| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > indistps2ALT | Structured version Visualization version GIF version | ||
| Description: The indiscrete topology on a set 𝐴 expressed as a topological space, using direct component assignments. Here we show how to derive the direct component assignment version indistps2 22899 from the structural version indistps 22898. (Contributed by NM, 24-Oct-2012.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| indistps2ALT.a | ⊢ (Base‘𝐾) = 𝐴 |
| indistps2ALT.j | ⊢ (TopOpen‘𝐾) = {∅, 𝐴} |
| Ref | Expression |
|---|---|
| indistps2ALT | ⊢ 𝐾 ∈ TopSp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indistps2ALT.a | . . . 4 ⊢ (Base‘𝐾) = 𝐴 | |
| 2 | fvex 6871 | . . . 4 ⊢ (Base‘𝐾) ∈ V | |
| 3 | 1, 2 | eqeltrri 2825 | . . 3 ⊢ 𝐴 ∈ V |
| 4 | indistopon 22888 | . . 3 ⊢ (𝐴 ∈ V → {∅, 𝐴} ∈ (TopOn‘𝐴)) | |
| 5 | 3, 4 | ax-mp 5 | . 2 ⊢ {∅, 𝐴} ∈ (TopOn‘𝐴) |
| 6 | 1 | eqcomi 2738 | . . 3 ⊢ 𝐴 = (Base‘𝐾) |
| 7 | indistps2ALT.j | . . . 4 ⊢ (TopOpen‘𝐾) = {∅, 𝐴} | |
| 8 | 7 | eqcomi 2738 | . . 3 ⊢ {∅, 𝐴} = (TopOpen‘𝐾) |
| 9 | 6, 8 | istps 22821 | . 2 ⊢ (𝐾 ∈ TopSp ↔ {∅, 𝐴} ∈ (TopOn‘𝐴)) |
| 10 | 5, 9 | mpbir 231 | 1 ⊢ 𝐾 ∈ TopSp |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3447 ∅c0 4296 {cpr 4591 ‘cfv 6511 Basecbs 17179 TopOpenctopn 17384 TopOnctopon 22797 TopSpctps 22819 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-top 22781 df-topon 22798 df-topsp 22820 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |