![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > indistps2ALT | Structured version Visualization version GIF version |
Description: The indiscrete topology on a set 𝐴 expressed as a topological space, using direct component assignments. Here we show how to derive the direct component assignment version indistps2 23040 from the structural version indistps 23039. (Contributed by NM, 24-Oct-2012.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
indistps2ALT.a | ⊢ (Base‘𝐾) = 𝐴 |
indistps2ALT.j | ⊢ (TopOpen‘𝐾) = {∅, 𝐴} |
Ref | Expression |
---|---|
indistps2ALT | ⊢ 𝐾 ∈ TopSp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indistps2ALT.a | . . . 4 ⊢ (Base‘𝐾) = 𝐴 | |
2 | fvex 6933 | . . . 4 ⊢ (Base‘𝐾) ∈ V | |
3 | 1, 2 | eqeltrri 2841 | . . 3 ⊢ 𝐴 ∈ V |
4 | indistopon 23029 | . . 3 ⊢ (𝐴 ∈ V → {∅, 𝐴} ∈ (TopOn‘𝐴)) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ {∅, 𝐴} ∈ (TopOn‘𝐴) |
6 | 1 | eqcomi 2749 | . . 3 ⊢ 𝐴 = (Base‘𝐾) |
7 | indistps2ALT.j | . . . 4 ⊢ (TopOpen‘𝐾) = {∅, 𝐴} | |
8 | 7 | eqcomi 2749 | . . 3 ⊢ {∅, 𝐴} = (TopOpen‘𝐾) |
9 | 6, 8 | istps 22961 | . 2 ⊢ (𝐾 ∈ TopSp ↔ {∅, 𝐴} ∈ (TopOn‘𝐴)) |
10 | 5, 9 | mpbir 231 | 1 ⊢ 𝐾 ∈ TopSp |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 {cpr 4650 ‘cfv 6573 Basecbs 17258 TopOpenctopn 17481 TopOnctopon 22937 TopSpctps 22959 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-top 22921 df-topon 22938 df-topsp 22960 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |