MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indistps2ALT Structured version   Visualization version   GIF version

Theorem indistps2ALT 22957
Description: The indiscrete topology on a set 𝐴 expressed as a topological space, using direct component assignments. Here we show how to derive the direct component assignment version indistps2 22955 from the structural version indistps 22954. (Contributed by NM, 24-Oct-2012.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
indistps2ALT.a (Base‘𝐾) = 𝐴
indistps2ALT.j (TopOpen‘𝐾) = {∅, 𝐴}
Assertion
Ref Expression
indistps2ALT 𝐾 ∈ TopSp

Proof of Theorem indistps2ALT
StepHypRef Expression
1 indistps2ALT.a . . . 4 (Base‘𝐾) = 𝐴
2 fvex 6894 . . . 4 (Base‘𝐾) ∈ V
31, 2eqeltrri 2832 . . 3 𝐴 ∈ V
4 indistopon 22944 . . 3 (𝐴 ∈ V → {∅, 𝐴} ∈ (TopOn‘𝐴))
53, 4ax-mp 5 . 2 {∅, 𝐴} ∈ (TopOn‘𝐴)
61eqcomi 2745 . . 3 𝐴 = (Base‘𝐾)
7 indistps2ALT.j . . . 4 (TopOpen‘𝐾) = {∅, 𝐴}
87eqcomi 2745 . . 3 {∅, 𝐴} = (TopOpen‘𝐾)
96, 8istps 22877 . 2 (𝐾 ∈ TopSp ↔ {∅, 𝐴} ∈ (TopOn‘𝐴))
105, 9mpbir 231 1 𝐾 ∈ TopSp
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3464  c0 4313  {cpr 4608  cfv 6536  Basecbs 17233  TopOpenctopn 17440  TopOnctopon 22853  TopSpctps 22875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-top 22837  df-topon 22854  df-topsp 22876
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator