Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omsf Structured version   Visualization version   GIF version

Theorem omsf 30873
Description: A constructed outer measure is a function. (Contributed by Thierry Arnoux, 17-Sep-2019.) (Revised by AV, 4-Oct-2020.)
Assertion
Ref Expression
omsf ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞)) → (toOMeas‘𝑅):𝒫 dom 𝑅⟶(0[,]+∞))

Proof of Theorem omsf
Dummy variables 𝑎 𝑠 𝑡 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iccssxr 12504 . . . . 5 (0[,]+∞) ⊆ ℝ*
2 xrltso 12220 . . . . 5 < Or ℝ*
3 soss 5252 . . . . 5 ((0[,]+∞) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]+∞)))
41, 2, 3mp2 9 . . . 4 < Or (0[,]+∞)
54a1i 11 . . 3 (((𝑄𝑉𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 dom 𝑅) → < Or (0[,]+∞))
6 omscl 30872 . . . . 5 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝑎 ∈ 𝒫 dom 𝑅) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ⊆ (0[,]+∞))
763expa 1148 . . . 4 (((𝑄𝑉𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 dom 𝑅) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ⊆ (0[,]+∞))
8 xrge0infss 30042 . . . 4 (ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ⊆ (0[,]+∞) → ∃𝑡 ∈ (0[,]+∞)(∀𝑤 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ¬ 𝑤 < 𝑡 ∧ ∀𝑤 ∈ (0[,]+∞)(𝑡 < 𝑤 → ∃𝑠 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))𝑠 < 𝑤)))
97, 8syl 17 . . 3 (((𝑄𝑉𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 dom 𝑅) → ∃𝑡 ∈ (0[,]+∞)(∀𝑤 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ¬ 𝑤 < 𝑡 ∧ ∀𝑤 ∈ (0[,]+∞)(𝑡 < 𝑤 → ∃𝑠 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦))𝑠 < 𝑤)))
105, 9infcl 8637 . 2 (((𝑄𝑉𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 dom 𝑅) → inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ) ∈ (0[,]+∞))
11 fex 6719 . . . 4 ((𝑅:𝑄⟶(0[,]+∞) ∧ 𝑄𝑉) → 𝑅 ∈ V)
1211ancoms 451 . . 3 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞)) → 𝑅 ∈ V)
13 omsval 30870 . . 3 (𝑅 ∈ V → (toOMeas‘𝑅) = (𝑎 ∈ 𝒫 dom 𝑅 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < )))
1412, 13syl 17 . 2 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞)) → (toOMeas‘𝑅) = (𝑎 ∈ 𝒫 dom 𝑅 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < )))
15 simpll 784 . . . 4 (((𝑄𝑉𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 dom 𝑅) → 𝑄𝑉)
16 simplr 786 . . . 4 (((𝑄𝑉𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 dom 𝑅) → 𝑅:𝑄⟶(0[,]+∞))
17 simpr 478 . . . . . 6 (((𝑄𝑉𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 dom 𝑅) → 𝑎 ∈ 𝒫 dom 𝑅)
18 fdm 6265 . . . . . . . . 9 (𝑅:𝑄⟶(0[,]+∞) → dom 𝑅 = 𝑄)
1918unieqd 4639 . . . . . . . 8 (𝑅:𝑄⟶(0[,]+∞) → dom 𝑅 = 𝑄)
2019pweqd 4355 . . . . . . 7 (𝑅:𝑄⟶(0[,]+∞) → 𝒫 dom 𝑅 = 𝒫 𝑄)
2120ad2antlr 719 . . . . . 6 (((𝑄𝑉𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 dom 𝑅) → 𝒫 dom 𝑅 = 𝒫 𝑄)
2217, 21eleqtrd 2881 . . . . 5 (((𝑄𝑉𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 dom 𝑅) → 𝑎 ∈ 𝒫 𝑄)
23 elpwi 4360 . . . . 5 (𝑎 ∈ 𝒫 𝑄𝑎 𝑄)
2422, 23syl 17 . . . 4 (((𝑄𝑉𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 dom 𝑅) → 𝑎 𝑄)
25 omsfval 30871 . . . 4 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝑎 𝑄) → ((toOMeas‘𝑅)‘𝑎) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ))
2615, 16, 24, 25syl3anc 1491 . . 3 (((𝑄𝑉𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 dom 𝑅) → ((toOMeas‘𝑅)‘𝑎) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ))
2726, 10eqeltrd 2879 . 2 (((𝑄𝑉𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 dom 𝑅) → ((toOMeas‘𝑅)‘𝑎) ∈ (0[,]+∞))
2810, 14, 27fmpt2d 6620 1 ((𝑄𝑉𝑅:𝑄⟶(0[,]+∞)) → (toOMeas‘𝑅):𝒫 dom 𝑅⟶(0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 385   = wceq 1653  wcel 2157  wral 3090  wrex 3091  {crab 3094  Vcvv 3386  wss 3770  𝒫 cpw 4350   cuni 4629   class class class wbr 4844  cmpt 4923   Or wor 5233  dom cdm 5313  ran crn 5314  wf 6098  cfv 6102  (class class class)co 6879  ωcom 7300  cdom 8194  infcinf 8590  0cc0 10225  +∞cpnf 10361  *cxr 10363   < clt 10364  [,]cicc 12426  Σ*cesum 30604  toOMeascoms 30868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-rep 4965  ax-sep 4976  ax-nul 4984  ax-pow 5036  ax-pr 5098  ax-un 7184  ax-cnex 10281  ax-resscn 10282  ax-1cn 10283  ax-icn 10284  ax-addcl 10285  ax-addrcl 10286  ax-mulcl 10287  ax-mulrcl 10288  ax-mulcom 10289  ax-addass 10290  ax-mulass 10291  ax-distr 10292  ax-i2m1 10293  ax-1ne0 10294  ax-1rid 10295  ax-rnegex 10296  ax-rrecex 10297  ax-cnre 10298  ax-pre-lttri 10299  ax-pre-lttrn 10300  ax-pre-ltadd 10301  ax-pre-mulgt0 10302  ax-pre-sup 10303
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ne 2973  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3388  df-sbc 3635  df-csb 3730  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-pss 3786  df-nul 4117  df-if 4279  df-pw 4352  df-sn 4370  df-pr 4372  df-tp 4374  df-op 4376  df-uni 4630  df-int 4669  df-iun 4713  df-iin 4714  df-br 4845  df-opab 4907  df-mpt 4924  df-tr 4947  df-id 5221  df-eprel 5226  df-po 5234  df-so 5235  df-fr 5272  df-se 5273  df-we 5274  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-rn 5324  df-res 5325  df-ima 5326  df-pred 5899  df-ord 5945  df-on 5946  df-lim 5947  df-suc 5948  df-iota 6065  df-fun 6104  df-fn 6105  df-f 6106  df-f1 6107  df-fo 6108  df-f1o 6109  df-fv 6110  df-isom 6111  df-riota 6840  df-ov 6882  df-oprab 6883  df-mpt2 6884  df-of 7132  df-om 7301  df-1st 7402  df-2nd 7403  df-supp 7534  df-wrecs 7646  df-recs 7708  df-rdg 7746  df-1o 7800  df-oadd 7804  df-er 7983  df-map 8098  df-en 8197  df-dom 8198  df-sdom 8199  df-fin 8200  df-fsupp 8519  df-fi 8560  df-sup 8591  df-inf 8592  df-oi 8658  df-card 9052  df-pnf 10366  df-mnf 10367  df-xr 10368  df-ltxr 10369  df-le 10370  df-sub 10559  df-neg 10560  df-div 10978  df-nn 11314  df-2 11375  df-3 11376  df-4 11377  df-5 11378  df-6 11379  df-7 11380  df-8 11381  df-9 11382  df-n0 11580  df-z 11666  df-dec 11783  df-uz 11930  df-q 12033  df-xadd 12193  df-ioo 12427  df-ioc 12428  df-ico 12429  df-icc 12430  df-fz 12580  df-fzo 12720  df-seq 13055  df-hash 13370  df-struct 16185  df-ndx 16186  df-slot 16187  df-base 16189  df-sets 16190  df-ress 16191  df-plusg 16279  df-mulr 16280  df-tset 16285  df-ple 16286  df-ds 16288  df-rest 16397  df-topn 16398  df-0g 16416  df-gsum 16417  df-topgen 16418  df-ordt 16475  df-xrs 16476  df-mre 16560  df-mrc 16561  df-acs 16563  df-ps 17514  df-tsr 17515  df-mgm 17556  df-sgrp 17598  df-mnd 17609  df-submnd 17650  df-cntz 18061  df-cmn 18509  df-fbas 20064  df-fg 20065  df-top 21026  df-topon 21043  df-topsp 21065  df-bases 21078  df-ntr 21152  df-nei 21230  df-cn 21359  df-haus 21447  df-fil 21977  df-fm 22069  df-flim 22070  df-flf 22071  df-tsms 22257  df-esum 30605  df-oms 30869
This theorem is referenced by:  omssubaddlem  30876  omssubadd  30877  omsmeas  30900
  Copyright terms: Public domain W3C validator