![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > indistpsALTOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of indistpsALT 22447 as of 31-Oct-2024. The indiscrete topology on a set 𝐴 expressed as a topological space. Here we show how to derive the structural version indistps 22445 from the direct component assignment version indistps2 22446. (Contributed by NM, 24-Oct-2012.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
indistpsALT.a | ⊢ 𝐴 ∈ V |
indistpsALT.k | ⊢ 𝐾 = {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), {∅, 𝐴}〉} |
Ref | Expression |
---|---|
indistpsALTOLD | ⊢ 𝐾 ∈ TopSp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | indistpsALT.a | . 2 ⊢ 𝐴 ∈ V | |
2 | indistopon 22435 | . 2 ⊢ (𝐴 ∈ V → {∅, 𝐴} ∈ (TopOn‘𝐴)) | |
3 | indistpsALT.k | . . . . 5 ⊢ 𝐾 = {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), {∅, 𝐴}〉} | |
4 | df-tset 17200 | . . . . 5 ⊢ TopSet = Slot 9 | |
5 | 1lt9 12402 | . . . . 5 ⊢ 1 < 9 | |
6 | 9nn 12294 | . . . . 5 ⊢ 9 ∈ ℕ | |
7 | 3, 4, 5, 6 | 2strbas 17151 | . . . 4 ⊢ (𝐴 ∈ V → 𝐴 = (Base‘𝐾)) |
8 | 1, 7 | ax-mp 5 | . . 3 ⊢ 𝐴 = (Base‘𝐾) |
9 | prex 5426 | . . . 4 ⊢ {∅, 𝐴} ∈ V | |
10 | 3, 4, 5, 6 | 2strop 17152 | . . . 4 ⊢ ({∅, 𝐴} ∈ V → {∅, 𝐴} = (TopSet‘𝐾)) |
11 | 9, 10 | ax-mp 5 | . . 3 ⊢ {∅, 𝐴} = (TopSet‘𝐾) |
12 | 8, 11 | tsettps 22374 | . 2 ⊢ ({∅, 𝐴} ∈ (TopOn‘𝐴) → 𝐾 ∈ TopSp) |
13 | 1, 2, 12 | mp2b 10 | 1 ⊢ 𝐾 ∈ TopSp |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∅c0 4319 {cpr 4625 〈cop 4629 ‘cfv 6533 9c9 12258 ndxcnx 17110 Basecbs 17128 TopSetcts 17187 TopOnctopon 22343 TopSpctps 22365 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5357 ax-pr 5421 ax-un 7709 ax-cnex 11150 ax-resscn 11151 ax-1cn 11152 ax-icn 11153 ax-addcl 11154 ax-addrcl 11155 ax-mulcl 11156 ax-mulrcl 11157 ax-mulcom 11158 ax-addass 11159 ax-mulass 11160 ax-distr 11161 ax-i2m1 11162 ax-1ne0 11163 ax-1rid 11164 ax-rnegex 11165 ax-rrecex 11166 ax-cnre 11167 ax-pre-lttri 11168 ax-pre-lttrn 11169 ax-pre-ltadd 11170 ax-pre-mulgt0 11171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7350 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7840 df-1st 7959 df-2nd 7960 df-frecs 8250 df-wrecs 8281 df-recs 8355 df-rdg 8394 df-1o 8450 df-er 8688 df-en 8925 df-dom 8926 df-sdom 8927 df-fin 8928 df-pnf 11234 df-mnf 11235 df-xr 11236 df-ltxr 11237 df-le 11238 df-sub 11430 df-neg 11431 df-nn 12197 df-2 12259 df-3 12260 df-4 12261 df-5 12262 df-6 12263 df-7 12264 df-8 12265 df-9 12266 df-n0 12457 df-z 12543 df-uz 12807 df-fz 13469 df-struct 17064 df-slot 17099 df-ndx 17111 df-base 17129 df-tset 17200 df-rest 17352 df-topn 17353 df-top 22327 df-topon 22344 df-topsp 22366 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |