![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > omsf | Structured version Visualization version GIF version |
Description: A constructed outer measure is a function. (Contributed by Thierry Arnoux, 17-Sep-2019.) (Revised by AV, 4-Oct-2020.) |
Ref | Expression |
---|---|
omsf | ⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) → (toOMeas‘𝑅):𝒫 ∪ dom 𝑅⟶(0[,]+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iccssxr 13490 | . . . . 5 ⊢ (0[,]+∞) ⊆ ℝ* | |
2 | xrltso 13203 | . . . . 5 ⊢ < Or ℝ* | |
3 | soss 5628 | . . . . 5 ⊢ ((0[,]+∞) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]+∞))) | |
4 | 1, 2, 3 | mp2 9 | . . . 4 ⊢ < Or (0[,]+∞) |
5 | 4 | a1i 11 | . . 3 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → < Or (0[,]+∞)) |
6 | omscl 34260 | . . . . 5 ⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)) ⊆ (0[,]+∞)) | |
7 | 6 | 3expa 1118 | . . . 4 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)) ⊆ (0[,]+∞)) |
8 | xrge0infss 32767 | . . . 4 ⊢ (ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)) ⊆ (0[,]+∞) → ∃𝑡 ∈ (0[,]+∞)(∀𝑤 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)) ¬ 𝑤 < 𝑡 ∧ ∀𝑤 ∈ (0[,]+∞)(𝑡 < 𝑤 → ∃𝑠 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦))𝑠 < 𝑤))) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → ∃𝑡 ∈ (0[,]+∞)(∀𝑤 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)) ¬ 𝑤 < 𝑡 ∧ ∀𝑤 ∈ (0[,]+∞)(𝑡 < 𝑤 → ∃𝑠 ∈ ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦))𝑠 < 𝑤))) |
10 | 5, 9 | infcl 9557 | . 2 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)), (0[,]+∞), < ) ∈ (0[,]+∞)) |
11 | fex 7263 | . . . 4 ⊢ ((𝑅:𝑄⟶(0[,]+∞) ∧ 𝑄 ∈ 𝑉) → 𝑅 ∈ V) | |
12 | 11 | ancoms 458 | . . 3 ⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) → 𝑅 ∈ V) |
13 | omsval 34258 | . . 3 ⊢ (𝑅 ∈ V → (toOMeas‘𝑅) = (𝑎 ∈ 𝒫 ∪ dom 𝑅 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)), (0[,]+∞), < ))) | |
14 | 12, 13 | syl 17 | . 2 ⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) → (toOMeas‘𝑅) = (𝑎 ∈ 𝒫 ∪ dom 𝑅 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)), (0[,]+∞), < ))) |
15 | simpll 766 | . . . 4 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → 𝑄 ∈ 𝑉) | |
16 | simplr 768 | . . . 4 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → 𝑅:𝑄⟶(0[,]+∞)) | |
17 | simpr 484 | . . . . . 6 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → 𝑎 ∈ 𝒫 ∪ dom 𝑅) | |
18 | fdm 6756 | . . . . . . . . 9 ⊢ (𝑅:𝑄⟶(0[,]+∞) → dom 𝑅 = 𝑄) | |
19 | 18 | unieqd 4944 | . . . . . . . 8 ⊢ (𝑅:𝑄⟶(0[,]+∞) → ∪ dom 𝑅 = ∪ 𝑄) |
20 | 19 | pweqd 4639 | . . . . . . 7 ⊢ (𝑅:𝑄⟶(0[,]+∞) → 𝒫 ∪ dom 𝑅 = 𝒫 ∪ 𝑄) |
21 | 20 | ad2antlr 726 | . . . . . 6 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → 𝒫 ∪ dom 𝑅 = 𝒫 ∪ 𝑄) |
22 | 17, 21 | eleqtrd 2846 | . . . . 5 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → 𝑎 ∈ 𝒫 ∪ 𝑄) |
23 | elpwi 4629 | . . . . 5 ⊢ (𝑎 ∈ 𝒫 ∪ 𝑄 → 𝑎 ⊆ ∪ 𝑄) | |
24 | 22, 23 | syl 17 | . . . 4 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → 𝑎 ⊆ ∪ 𝑄) |
25 | omsfval 34259 | . . . 4 ⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞) ∧ 𝑎 ⊆ ∪ 𝑄) → ((toOMeas‘𝑅)‘𝑎) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)), (0[,]+∞), < )) | |
26 | 15, 16, 24, 25 | syl3anc 1371 | . . 3 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → ((toOMeas‘𝑅)‘𝑎) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 ⊆ ∪ 𝑧 ∧ 𝑧 ≼ ω)} ↦ Σ*𝑦 ∈ 𝑥(𝑅‘𝑦)), (0[,]+∞), < )) |
27 | 26, 10 | eqeltrd 2844 | . 2 ⊢ (((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑅) → ((toOMeas‘𝑅)‘𝑎) ∈ (0[,]+∞)) |
28 | 10, 14, 27 | fmpt2d 7158 | 1 ⊢ ((𝑄 ∈ 𝑉 ∧ 𝑅:𝑄⟶(0[,]+∞)) → (toOMeas‘𝑅):𝒫 ∪ dom 𝑅⟶(0[,]+∞)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 {crab 3443 Vcvv 3488 ⊆ wss 3976 𝒫 cpw 4622 ∪ cuni 4931 class class class wbr 5166 ↦ cmpt 5249 Or wor 5606 dom cdm 5700 ran crn 5701 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ωcom 7903 ≼ cdom 9001 infcinf 9510 0cc0 11184 +∞cpnf 11321 ℝ*cxr 11323 < clt 11324 [,]cicc 13410 Σ*cesum 33991 toOMeascoms 34256 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-xadd 13176 df-ioo 13411 df-ioc 13412 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-seq 14053 df-hash 14380 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-tset 17330 df-ple 17331 df-ds 17333 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-ordt 17561 df-xrs 17562 df-mre 17644 df-mrc 17645 df-acs 17647 df-ps 18636 df-tsr 18637 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-cntz 19357 df-cmn 19824 df-fbas 21384 df-fg 21385 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-ntr 23049 df-nei 23127 df-cn 23256 df-haus 23344 df-fil 23875 df-fm 23967 df-flim 23968 df-flf 23969 df-tsms 24156 df-esum 33992 df-oms 34257 |
This theorem is referenced by: omssubaddlem 34264 omssubadd 34265 omsmeas 34288 |
Copyright terms: Public domain | W3C validator |