![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > distps | Structured version Visualization version GIF version |
Description: The discrete topology on a set 𝐴 expressed as a topological space. (Contributed by FL, 20-Aug-2006.) |
Ref | Expression |
---|---|
distps.a | ⊢ 𝐴 ∈ V |
distps.k | ⊢ 𝐾 = {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), 𝒫 𝐴〉} |
Ref | Expression |
---|---|
distps | ⊢ 𝐾 ∈ TopSp |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | distps.k | . 2 ⊢ 𝐾 = {〈(Base‘ndx), 𝐴〉, 〈(TopSet‘ndx), 𝒫 𝐴〉} | |
2 | unipw 5227 | . . 3 ⊢ ∪ 𝒫 𝐴 = 𝐴 | |
3 | 2 | eqcomi 2802 | . 2 ⊢ 𝐴 = ∪ 𝒫 𝐴 |
4 | distps.a | . . 3 ⊢ 𝐴 ∈ V | |
5 | distop 21275 | . . 3 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ Top) | |
6 | 4, 5 | ax-mp 5 | . 2 ⊢ 𝒫 𝐴 ∈ Top |
7 | 1, 3, 6 | eltpsi 21224 | 1 ⊢ 𝐾 ∈ TopSp |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1520 ∈ wcel 2079 Vcvv 3432 𝒫 cpw 4447 {cpr 4468 〈cop 4472 ∪ cuni 4739 ‘cfv 6217 ndxcnx 16297 Basecbs 16300 TopSetcts 16388 Topctop 21173 TopSpctps 21212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-rep 5075 ax-sep 5088 ax-nul 5095 ax-pow 5150 ax-pr 5214 ax-un 7310 ax-cnex 10428 ax-resscn 10429 ax-1cn 10430 ax-icn 10431 ax-addcl 10432 ax-addrcl 10433 ax-mulcl 10434 ax-mulrcl 10435 ax-mulcom 10436 ax-addass 10437 ax-mulass 10438 ax-distr 10439 ax-i2m1 10440 ax-1ne0 10441 ax-1rid 10442 ax-rnegex 10443 ax-rrecex 10444 ax-cnre 10445 ax-pre-lttri 10446 ax-pre-lttrn 10447 ax-pre-ltadd 10448 ax-pre-mulgt0 10449 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1079 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-nel 3089 df-ral 3108 df-rex 3109 df-reu 3110 df-rab 3112 df-v 3434 df-sbc 3702 df-csb 3807 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-pss 3871 df-nul 4207 df-if 4376 df-pw 4449 df-sn 4467 df-pr 4469 df-tp 4471 df-op 4473 df-uni 4740 df-int 4777 df-iun 4821 df-br 4957 df-opab 5019 df-mpt 5036 df-tr 5058 df-id 5340 df-eprel 5345 df-po 5354 df-so 5355 df-fr 5394 df-we 5396 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ima 5448 df-pred 6015 df-ord 6061 df-on 6062 df-lim 6063 df-suc 6064 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-f1 6222 df-fo 6223 df-f1o 6224 df-fv 6225 df-riota 6968 df-ov 7010 df-oprab 7011 df-mpo 7012 df-om 7428 df-1st 7536 df-2nd 7537 df-wrecs 7789 df-recs 7851 df-rdg 7889 df-1o 7944 df-oadd 7948 df-er 8130 df-en 8348 df-dom 8349 df-sdom 8350 df-fin 8351 df-pnf 10512 df-mnf 10513 df-xr 10514 df-ltxr 10515 df-le 10516 df-sub 10708 df-neg 10709 df-nn 11476 df-2 11537 df-3 11538 df-4 11539 df-5 11540 df-6 11541 df-7 11542 df-8 11543 df-9 11544 df-n0 11735 df-z 11819 df-uz 12083 df-fz 12732 df-struct 16302 df-ndx 16303 df-slot 16304 df-base 16306 df-tset 16401 df-rest 16513 df-topn 16514 df-top 21174 df-topon 21191 df-topsp 21213 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |