‘(log‘𝐴)) · (1 / 2)))
31 logimcl 26514 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
3231simpld 494 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → -π < (ℑ‘(log‘𝐴)))
33 pire 26403 . . . . . . . . . . . . . . . 16 π ∈ ℝ
3433renegcli 11536 . . . . . . . . . . . . . . 15 -π ∈ ℝ
35 ltle 11315 . . . . . . . . . . . . . . 15 ((-π ∈ ℝ ∧ (ℑ‘(log‘𝐴)) ∈ ℝ) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
3634, 26, 35sylancr 587 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (-π < (ℑ‘(log‘𝐴)) → -π ≤ (ℑ‘(log‘𝐴))))
3732, 36mpd 15 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → -π ≤ (ℑ‘(log‘𝐴)))
3831simprd 495 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘(log‘𝐴)) ≤ π)
3934, 33elicc2i 13419 . . . . . . . . . . . . 13 ((ℑ‘(log‘𝐴)) ∈ (-π[,]π) ↔ ((ℑ‘(log‘𝐴)) ∈ ℝ ∧ -π ≤ (ℑ‘(log‘𝐴)) ∧ (ℑ‘(log‘𝐴)) ≤ π))
4026, 37, 38, 39syl3anbrc 1343 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘(log‘𝐴)) ∈ (-π[,]π))
41 halfgt0 12448 . . . . . . . . . . . . . 14 0 < (1 / 2)
4213, 41elrpii 13003 . . . . . . . . . . . . 13 (1 / 2) ∈ ℝ+
4333recni 11241 . . . . . . . . . . . . . . 15 π ∈ ℂ
44 2cn 12307 . . . . . . . . . . . . . . 15 2 ∈ ℂ
45 2ne0 12336 . . . . . . . . . . . . . . 15 2 ≠ 0
46 divneg 11925 . . . . . . . . . . . . . . 15 ((π ∈ ℂ ∧ 2 ∈ ℂ ∧ 2 ≠ 0) → -(π / 2) = (-π / 2))
4743, 44, 45, 46mp3an 1462 . . . . . . . . . . . . . 14 -(π / 2) = (-π / 2)
4834recni 11241 . . . . . . . . . . . . . . 15 -π ∈ ℂ
4948, 44, 45divreci 11978 . . . . . . . . . . . . . 14 (-π / 2) = (-π · (1 / 2))
5047, 49eqtr2i 2758 . . . . . . . . . . . . 13 (-π · (1 / 2)) = -(π / 2)
5143, 44, 45divreci 11978 . . . . . . . . . . . . . 14 (π / 2) = (π · (1 / 2))
5251eqcomi 2743 . . . . . . . . . . . . 13 (π · (1 / 2)) = (π / 2)
5334, 33, 42, 50, 52iccdili 13497 . . . . . . . . . . . 12 ((ℑ‘(log‘𝐴)) ∈ (-π[,]π) → ((ℑ‘(log‘𝐴)) · (1 / 2)) ∈ (-(π / 2)[,](π / 2)))
5440, 53syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((ℑ‘(log‘𝐴)) · (1 / 2)) ∈ (-(π / 2)[,](π / 2)))
5530, 54eqeltrd 2833 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℑ‘((1 / 2) · (log‘𝐴))) ∈ (-(π / 2)[,](π / 2)))
56 cosq14ge0 26456 . . . . . . . . . 10 ((ℑ‘((1 / 2) · (log‘𝐴))) ∈ (-(π / 2)[,](π / 2)) → 0 ≤ (cos‘(ℑ‘((1 / 2) · (log‘𝐴)))))
5755, 56syl 17 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 0 ≤ (cos‘(ℑ‘((1 / 2) · (log‘𝐴)))))
5819, 21, 23, 57mulge0d 11806 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 0 ≤ ((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · (cos‘(ℑ‘((1 / 2) · (log‘𝐴))))))
59 cxpef 26610 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ (1 / 2) ∈ ℂ) → (𝐴𝑐(1 / 2)) = (exp‘((1 / 2) · (log‘𝐴))))
6014, 59mp3an3 1451 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴𝑐(1 / 2)) = (exp‘((1 / 2) · (log‘𝐴))))
61 efeul 16165 . . . . . . . . . . . 12 (((1 / 2) · (log‘𝐴)) ∈ ℂ → (exp‘((1 / 2) · (log‘𝐴))) = ((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · ((cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) + (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴))))))))
6217, 61syl 17 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (exp‘((1 / 2) · (log‘𝐴))) = ((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · ((cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) + (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴))))))))
6360, 62eqtrd 2769 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐴𝑐(1 / 2)) = ((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · ((cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) + (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴))))))))
6463fveq2d 6876 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℜ‘(𝐴𝑐(1 / 2))) = (ℜ‘((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · ((cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) + (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴)))))))))
6521recnd 11255 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) ∈ ℂ)
6620resincld 16146 . . . . . . . . . . . . 13 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (sin‘(ℑ‘((1 / 2) · (log‘𝐴)))) ∈ ℝ)
6766recnd 11255 . . . . . . . . . . . 12 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (sin‘(ℑ‘((1 / 2) · (log‘𝐴)))) ∈ ℂ)
68 mulcl 11205 . . . . . . . . . . . 12 ((i ∈ ℂ ∧ (sin‘(ℑ‘((1 / 2) · (log‘𝐴)))) ∈ ℂ) → (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴))))) ∈ ℂ)
691, 67, 68sylancr 587 . . . . . . . . . . 11 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴))))) ∈ ℂ)
7065, 69addcld 11246 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) + (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴)))))) ∈ ℂ)
7119, 70remul2d 15233 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℜ‘((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · ((cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) + (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴)))))))) = ((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · (ℜ‘((cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) + (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴)))))))))
7221, 66crred 15237 . . . . . . . . . 10 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℜ‘((cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) + (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴))))))) = (cos‘(ℑ‘((1 / 2) · (log‘𝐴)))))
7372oveq2d 7415 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · (ℜ‘((cos‘(ℑ‘((1 / 2) · (log‘𝐴)))) + (i · (sin‘(ℑ‘((1 / 2) · (log‘𝐴)))))))) = ((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · (cos‘(ℑ‘((1 / 2) · (log‘𝐴))))))
7464, 71, 733eqtrd 2773 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (ℜ‘(𝐴𝑐(1 / 2))) = ((exp‘(ℜ‘((1 / 2) · (log‘𝐴)))) · (cos‘(ℑ‘((1 / 2) · (log‘𝐴))))))
7558, 74breqtrrd 5144 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → 0 ≤ (ℜ‘(𝐴𝑐(1 / 2))))
7675adantr 480 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → 0 ≤ (ℜ‘(𝐴𝑐(1 / 2))))
77 simpr 484 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (𝐴𝑐(1 / 2)) = -(√‘𝐴))
7877fveq2d 6876 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (ℜ‘(𝐴𝑐(1 / 2))) = (ℜ‘-(√‘𝐴)))
793renegd 15215 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (ℜ‘-(√‘𝐴)) = -(ℜ‘(√‘𝐴)))
8078, 79eqtrd 2769 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (ℜ‘(𝐴𝑐(1 / 2))) = -(ℜ‘(√‘𝐴)))
8176, 80breqtrd 5142 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → 0 ≤ -(ℜ‘(√‘𝐴)))
823recld 15200 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (ℜ‘(√‘𝐴)) ∈ ℝ)
8382le0neg1d 11800 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((ℜ‘(√‘𝐴)) ≤ 0 ↔ 0 ≤ -(ℜ‘(√‘𝐴))))
8481, 83mpbird 257 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (ℜ‘(√‘𝐴)) ≤ 0)
85 sqrtrege0 15371 . . . . 5 (𝐴 ∈ ℂ → 0 ≤ (ℜ‘(√‘𝐴)))
8685ad2antrr 726 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → 0 ≤ (ℜ‘(√‘𝐴)))
87 0re 11229 . . . . 5 0 ∈ ℝ
88 letri3 11312 . . . . 5 (((ℜ‘(√‘𝐴)) ∈ ℝ ∧ 0 ∈ ℝ) → ((ℜ‘(√‘𝐴)) = 0 ↔ ((ℜ‘(√‘𝐴)) ≤ 0 ∧ 0 ≤ (ℜ‘(√‘𝐴)))))
8982, 87, 88sylancl 586 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → ((ℜ‘(√‘𝐴)) = 0 ↔ ((ℜ‘(√‘𝐴)) ≤ 0 ∧ 0 ≤ (ℜ‘(√‘𝐴)))))
9084, 86, 89mpbir2and 713 . . 3 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (ℜ‘(√‘𝐴)) = 0)
917, 12, 903eqtrd 2773 . 2 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (ℑ‘(i · (√‘𝐴))) = 0)
925, 91reim0bd 15206 1 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝐴𝑐(1 / 2)) = -(√‘𝐴)) → (i · (√‘𝐴)) ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  wne 2931   class class class wbr 5116  cfv 6527  (class class class)co 7399  cc 11119  cr 11120  0cc0 11121  1c1 11122  ici 11123   + caddc 11124   · cmul 11126   < clt 11261  cle 11262  -cneg 11459   / cdiv 11886  2c2 12287  [,]cicc 13356  cre 15103  cim 15104  csqrt 15239  expce 16064  sincsin 16066  cosccos 16067  πcpi 16069  logclog 26499  𝑐ccxp 26500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-inf2 9647  ax-cnex 11177  ax-resscn 11178  ax-1cn 11179  ax-icn 11180  ax-addcl 11181  ax-addrcl 11182  ax-mulcl 11183  ax-mulrcl 11184  ax-mulcom 11185  ax-addass 11186  ax-mulass 11187  ax-distr 11188  ax-i2m1 11189  ax-1ne0 11190  ax-1rid 11191  ax-rnegex 11192  ax-rrecex 11193  ax-cnre 11194  ax-pre-lttri 11195  ax-pre-lttrn 11196  ax-pre-ltadd 11197  ax-pre-mulgt0 11198  ax-pre-sup 11199  ax-addf 11200
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-tp 4604  df-op 4606  df-uni 4881  df-int 4920  df-iun 4966  df-iin 4967  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-se 5604  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-isom 6536  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-of 7665  df-om 7856  df-1st 7982  df-2nd 7983  df-supp 8154  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-1o 8474  df-2o 8475  df-er 8713  df-map 8836  df-pm 8837  df-ixp 8906  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-fsupp 9368  df-fi 9417  df-sup 9448  df-inf 9449  df-oi 9516  df-card 9945  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267  df-sub 11460  df-neg 11461  df-div 11887  df-nn 12233  df-2 12295  df-3 12296  df-4 12297  df-5 12298  df-6 12299  df-7 12300  df-8 12301  df-9 12302  df-n0 12494  df-z 12581  df-dec 12701  df-uz 12845  df-q 12957  df-rp 13001  df-xneg 13120  df-xadd 13121  df-xmul 13122  df-ioo 13357  df-ioc 13358  df-ico 13359  df-icc 13360  df-fz 13514  df-fzo 13661  df-fl 13798  df-mod 13876  df-seq 14009  df-exp 14069  df-fac 14280  df-bc 14309  df-hash 14337  df-shft 15073  df-cj 15105  df-re 15106  df-im 15107  df-sqrt 15241  df-abs 15242  df-limsup 15474  df-clim 15491  df-rlim 15492  df-sum 15690  df-ef 16070  df-sin 16072  df-cos 16073  df-pi 16075  df-struct 17151  df-sets 17168  df-slot 17186  df-ndx 17198  df-base 17214  df-ress 17237  df-plusg 17269  df-mulr 17270  df-starv 17271  df-sca 17272  df-vsca 17273  df-ip 17274  df-tset 17275  df-ple 17276  df-ds 17278  df-unif 17279  df-hom 17280  df-cco 17281  df-rest 17421  df-topn 17422  df-0g 17440  df-gsum 17441  df-topgen 17442  df-pt 17443  df-prds 17446  df-xrs 17501  df-qtop 17506  df-imas 17507  df-xps 17509  df-mre 17583  df-mrc 17584  df-acs 17586  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18747  df-mulg 19036  df-cntz 19285  df-cmn 19748  df-psmet 21292  df-xmet 21293  df-met 21294  df-bl 21295  df-mopn 21296  df-fbas 21297  df-fg 21298  df-cnfld 21301  df-top 22817  df-topon 22834  df-topsp 22856  df-bases 22869  df-cld 22942  df-ntr 22943  df-cls 22944  df-nei 23021  df-lp 23059  df-perf 23060  df-cn 23150  df-cnp 23151  df-haus 23238  df-tx 23485  df-hmeo 23678  df-fil 23769  df-fm 23861  df-flim 23862  df-flf 23863  df-xms 24244  df-ms 24245  df-tms 24246  df-cncf 24807  df-limc 25804  df-dv 25805  df-log 26501  df-cxp 26502
This theorem is referenced by:  cxpsqrt  26648
  Copyright terms: Public domain W3C validator