| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > indistps2ALT | Structured version Visualization version GIF version | ||
| Description: The indiscrete topology on a set 𝐴 expressed as a topological space, using direct component assignments. Here we show how to derive the direct component assignment version indistps2 22927 from the structural version indistps 22926. (Contributed by NM, 24-Oct-2012.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| indistps2ALT.a | ⊢ (Base‘𝐾) = 𝐴 |
| indistps2ALT.j | ⊢ (TopOpen‘𝐾) = {∅, 𝐴} |
| Ref | Expression |
|---|---|
| indistps2ALT | ⊢ 𝐾 ∈ TopSp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indistps2ALT.a | . . . 4 ⊢ (Base‘𝐾) = 𝐴 | |
| 2 | fvex 6835 | . . . 4 ⊢ (Base‘𝐾) ∈ V | |
| 3 | 1, 2 | eqeltrri 2828 | . . 3 ⊢ 𝐴 ∈ V |
| 4 | indistopon 22916 | . . 3 ⊢ (𝐴 ∈ V → {∅, 𝐴} ∈ (TopOn‘𝐴)) | |
| 5 | 3, 4 | ax-mp 5 | . 2 ⊢ {∅, 𝐴} ∈ (TopOn‘𝐴) |
| 6 | 1 | eqcomi 2740 | . . 3 ⊢ 𝐴 = (Base‘𝐾) |
| 7 | indistps2ALT.j | . . . 4 ⊢ (TopOpen‘𝐾) = {∅, 𝐴} | |
| 8 | 7 | eqcomi 2740 | . . 3 ⊢ {∅, 𝐴} = (TopOpen‘𝐾) |
| 9 | 6, 8 | istps 22849 | . 2 ⊢ (𝐾 ∈ TopSp ↔ {∅, 𝐴} ∈ (TopOn‘𝐴)) |
| 10 | 5, 9 | mpbir 231 | 1 ⊢ 𝐾 ∈ TopSp |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∅c0 4280 {cpr 4575 ‘cfv 6481 Basecbs 17120 TopOpenctopn 17325 TopOnctopon 22825 TopSpctps 22847 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-top 22809 df-topon 22826 df-topsp 22848 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |