| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omsf | Structured version Visualization version GIF version | ||
| Description: A constructed outer measure is a function. (Contributed by Thierry Arnoux, 17-Sep-2019.) (Revised by AV, 4-Oct-2020.) |
| Ref | Expression |
|---|---|
| omsf | ⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) → (toOMeas‘𝑅):𝒫 ∪ dom 𝑅⟶(0[,]+∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccssxr 13452 | . . . . 5 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 2 | xrltso 13162 | . . . . 5 ⊢ < Or ℝ* | |
| 3 | soss 5586 | . . . . 5 ⊢ ((0[,]+∞) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]+∞))) | |
| 4 | 1, 2, 3 | mp2 9 | . . . 4 ⊢ < Or (0[,]+∞) |
| 5 | 4 | a1i 11 | . . 3 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → < Or (0[,]+∞)) |
| 6 | omscl 34332 | . . . . 5 ⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)) ⊆ (0[,]+∞)) | |
| 7 | 6 | 3expa 1118 | . . . 4 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)) ⊆ (0[,]+∞)) |
| 8 | xrge0infss 32742 | . . . 4 ⊢ (ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)) ⊆ (0[,]+∞) → ∃𝑡 ∈ (0[,]+∞)(∀𝑤 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)) ¬ 𝑤 < 𝑡 ∧ ∀𝑤 ∈ (0[,]+∞)(𝑡 < 𝑤 → ∃𝑠 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦))𝑠 < 𝑤))) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → ∃𝑡 ∈ (0[,]+∞)(∀𝑤 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)) ¬ 𝑤 < 𝑡 ∧ ∀𝑤 ∈ (0[,]+∞)(𝑡 < 𝑤 → ∃𝑠 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦))𝑠 < 𝑤))) |
| 10 | 5, 9 | infcl 9506 | . 2 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)), (0[,]+∞), < ) ∈ (0[,]+∞)) |
| 11 | fex 7223 | . . . 4 ⊢ ((𝑅:𝑄⟶(0[,]+∞) ∧ 𝑄 ∈ 𝑉) → 𝑅 ∈ V) | |
| 12 | 11 | ancoms 458 | . . 3 ⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) → 𝑅 ∈ V) |
| 13 | omsval 34330 | . . 3 ⊢ (𝑅 ∈ V → (toOMeas‘𝑅) = (𝑎 ∈ 𝒫 ∪ dom 𝑅 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)), (0[,]+∞), < ))) | |
| 14 | 12, 13 | syl 17 | . 2 ⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) → (toOMeas‘𝑅) = (𝑎 ∈ 𝒫 ∪ dom 𝑅 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)), (0[,]+∞), < ))) |
| 15 | simpll 766 | . . . 4 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → 𝑄 ∈ 𝑉) | |
| 16 | simplr 768 | . . . 4 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → 𝑅:𝑄⟶(0[,]+∞)) | |
| 17 | simpr 484 | . . . . . 6 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → 𝑎 ∈ 𝒫 ∪ dom 𝑅) | |
| 18 | fdm 6720 | . . . . . . . . 9 ⊢ (𝑅:𝑄⟶(0[,]+∞) → dom 𝑅 = 𝑄) | |
| 19 | 18 | unieqd 4901 | . . . . . . . 8 ⊢ (𝑅:𝑄⟶(0[,]+∞) → ∪ dom 𝑅 = ∪ 𝑄) |
| 20 | 19 | pweqd 4597 | . . . . . . 7 ⊢ (𝑅:𝑄⟶(0[,]+∞) → 𝒫 ∪ dom 𝑅 = 𝒫 ∪ 𝑄) |
| 21 | 20 | ad2antlr 727 | . . . . . 6 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → 𝒫 ∪ dom 𝑅 = 𝒫 ∪ 𝑄) |
| 22 | 17, 21 | eleqtrd 2837 | . . . . 5 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → 𝑎 ∈ 𝒫 ∪ 𝑄) |
| 23 | elpwi 4587 | . . . . 5 ⊢ (𝑎 ∈ 𝒫 ∪ 𝑄 → 𝑎 ⊆ ∪ 𝑄) | |
| 24 | 22, 23 | syl 17 | . . . 4 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → 𝑎 ⊆ ∪ 𝑄) |
| 25 | omsfval 34331 | . . . 4 ⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝑎 ⊆ ∪ 𝑄) → ((toOMeas‘𝑅)‘𝑎) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)), (0[,]+∞), < )) | |
| 26 | 15, 16, 24, 25 | syl3anc 1373 | . . 3 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → ((toOMeas‘𝑅)‘𝑎) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)), (0[,]+∞), < )) |
| 27 | 26, 10 | eqeltrd 2835 | . 2 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → ((toOMeas‘𝑅)‘𝑎) ∈ (0[,]+∞)) |
| 28 | 10, 14, 27 | fmpt2d 7119 | 1 ⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) → (toOMeas‘𝑅):𝒫 ∪ dom 𝑅⟶(0[,]+∞)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 {crab 3420 Vcvv 3464 ⊆ wss 3931 𝒫 cpw 4580 ∪ cuni 4888 class class class wbr 5124 ↦ cmpt 5206 Or wor 5565 dom cdm 5659 ran crn 5660 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ωcom 7866 ≼ cdom 8962 infcinf 9458 0cc0 11134 +∞cpnf 11271 ℝ*cxr 11273 < clt 11274 [,]cicc 13370 Σ*cesum 34063 toOMeascoms 34328 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-pre-sup 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-se 5612 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-supp 8165 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9379 df-fi 9428 df-sup 9459 df-inf 9460 df-oi 9529 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-div 11900 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-q 12970 df-xadd 13134 df-ioo 13371 df-ioc 13372 df-ico 13373 df-icc 13374 df-fz 13530 df-fzo 13677 df-seq 14025 df-hash 14354 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-tset 17295 df-ple 17296 df-ds 17298 df-rest 17441 df-topn 17442 df-0g 17460 df-gsum 17461 df-topgen 17462 df-ordt 17520 df-xrs 17521 df-mre 17603 df-mrc 17604 df-acs 17606 df-ps 18581 df-tsr 18582 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-cntz 19305 df-cmn 19768 df-fbas 21317 df-fg 21318 df-top 22837 df-topon 22854 df-topsp 22876 df-bases 22889 df-ntr 22963 df-nei 23041 df-cn 23170 df-haus 23258 df-fil 23789 df-fm 23881 df-flim 23882 df-flf 23883 df-tsms 24070 df-esum 34064 df-oms 34329 |
| This theorem is referenced by: omssubaddlem 34336 omssubadd 34337 omsmeas 34360 |
| Copyright terms: Public domain | W3C validator |