Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > infxrge0gelb | Structured version Visualization version GIF version |
Description: The infimum of a set of nonnegative extended reals is greater than or equal to a lower bound. (Contributed by Thierry Arnoux, 19-Jul-2020.) (Revised by AV, 4-Oct-2020.) |
Ref | Expression |
---|---|
infxrge0glb.a | ⊢ (𝜑 → 𝐴 ⊆ (0[,]+∞)) |
infxrge0glb.b | ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) |
Ref | Expression |
---|---|
infxrge0gelb | ⊢ (𝜑 → (𝐵 ≤ inf(𝐴, (0[,]+∞), < ) ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infxrge0glb.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ (0[,]+∞)) | |
2 | infxrge0glb.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) | |
3 | 1, 2 | infxrge0glb 30990 | . . 3 ⊢ (𝜑 → (inf(𝐴, (0[,]+∞), < ) < 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑥 < 𝐵)) |
4 | 3 | notbid 317 | . 2 ⊢ (𝜑 → (¬ inf(𝐴, (0[,]+∞), < ) < 𝐵 ↔ ¬ ∃𝑥 ∈ 𝐴 𝑥 < 𝐵)) |
5 | iccssxr 13091 | . . . 4 ⊢ (0[,]+∞) ⊆ ℝ* | |
6 | 5, 2 | sselid 3915 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
7 | xrltso 12804 | . . . . . . 7 ⊢ < Or ℝ* | |
8 | soss 5514 | . . . . . . 7 ⊢ ((0[,]+∞) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]+∞))) | |
9 | 5, 7, 8 | mp2 9 | . . . . . 6 ⊢ < Or (0[,]+∞) |
10 | 9 | a1i 11 | . . . . 5 ⊢ (𝜑 → < Or (0[,]+∞)) |
11 | xrge0infss 30985 | . . . . . 6 ⊢ (𝐴 ⊆ (0[,]+∞) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) | |
12 | 1, 11 | syl 17 | . . . . 5 ⊢ (𝜑 → ∃𝑥 ∈ (0[,]+∞)(∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
13 | 10, 12 | infcl 9177 | . . . 4 ⊢ (𝜑 → inf(𝐴, (0[,]+∞), < ) ∈ (0[,]+∞)) |
14 | 5, 13 | sselid 3915 | . . 3 ⊢ (𝜑 → inf(𝐴, (0[,]+∞), < ) ∈ ℝ*) |
15 | 6, 14 | xrlenltd 10972 | . 2 ⊢ (𝜑 → (𝐵 ≤ inf(𝐴, (0[,]+∞), < ) ↔ ¬ inf(𝐴, (0[,]+∞), < ) < 𝐵)) |
16 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
17 | 1, 5 | sstrdi 3929 | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ ℝ*) |
18 | 17 | sselda 3917 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ*) |
19 | 16, 18 | xrlenltd 10972 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 ≤ 𝑥 ↔ ¬ 𝑥 < 𝐵)) |
20 | 19 | ralbidva 3119 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑥 ↔ ∀𝑥 ∈ 𝐴 ¬ 𝑥 < 𝐵)) |
21 | ralnex 3163 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑥 < 𝐵 ↔ ¬ ∃𝑥 ∈ 𝐴 𝑥 < 𝐵) | |
22 | 20, 21 | bitrdi 286 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑥 ↔ ¬ ∃𝑥 ∈ 𝐴 𝑥 < 𝐵)) |
23 | 4, 15, 22 | 3bitr4d 310 | 1 ⊢ (𝜑 → (𝐵 ≤ inf(𝐴, (0[,]+∞), < ) ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 ⊆ wss 3883 class class class wbr 5070 Or wor 5493 (class class class)co 7255 infcinf 9130 0cc0 10802 +∞cpnf 10937 ℝ*cxr 10939 < clt 10940 ≤ cle 10941 [,]cicc 13011 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-po 5494 df-so 5495 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-1st 7804 df-2nd 7805 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-icc 13015 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |