Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infxrge0gelb Structured version   Visualization version   GIF version

Theorem infxrge0gelb 32689
Description: The infimum of a set of nonnegative extended reals is greater than or equal to a lower bound. (Contributed by Thierry Arnoux, 19-Jul-2020.) (Revised by AV, 4-Oct-2020.)
Hypotheses
Ref Expression
infxrge0glb.a (𝜑𝐴 ⊆ (0[,]+∞))
infxrge0glb.b (𝜑𝐵 ∈ (0[,]+∞))
Assertion
Ref Expression
infxrge0gelb (𝜑 → (𝐵 ≤ inf(𝐴, (0[,]+∞), < ) ↔ ∀𝑥𝐴 𝐵𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥

Proof of Theorem infxrge0gelb
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infxrge0glb.a . . . 4 (𝜑𝐴 ⊆ (0[,]+∞))
2 infxrge0glb.b . . . 4 (𝜑𝐵 ∈ (0[,]+∞))
31, 2infxrge0glb 32688 . . 3 (𝜑 → (inf(𝐴, (0[,]+∞), < ) < 𝐵 ↔ ∃𝑥𝐴 𝑥 < 𝐵))
43notbid 318 . 2 (𝜑 → (¬ inf(𝐴, (0[,]+∞), < ) < 𝐵 ↔ ¬ ∃𝑥𝐴 𝑥 < 𝐵))
5 iccssxr 13391 . . . 4 (0[,]+∞) ⊆ ℝ*
65, 2sselid 3944 . . 3 (𝜑𝐵 ∈ ℝ*)
7 xrltso 13101 . . . . . . 7 < Or ℝ*
8 soss 5566 . . . . . . 7 ((0[,]+∞) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]+∞)))
95, 7, 8mp2 9 . . . . . 6 < Or (0[,]+∞)
109a1i 11 . . . . 5 (𝜑 → < Or (0[,]+∞))
11 xrge0infss 32683 . . . . . 6 (𝐴 ⊆ (0[,]+∞) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
121, 11syl 17 . . . . 5 (𝜑 → ∃𝑥 ∈ (0[,]+∞)(∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
1310, 12infcl 9440 . . . 4 (𝜑 → inf(𝐴, (0[,]+∞), < ) ∈ (0[,]+∞))
145, 13sselid 3944 . . 3 (𝜑 → inf(𝐴, (0[,]+∞), < ) ∈ ℝ*)
156, 14xrlenltd 11240 . 2 (𝜑 → (𝐵 ≤ inf(𝐴, (0[,]+∞), < ) ↔ ¬ inf(𝐴, (0[,]+∞), < ) < 𝐵))
166adantr 480 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
171, 5sstrdi 3959 . . . . . 6 (𝜑𝐴 ⊆ ℝ*)
1817sselda 3946 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ*)
1916, 18xrlenltd 11240 . . . 4 ((𝜑𝑥𝐴) → (𝐵𝑥 ↔ ¬ 𝑥 < 𝐵))
2019ralbidva 3154 . . 3 (𝜑 → (∀𝑥𝐴 𝐵𝑥 ↔ ∀𝑥𝐴 ¬ 𝑥 < 𝐵))
21 ralnex 3055 . . 3 (∀𝑥𝐴 ¬ 𝑥 < 𝐵 ↔ ¬ ∃𝑥𝐴 𝑥 < 𝐵)
2220, 21bitrdi 287 . 2 (𝜑 → (∀𝑥𝐴 𝐵𝑥 ↔ ¬ ∃𝑥𝐴 𝑥 < 𝐵))
234, 15, 223bitr4d 311 1 (𝜑 → (𝐵 ≤ inf(𝐴, (0[,]+∞), < ) ↔ ∀𝑥𝐴 𝐵𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wcel 2109  wral 3044  wrex 3053  wss 3914   class class class wbr 5107   Or wor 5545  (class class class)co 7387  infcinf 9392  0cc0 11068  +∞cpnf 11205  *cxr 11207   < clt 11208  cle 11209  [,]cicc 13309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-icc 13313
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator