Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infxrge0gelb Structured version   Visualization version   GIF version

Theorem infxrge0gelb 30403
Description: The infimum of a set of nonnegative extended reals is greater than or equal to a lower bound. (Contributed by Thierry Arnoux, 19-Jul-2020.) (Revised by AV, 4-Oct-2020.)
Hypotheses
Ref Expression
infxrge0glb.a (𝜑𝐴 ⊆ (0[,]+∞))
infxrge0glb.b (𝜑𝐵 ∈ (0[,]+∞))
Assertion
Ref Expression
infxrge0gelb (𝜑 → (𝐵 ≤ inf(𝐴, (0[,]+∞), < ) ↔ ∀𝑥𝐴 𝐵𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥

Proof of Theorem infxrge0gelb
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infxrge0glb.a . . . 4 (𝜑𝐴 ⊆ (0[,]+∞))
2 infxrge0glb.b . . . 4 (𝜑𝐵 ∈ (0[,]+∞))
31, 2infxrge0glb 30402 . . 3 (𝜑 → (inf(𝐴, (0[,]+∞), < ) < 𝐵 ↔ ∃𝑥𝐴 𝑥 < 𝐵))
43notbid 319 . 2 (𝜑 → (¬ inf(𝐴, (0[,]+∞), < ) < 𝐵 ↔ ¬ ∃𝑥𝐴 𝑥 < 𝐵))
5 iccssxr 12809 . . . 4 (0[,]+∞) ⊆ ℝ*
65, 2sseldi 3969 . . 3 (𝜑𝐵 ∈ ℝ*)
7 xrltso 12524 . . . . . . 7 < Or ℝ*
8 soss 5492 . . . . . . 7 ((0[,]+∞) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]+∞)))
95, 7, 8mp2 9 . . . . . 6 < Or (0[,]+∞)
109a1i 11 . . . . 5 (𝜑 → < Or (0[,]+∞))
11 xrge0infss 30397 . . . . . 6 (𝐴 ⊆ (0[,]+∞) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
121, 11syl 17 . . . . 5 (𝜑 → ∃𝑥 ∈ (0[,]+∞)(∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
1310, 12infcl 8941 . . . 4 (𝜑 → inf(𝐴, (0[,]+∞), < ) ∈ (0[,]+∞))
145, 13sseldi 3969 . . 3 (𝜑 → inf(𝐴, (0[,]+∞), < ) ∈ ℝ*)
156, 14xrlenltd 10696 . 2 (𝜑 → (𝐵 ≤ inf(𝐴, (0[,]+∞), < ) ↔ ¬ inf(𝐴, (0[,]+∞), < ) < 𝐵))
166adantr 481 . . . . 5 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
171, 5syl6ss 3983 . . . . . 6 (𝜑𝐴 ⊆ ℝ*)
1817sselda 3971 . . . . 5 ((𝜑𝑥𝐴) → 𝑥 ∈ ℝ*)
1916, 18xrlenltd 10696 . . . 4 ((𝜑𝑥𝐴) → (𝐵𝑥 ↔ ¬ 𝑥 < 𝐵))
2019ralbidva 3201 . . 3 (𝜑 → (∀𝑥𝐴 𝐵𝑥 ↔ ∀𝑥𝐴 ¬ 𝑥 < 𝐵))
21 ralnex 3241 . . 3 (∀𝑥𝐴 ¬ 𝑥 < 𝐵 ↔ ¬ ∃𝑥𝐴 𝑥 < 𝐵)
2220, 21syl6bb 288 . 2 (𝜑 → (∀𝑥𝐴 𝐵𝑥 ↔ ¬ ∃𝑥𝐴 𝑥 < 𝐵))
234, 15, 223bitr4d 312 1 (𝜑 → (𝐵 ≤ inf(𝐴, (0[,]+∞), < ) ↔ ∀𝑥𝐴 𝐵𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wcel 2107  wral 3143  wrex 3144  wss 3940   class class class wbr 5063   Or wor 5472  (class class class)co 7148  infcinf 8894  0cc0 10526  +∞cpnf 10661  *cxr 10663   < clt 10664  cle 10665  [,]cicc 12731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-po 5473  df-so 5474  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-1st 7680  df-2nd 7681  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-sup 8895  df-inf 8896  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-icc 12735
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator