![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > indistps2ALT | Structured version Visualization version GIF version |
Description: The indiscrete topology on a set 𝐴 expressed as a topological space, using direct component assignments. Here we show how to derive the direct component assignment version indistps2 22931 from the structural version indistps 22930. (Contributed by NM, 24-Oct-2012.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
indistps2ALT.a | ⊢ (Base‘𝐾) = 𝐴 |
indistps2ALT.j | ⊢ (TopOpen‘𝐾) = {∅, 𝐴} |
Ref | Expression |
---|---|
indistps2ALT | ⊢ 𝐾 ∈ TopSp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indistps2ALT.a | . . . 4 ⊢ (Base‘𝐾) = 𝐴 | |
2 | fvex 6904 | . . . 4 ⊢ (Base‘𝐾) ∈ V | |
3 | 1, 2 | eqeltrri 2822 | . . 3 ⊢ 𝐴 ∈ V |
4 | indistopon 22920 | . . 3 ⊢ (𝐴 ∈ V → {∅, 𝐴} ∈ (TopOn‘𝐴)) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ {∅, 𝐴} ∈ (TopOn‘𝐴) |
6 | 1 | eqcomi 2734 | . . 3 ⊢ 𝐴 = (Base‘𝐾) |
7 | indistps2ALT.j | . . . 4 ⊢ (TopOpen‘𝐾) = {∅, 𝐴} | |
8 | 7 | eqcomi 2734 | . . 3 ⊢ {∅, 𝐴} = (TopOpen‘𝐾) |
9 | 6, 8 | istps 22852 | . 2 ⊢ (𝐾 ∈ TopSp ↔ {∅, 𝐴} ∈ (TopOn‘𝐴)) |
10 | 5, 9 | mpbir 230 | 1 ⊢ 𝐾 ∈ TopSp |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 Vcvv 3463 ∅c0 4318 {cpr 4626 ‘cfv 6542 Basecbs 17177 TopOpenctopn 17400 TopOnctopon 22828 TopSpctps 22850 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-iota 6494 df-fun 6544 df-fv 6550 df-top 22812 df-topon 22829 df-topsp 22851 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |