|   | Mathbox for Thierry Arnoux | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > infxrge0gelb | Structured version Visualization version GIF version | ||
| Description: The infimum of a set of nonnegative extended reals is greater than or equal to a lower bound. (Contributed by Thierry Arnoux, 19-Jul-2020.) (Revised by AV, 4-Oct-2020.) | 
| Ref | Expression | 
|---|---|
| infxrge0glb.a | ⊢ (𝜑 → 𝐴 ⊆ (0[,]+∞)) | 
| infxrge0glb.b | ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) | 
| Ref | Expression | 
|---|---|
| infxrge0gelb | ⊢ (𝜑 → (𝐵 ≤ inf(𝐴, (0[,]+∞), < ) ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑥)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | infxrge0glb.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ (0[,]+∞)) | |
| 2 | infxrge0glb.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) | |
| 3 | 1, 2 | infxrge0glb 32770 | . . 3 ⊢ (𝜑 → (inf(𝐴, (0[,]+∞), < ) < 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑥 < 𝐵)) | 
| 4 | 3 | notbid 318 | . 2 ⊢ (𝜑 → (¬ inf(𝐴, (0[,]+∞), < ) < 𝐵 ↔ ¬ ∃𝑥 ∈ 𝐴 𝑥 < 𝐵)) | 
| 5 | iccssxr 13471 | . . . 4 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 6 | 5, 2 | sselid 3980 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | 
| 7 | xrltso 13184 | . . . . . . 7 ⊢ < Or ℝ* | |
| 8 | soss 5611 | . . . . . . 7 ⊢ ((0[,]+∞) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]+∞))) | |
| 9 | 5, 7, 8 | mp2 9 | . . . . . 6 ⊢ < Or (0[,]+∞) | 
| 10 | 9 | a1i 11 | . . . . 5 ⊢ (𝜑 → < Or (0[,]+∞)) | 
| 11 | xrge0infss 32765 | . . . . . 6 ⊢ (𝐴 ⊆ (0[,]+∞) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) | |
| 12 | 1, 11 | syl 17 | . . . . 5 ⊢ (𝜑 → ∃𝑥 ∈ (0[,]+∞)(∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) | 
| 13 | 10, 12 | infcl 9529 | . . . 4 ⊢ (𝜑 → inf(𝐴, (0[,]+∞), < ) ∈ (0[,]+∞)) | 
| 14 | 5, 13 | sselid 3980 | . . 3 ⊢ (𝜑 → inf(𝐴, (0[,]+∞), < ) ∈ ℝ*) | 
| 15 | 6, 14 | xrlenltd 11328 | . 2 ⊢ (𝜑 → (𝐵 ≤ inf(𝐴, (0[,]+∞), < ) ↔ ¬ inf(𝐴, (0[,]+∞), < ) < 𝐵)) | 
| 16 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) | 
| 17 | 1, 5 | sstrdi 3995 | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ ℝ*) | 
| 18 | 17 | sselda 3982 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ*) | 
| 19 | 16, 18 | xrlenltd 11328 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 ≤ 𝑥 ↔ ¬ 𝑥 < 𝐵)) | 
| 20 | 19 | ralbidva 3175 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑥 ↔ ∀𝑥 ∈ 𝐴 ¬ 𝑥 < 𝐵)) | 
| 21 | ralnex 3071 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑥 < 𝐵 ↔ ¬ ∃𝑥 ∈ 𝐴 𝑥 < 𝐵) | |
| 22 | 20, 21 | bitrdi 287 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑥 ↔ ¬ ∃𝑥 ∈ 𝐴 𝑥 < 𝐵)) | 
| 23 | 4, 15, 22 | 3bitr4d 311 | 1 ⊢ (𝜑 → (𝐵 ≤ inf(𝐴, (0[,]+∞), < ) ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑥)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2107 ∀wral 3060 ∃wrex 3069 ⊆ wss 3950 class class class wbr 5142 Or wor 5590 (class class class)co 7432 infcinf 9482 0cc0 11156 +∞cpnf 11293 ℝ*cxr 11295 < clt 11296 ≤ cle 11297 [,]cicc 13391 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-po 5591 df-so 5592 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-1st 8015 df-2nd 8016 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-sup 9483 df-inf 9484 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-icc 13395 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |