![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > indistps2ALT | Structured version Visualization version GIF version |
Description: The indiscrete topology on a set 𝐴 expressed as a topological space, using direct component assignments. Here we show how to derive the direct component assignment version indistps2 22515 from the structural version indistps 22514. (Contributed by NM, 24-Oct-2012.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
indistps2ALT.a | ⊢ (Base‘𝐾) = 𝐴 |
indistps2ALT.j | ⊢ (TopOpen‘𝐾) = {∅, 𝐴} |
Ref | Expression |
---|---|
indistps2ALT | ⊢ 𝐾 ∈ TopSp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indistps2ALT.a | . . . 4 ⊢ (Base‘𝐾) = 𝐴 | |
2 | fvex 6905 | . . . 4 ⊢ (Base‘𝐾) ∈ V | |
3 | 1, 2 | eqeltrri 2831 | . . 3 ⊢ 𝐴 ∈ V |
4 | indistopon 22504 | . . 3 ⊢ (𝐴 ∈ V → {∅, 𝐴} ∈ (TopOn‘𝐴)) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ {∅, 𝐴} ∈ (TopOn‘𝐴) |
6 | 1 | eqcomi 2742 | . . 3 ⊢ 𝐴 = (Base‘𝐾) |
7 | indistps2ALT.j | . . . 4 ⊢ (TopOpen‘𝐾) = {∅, 𝐴} | |
8 | 7 | eqcomi 2742 | . . 3 ⊢ {∅, 𝐴} = (TopOpen‘𝐾) |
9 | 6, 8 | istps 22436 | . 2 ⊢ (𝐾 ∈ TopSp ↔ {∅, 𝐴} ∈ (TopOn‘𝐴)) |
10 | 5, 9 | mpbir 230 | 1 ⊢ 𝐾 ∈ TopSp |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2107 Vcvv 3475 ∅c0 4323 {cpr 4631 ‘cfv 6544 Basecbs 17144 TopOpenctopn 17367 TopOnctopon 22412 TopSpctps 22434 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-iota 6496 df-fun 6546 df-fv 6552 df-top 22396 df-topon 22413 df-topsp 22435 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |