![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > indistpsALTOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of indistpsALT 22516 as of 31-Oct-2024. The indiscrete topology on a set 𝐴 expressed as a topological space. Here we show how to derive the structural version indistps 22514 from the direct component assignment version indistps2 22515. (Contributed by NM, 24-Oct-2012.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
indistpsALT.a | ⊢ 𝐴 ∈ V |
indistpsALT.k | ⊢ 𝐾 = {⟨(Base‘ndx), 𝐴⟩, ⟨(TopSet‘ndx), {∅, 𝐴}⟩} |
Ref | Expression |
---|---|
indistpsALTOLD | ⊢ 𝐾 ∈ TopSp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indistpsALT.a | . 2 ⊢ 𝐴 ∈ V | |
2 | indistopon 22504 | . 2 ⊢ (𝐴 ∈ V → {∅, 𝐴} ∈ (TopOn‘𝐴)) | |
3 | indistpsALT.k | . . . . 5 ⊢ 𝐾 = {⟨(Base‘ndx), 𝐴⟩, ⟨(TopSet‘ndx), {∅, 𝐴}⟩} | |
4 | df-tset 17216 | . . . . 5 ⊢ TopSet = Slot 9 | |
5 | 1lt9 12418 | . . . . 5 ⊢ 1 < 9 | |
6 | 9nn 12310 | . . . . 5 ⊢ 9 ∈ ℕ | |
7 | 3, 4, 5, 6 | 2strbas 17167 | . . . 4 ⊢ (𝐴 ∈ V → 𝐴 = (Base‘𝐾)) |
8 | 1, 7 | ax-mp 5 | . . 3 ⊢ 𝐴 = (Base‘𝐾) |
9 | prex 5433 | . . . 4 ⊢ {∅, 𝐴} ∈ V | |
10 | 3, 4, 5, 6 | 2strop 17168 | . . . 4 ⊢ ({∅, 𝐴} ∈ V → {∅, 𝐴} = (TopSet‘𝐾)) |
11 | 9, 10 | ax-mp 5 | . . 3 ⊢ {∅, 𝐴} = (TopSet‘𝐾) |
12 | 8, 11 | tsettps 22443 | . 2 ⊢ ({∅, 𝐴} ∈ (TopOn‘𝐴) → 𝐾 ∈ TopSp) |
13 | 1, 2, 12 | mp2b 10 | 1 ⊢ 𝐾 ∈ TopSp |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ∈ wcel 2107 Vcvv 3475 ∅c0 4323 {cpr 4631 ⟨cop 4635 ‘cfv 6544 9c9 12274 ndxcnx 17126 Basecbs 17144 TopSetcts 17203 TopOnctopon 22412 TopSpctps 22434 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-z 12559 df-uz 12823 df-fz 13485 df-struct 17080 df-slot 17115 df-ndx 17127 df-base 17145 df-tset 17216 df-rest 17368 df-topn 17369 df-top 22396 df-topon 22413 df-topsp 22435 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |