MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indistps2ALT Structured version   Visualization version   GIF version

Theorem indistps2ALT 23043
Description: The indiscrete topology on a set 𝐴 expressed as a topological space, using direct component assignments. Here we show how to derive the direct component assignment version indistps2 23040 from the structural version indistps 23039. (Contributed by NM, 24-Oct-2012.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
indistps2ALT.a (Base‘𝐾) = 𝐴
indistps2ALT.j (TopOpen‘𝐾) = {∅, 𝐴}
Assertion
Ref Expression
indistps2ALT 𝐾 ∈ TopSp

Proof of Theorem indistps2ALT
StepHypRef Expression
1 indistps2ALT.a . . . 4 (Base‘𝐾) = 𝐴
2 fvex 6933 . . . 4 (Base‘𝐾) ∈ V
31, 2eqeltrri 2841 . . 3 𝐴 ∈ V
4 indistopon 23029 . . 3 (𝐴 ∈ V → {∅, 𝐴} ∈ (TopOn‘𝐴))
53, 4ax-mp 5 . 2 {∅, 𝐴} ∈ (TopOn‘𝐴)
61eqcomi 2749 . . 3 𝐴 = (Base‘𝐾)
7 indistps2ALT.j . . . 4 (TopOpen‘𝐾) = {∅, 𝐴}
87eqcomi 2749 . . 3 {∅, 𝐴} = (TopOpen‘𝐾)
96, 8istps 22961 . 2 (𝐾 ∈ TopSp ↔ {∅, 𝐴} ∈ (TopOn‘𝐴))
105, 9mpbir 231 1 𝐾 ∈ TopSp
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  wcel 2108  Vcvv 3488  c0 4352  {cpr 4650  cfv 6573  Basecbs 17258  TopOpenctopn 17481  TopOnctopon 22937  TopSpctps 22959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-top 22921  df-topon 22938  df-topsp 22960
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator