Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > omsf | Structured version Visualization version GIF version |
Description: A constructed outer measure is a function. (Contributed by Thierry Arnoux, 17-Sep-2019.) (Revised by AV, 4-Oct-2020.) |
Ref | Expression |
---|---|
omsf | ⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) → (toOMeas‘𝑅):𝒫 ∪ dom 𝑅⟶(0[,]+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccssxr 13091 | . . . . 5 ⊢ (0[,]+∞) ⊆ ℝ* | |
2 | xrltso 12804 | . . . . 5 ⊢ < Or ℝ* | |
3 | soss 5514 | . . . . 5 ⊢ ((0[,]+∞) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]+∞))) | |
4 | 1, 2, 3 | mp2 9 | . . . 4 ⊢ < Or (0[,]+∞) |
5 | 4 | a1i 11 | . . 3 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → < Or (0[,]+∞)) |
6 | omscl 32162 | . . . . 5 ⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)) ⊆ (0[,]+∞)) | |
7 | 6 | 3expa 1116 | . . . 4 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)) ⊆ (0[,]+∞)) |
8 | xrge0infss 30985 | . . . 4 ⊢ (ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)) ⊆ (0[,]+∞) → ∃𝑡 ∈ (0[,]+∞)(∀𝑤 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)) ¬ 𝑤 < 𝑡 ∧ ∀𝑤 ∈ (0[,]+∞)(𝑡 < 𝑤 → ∃𝑠 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦))𝑠 < 𝑤))) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → ∃𝑡 ∈ (0[,]+∞)(∀𝑤 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)) ¬ 𝑤 < 𝑡 ∧ ∀𝑤 ∈ (0[,]+∞)(𝑡 < 𝑤 → ∃𝑠 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦))𝑠 < 𝑤))) |
10 | 5, 9 | infcl 9177 | . 2 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)), (0[,]+∞), < ) ∈ (0[,]+∞)) |
11 | fex 7084 | . . . 4 ⊢ ((𝑅:𝑄⟶(0[,]+∞) ∧ 𝑄 ∈ 𝑉) → 𝑅 ∈ V) | |
12 | 11 | ancoms 458 | . . 3 ⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) → 𝑅 ∈ V) |
13 | omsval 32160 | . . 3 ⊢ (𝑅 ∈ V → (toOMeas‘𝑅) = (𝑎 ∈ 𝒫 ∪ dom 𝑅 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)), (0[,]+∞), < ))) | |
14 | 12, 13 | syl 17 | . 2 ⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) → (toOMeas‘𝑅) = (𝑎 ∈ 𝒫 ∪ dom 𝑅 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)), (0[,]+∞), < ))) |
15 | simpll 763 | . . . 4 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → 𝑄 ∈ 𝑉) | |
16 | simplr 765 | . . . 4 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → 𝑅:𝑄⟶(0[,]+∞)) | |
17 | simpr 484 | . . . . . 6 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → 𝑎 ∈ 𝒫 ∪ dom 𝑅) | |
18 | fdm 6593 | . . . . . . . . 9 ⊢ (𝑅:𝑄⟶(0[,]+∞) → dom 𝑅 = 𝑄) | |
19 | 18 | unieqd 4850 | . . . . . . . 8 ⊢ (𝑅:𝑄⟶(0[,]+∞) → ∪ dom 𝑅 = ∪ 𝑄) |
20 | 19 | pweqd 4549 | . . . . . . 7 ⊢ (𝑅:𝑄⟶(0[,]+∞) → 𝒫 ∪ dom 𝑅 = 𝒫 ∪ 𝑄) |
21 | 20 | ad2antlr 723 | . . . . . 6 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → 𝒫 ∪ dom 𝑅 = 𝒫 ∪ 𝑄) |
22 | 17, 21 | eleqtrd 2841 | . . . . 5 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → 𝑎 ∈ 𝒫 ∪ 𝑄) |
23 | elpwi 4539 | . . . . 5 ⊢ (𝑎 ∈ 𝒫 ∪ 𝑄 → 𝑎 ⊆ ∪ 𝑄) | |
24 | 22, 23 | syl 17 | . . . 4 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → 𝑎 ⊆ ∪ 𝑄) |
25 | omsfval 32161 | . . . 4 ⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝑎 ⊆ ∪ 𝑄) → ((toOMeas‘𝑅)‘𝑎) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)), (0[,]+∞), < )) | |
26 | 15, 16, 24, 25 | syl3anc 1369 | . . 3 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → ((toOMeas‘𝑅)‘𝑎) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)), (0[,]+∞), < )) |
27 | 26, 10 | eqeltrd 2839 | . 2 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → ((toOMeas‘𝑅)‘𝑎) ∈ (0[,]+∞)) |
28 | 10, 14, 27 | fmpt2d 6979 | 1 ⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) → (toOMeas‘𝑅):𝒫 ∪ dom 𝑅⟶(0[,]+∞)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 {crab 3067 Vcvv 3422 ⊆ wss 3883 𝒫 cpw 4530 ∪ cuni 4836 class class class wbr 5070 ↦ cmpt 5153 Or wor 5493 dom cdm 5580 ran crn 5581 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ωcom 7687 ≼ cdom 8689 infcinf 9130 0cc0 10802 +∞cpnf 10937 ℝ*cxr 10939 < clt 10940 [,]cicc 13011 Σ*cesum 31895 toOMeascoms 32158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-xadd 12778 df-ioo 13012 df-ioc 13013 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-tset 16907 df-ple 16908 df-ds 16910 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-ordt 17129 df-xrs 17130 df-mre 17212 df-mrc 17213 df-acs 17215 df-ps 18199 df-tsr 18200 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-cntz 18838 df-cmn 19303 df-fbas 20507 df-fg 20508 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-ntr 22079 df-nei 22157 df-cn 22286 df-haus 22374 df-fil 22905 df-fm 22997 df-flim 22998 df-flf 22999 df-tsms 23186 df-esum 31896 df-oms 32159 |
This theorem is referenced by: omssubaddlem 32166 omssubadd 32167 omsmeas 32190 |
Copyright terms: Public domain | W3C validator |