| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > infxrge0gelb | Structured version Visualization version GIF version | ||
| Description: The infimum of a set of nonnegative extended reals is greater than or equal to a lower bound. (Contributed by Thierry Arnoux, 19-Jul-2020.) (Revised by AV, 4-Oct-2020.) |
| Ref | Expression |
|---|---|
| infxrge0glb.a | ⊢ (𝜑 → 𝐴 ⊆ (0[,]+∞)) |
| infxrge0glb.b | ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) |
| Ref | Expression |
|---|---|
| infxrge0gelb | ⊢ (𝜑 → (𝐵 ≤ inf(𝐴, (0[,]+∞), < ) ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infxrge0glb.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ (0[,]+∞)) | |
| 2 | infxrge0glb.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) | |
| 3 | 1, 2 | infxrge0glb 32676 | . . 3 ⊢ (𝜑 → (inf(𝐴, (0[,]+∞), < ) < 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑥 < 𝐵)) |
| 4 | 3 | notbid 318 | . 2 ⊢ (𝜑 → (¬ inf(𝐴, (0[,]+∞), < ) < 𝐵 ↔ ¬ ∃𝑥 ∈ 𝐴 𝑥 < 𝐵)) |
| 5 | iccssxr 13436 | . . . 4 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 6 | 5, 2 | sselid 3954 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| 7 | xrltso 13149 | . . . . . . 7 ⊢ < Or ℝ* | |
| 8 | soss 5578 | . . . . . . 7 ⊢ ((0[,]+∞) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]+∞))) | |
| 9 | 5, 7, 8 | mp2 9 | . . . . . 6 ⊢ < Or (0[,]+∞) |
| 10 | 9 | a1i 11 | . . . . 5 ⊢ (𝜑 → < Or (0[,]+∞)) |
| 11 | xrge0infss 32671 | . . . . . 6 ⊢ (𝐴 ⊆ (0[,]+∞) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) | |
| 12 | 1, 11 | syl 17 | . . . . 5 ⊢ (𝜑 → ∃𝑥 ∈ (0[,]+∞)(∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
| 13 | 10, 12 | infcl 9494 | . . . 4 ⊢ (𝜑 → inf(𝐴, (0[,]+∞), < ) ∈ (0[,]+∞)) |
| 14 | 5, 13 | sselid 3954 | . . 3 ⊢ (𝜑 → inf(𝐴, (0[,]+∞), < ) ∈ ℝ*) |
| 15 | 6, 14 | xrlenltd 11293 | . 2 ⊢ (𝜑 → (𝐵 ≤ inf(𝐴, (0[,]+∞), < ) ↔ ¬ inf(𝐴, (0[,]+∞), < ) < 𝐵)) |
| 16 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
| 17 | 1, 5 | sstrdi 3969 | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ ℝ*) |
| 18 | 17 | sselda 3956 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ*) |
| 19 | 16, 18 | xrlenltd 11293 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 ≤ 𝑥 ↔ ¬ 𝑥 < 𝐵)) |
| 20 | 19 | ralbidva 3159 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑥 ↔ ∀𝑥 ∈ 𝐴 ¬ 𝑥 < 𝐵)) |
| 21 | ralnex 3061 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑥 < 𝐵 ↔ ¬ ∃𝑥 ∈ 𝐴 𝑥 < 𝐵) | |
| 22 | 20, 21 | bitrdi 287 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑥 ↔ ¬ ∃𝑥 ∈ 𝐴 𝑥 < 𝐵)) |
| 23 | 4, 15, 22 | 3bitr4d 311 | 1 ⊢ (𝜑 → (𝐵 ≤ inf(𝐴, (0[,]+∞), < ) ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2107 ∀wral 3050 ∃wrex 3059 ⊆ wss 3924 class class class wbr 5116 Or wor 5557 (class class class)co 7399 infcinf 9447 0cc0 11121 +∞cpnf 11258 ℝ*cxr 11260 < clt 11261 ≤ cle 11262 [,]cicc 13356 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pow 5332 ax-pr 5399 ax-un 7723 ax-cnex 11177 ax-resscn 11178 ax-1cn 11179 ax-icn 11180 ax-addcl 11181 ax-addrcl 11182 ax-mulcl 11183 ax-mulrcl 11184 ax-mulcom 11185 ax-addass 11186 ax-mulass 11187 ax-distr 11188 ax-i2m1 11189 ax-1ne0 11190 ax-1rid 11191 ax-rnegex 11192 ax-rrecex 11193 ax-cnre 11194 ax-pre-lttri 11195 ax-pre-lttrn 11196 ax-pre-ltadd 11197 ax-pre-mulgt0 11198 ax-pre-sup 11199 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3357 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-po 5558 df-so 5559 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-riota 7356 df-ov 7402 df-oprab 7403 df-mpo 7404 df-1st 7982 df-2nd 7983 df-er 8713 df-en 8954 df-dom 8955 df-sdom 8956 df-sup 9448 df-inf 9449 df-pnf 11263 df-mnf 11264 df-xr 11265 df-ltxr 11266 df-le 11267 df-sub 11460 df-neg 11461 df-icc 13360 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |