Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > infxrge0gelb | Structured version Visualization version GIF version |
Description: The infimum of a set of nonnegative extended reals is greater than or equal to a lower bound. (Contributed by Thierry Arnoux, 19-Jul-2020.) (Revised by AV, 4-Oct-2020.) |
Ref | Expression |
---|---|
infxrge0glb.a | ⊢ (𝜑 → 𝐴 ⊆ (0[,]+∞)) |
infxrge0glb.b | ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) |
Ref | Expression |
---|---|
infxrge0gelb | ⊢ (𝜑 → (𝐵 ≤ inf(𝐴, (0[,]+∞), < ) ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infxrge0glb.a | . . . 4 ⊢ (𝜑 → 𝐴 ⊆ (0[,]+∞)) | |
2 | infxrge0glb.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) | |
3 | 1, 2 | infxrge0glb 30625 | . . 3 ⊢ (𝜑 → (inf(𝐴, (0[,]+∞), < ) < 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑥 < 𝐵)) |
4 | 3 | notbid 321 | . 2 ⊢ (𝜑 → (¬ inf(𝐴, (0[,]+∞), < ) < 𝐵 ↔ ¬ ∃𝑥 ∈ 𝐴 𝑥 < 𝐵)) |
5 | iccssxr 12875 | . . . 4 ⊢ (0[,]+∞) ⊆ ℝ* | |
6 | 5, 2 | sseldi 3892 | . . 3 ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
7 | xrltso 12588 | . . . . . . 7 ⊢ < Or ℝ* | |
8 | soss 5466 | . . . . . . 7 ⊢ ((0[,]+∞) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]+∞))) | |
9 | 5, 7, 8 | mp2 9 | . . . . . 6 ⊢ < Or (0[,]+∞) |
10 | 9 | a1i 11 | . . . . 5 ⊢ (𝜑 → < Or (0[,]+∞)) |
11 | xrge0infss 30620 | . . . . . 6 ⊢ (𝐴 ⊆ (0[,]+∞) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) | |
12 | 1, 11 | syl 17 | . . . . 5 ⊢ (𝜑 → ∃𝑥 ∈ (0[,]+∞)(∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
13 | 10, 12 | infcl 8998 | . . . 4 ⊢ (𝜑 → inf(𝐴, (0[,]+∞), < ) ∈ (0[,]+∞)) |
14 | 5, 13 | sseldi 3892 | . . 3 ⊢ (𝜑 → inf(𝐴, (0[,]+∞), < ) ∈ ℝ*) |
15 | 6, 14 | xrlenltd 10758 | . 2 ⊢ (𝜑 → (𝐵 ≤ inf(𝐴, (0[,]+∞), < ) ↔ ¬ inf(𝐴, (0[,]+∞), < ) < 𝐵)) |
16 | 6 | adantr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ*) |
17 | 1, 5 | sstrdi 3906 | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ ℝ*) |
18 | 17 | sselda 3894 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ ℝ*) |
19 | 16, 18 | xrlenltd 10758 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐵 ≤ 𝑥 ↔ ¬ 𝑥 < 𝐵)) |
20 | 19 | ralbidva 3125 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑥 ↔ ∀𝑥 ∈ 𝐴 ¬ 𝑥 < 𝐵)) |
21 | ralnex 3163 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝑥 < 𝐵 ↔ ¬ ∃𝑥 ∈ 𝐴 𝑥 < 𝐵) | |
22 | 20, 21 | bitrdi 290 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑥 ↔ ¬ ∃𝑥 ∈ 𝐴 𝑥 < 𝐵)) |
23 | 4, 15, 22 | 3bitr4d 314 | 1 ⊢ (𝜑 → (𝐵 ≤ inf(𝐴, (0[,]+∞), < ) ↔ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 ∧ wa 399 ∈ wcel 2111 ∀wral 3070 ∃wrex 3071 ⊆ wss 3860 class class class wbr 5036 Or wor 5446 (class class class)co 7156 infcinf 8951 0cc0 10588 +∞cpnf 10723 ℝ*cxr 10725 < clt 10726 ≤ cle 10727 [,]cicc 12795 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 ax-pre-sup 10666 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-po 5447 df-so 5448 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-1st 7699 df-2nd 7700 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 df-sup 8952 df-inf 8953 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-icc 12799 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |