| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > indistps2ALT | Structured version Visualization version GIF version | ||
| Description: The indiscrete topology on a set 𝐴 expressed as a topological space, using direct component assignments. Here we show how to derive the direct component assignment version indistps2 22955 from the structural version indistps 22954. (Contributed by NM, 24-Oct-2012.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| indistps2ALT.a | ⊢ (Base‘𝐾) = 𝐴 |
| indistps2ALT.j | ⊢ (TopOpen‘𝐾) = {∅, 𝐴} |
| Ref | Expression |
|---|---|
| indistps2ALT | ⊢ 𝐾 ∈ TopSp |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indistps2ALT.a | . . . 4 ⊢ (Base‘𝐾) = 𝐴 | |
| 2 | fvex 6894 | . . . 4 ⊢ (Base‘𝐾) ∈ V | |
| 3 | 1, 2 | eqeltrri 2832 | . . 3 ⊢ 𝐴 ∈ V |
| 4 | indistopon 22944 | . . 3 ⊢ (𝐴 ∈ V → {∅, 𝐴} ∈ (TopOn‘𝐴)) | |
| 5 | 3, 4 | ax-mp 5 | . 2 ⊢ {∅, 𝐴} ∈ (TopOn‘𝐴) |
| 6 | 1 | eqcomi 2745 | . . 3 ⊢ 𝐴 = (Base‘𝐾) |
| 7 | indistps2ALT.j | . . . 4 ⊢ (TopOpen‘𝐾) = {∅, 𝐴} | |
| 8 | 7 | eqcomi 2745 | . . 3 ⊢ {∅, 𝐴} = (TopOpen‘𝐾) |
| 9 | 6, 8 | istps 22877 | . 2 ⊢ (𝐾 ∈ TopSp ↔ {∅, 𝐴} ∈ (TopOn‘𝐴)) |
| 10 | 5, 9 | mpbir 231 | 1 ⊢ 𝐾 ∈ TopSp |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∅c0 4313 {cpr 4608 ‘cfv 6536 Basecbs 17233 TopOpenctopn 17440 TopOnctopon 22853 TopSpctps 22875 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-iota 6489 df-fun 6538 df-fv 6544 df-top 22837 df-topon 22854 df-topsp 22876 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |