MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infxrcl Structured version   Visualization version   GIF version

Theorem infxrcl 13350
Description: The infimum of an arbitrary set of extended reals is an extended real. (Contributed by NM, 19-Jan-2006.) (Revised by AV, 5-Sep-2020.)
Assertion
Ref Expression
infxrcl (𝐴 ⊆ ℝ* → inf(𝐴, ℝ*, < ) ∈ ℝ*)

Proof of Theorem infxrcl
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrltso 13157 . . 3 < Or ℝ*
21a1i 11 . 2 (𝐴 ⊆ ℝ* → < Or ℝ*)
3 xrinfmss 13326 . 2 (𝐴 ⊆ ℝ* → ∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
42, 3infcl 9501 1 (𝐴 ⊆ ℝ* → inf(𝐴, ℝ*, < ) ∈ ℝ*)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  wss 3926   Or wor 5560  infcinf 9453  *cxr 11268   < clt 11269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469
This theorem is referenced by:  infxrlb  13351  infxrgelb  13352  infxrre  13353  infxrmnf  13354  infxrss  13356  ixxlb  13384  limsupcl  15489  limsupval2  15496  imasdsf1olem  24312  nmoffn  24650  nmofval  24653  nmolb  24656  nmof  24658  metdsf  24788  ovolcl  25431  infrpge  45378  infxrbnd2  45396  infleinflem1  45397  infleinf  45399  infxrcld  45416  infxrpnf  45473  inficc  45563  liminfgord  45783  liminfgf  45787  liminfcl  45792  liminfval2  45797  liminflelimsuplem  45804  liminfvalxr  45812  ovnsubaddlem1  46599  ovolval5lem3  46683
  Copyright terms: Public domain W3C validator