Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infxrge0glb Structured version   Visualization version   GIF version

Theorem infxrge0glb 30476
Description: The infimum of a set of nonnegative extended reals is the greatest lower bound. (Contributed by Thierry Arnoux, 19-Jul-2020.) (Revised by AV, 4-Oct-2020.)
Hypotheses
Ref Expression
infxrge0glb.a (𝜑𝐴 ⊆ (0[,]+∞))
infxrge0glb.b (𝜑𝐵 ∈ (0[,]+∞))
Assertion
Ref Expression
infxrge0glb (𝜑 → (inf(𝐴, (0[,]+∞), < ) < 𝐵 ↔ ∃𝑥𝐴 𝑥 < 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem infxrge0glb
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infxrge0glb.b . . 3 (𝜑𝐵 ∈ (0[,]+∞))
2 iccssxr 12799 . . . . . 6 (0[,]+∞) ⊆ ℝ*
3 xrltso 12513 . . . . . 6 < Or ℝ*
4 soss 5469 . . . . . 6 ((0[,]+∞) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]+∞)))
52, 3, 4mp2 9 . . . . 5 < Or (0[,]+∞)
65a1i 11 . . . 4 (𝜑 → < Or (0[,]+∞))
7 infxrge0glb.a . . . . 5 (𝜑𝐴 ⊆ (0[,]+∞))
8 xrge0infss 30471 . . . . 5 (𝐴 ⊆ (0[,]+∞) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
97, 8syl 17 . . . 4 (𝜑 → ∃𝑥 ∈ (0[,]+∞)(∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
106, 9, 7infglbb 8933 . . 3 ((𝜑𝐵 ∈ (0[,]+∞)) → (inf(𝐴, (0[,]+∞), < ) < 𝐵 ↔ ∃𝑧𝐴 𝑧 < 𝐵))
111, 10mpdan 685 . 2 (𝜑 → (inf(𝐴, (0[,]+∞), < ) < 𝐵 ↔ ∃𝑧𝐴 𝑧 < 𝐵))
12 breq1 5045 . . 3 (𝑥 = 𝑧 → (𝑥 < 𝐵𝑧 < 𝐵))
1312cbvrexvw 3429 . 2 (∃𝑥𝐴 𝑥 < 𝐵 ↔ ∃𝑧𝐴 𝑧 < 𝐵)
1411, 13syl6bbr 291 1 (𝜑 → (inf(𝐴, (0[,]+∞), < ) < 𝐵 ↔ ∃𝑥𝐴 𝑥 < 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wcel 2114  wral 3125  wrex 3126  wss 3913   class class class wbr 5042   Or wor 5449  (class class class)co 7133  infcinf 8883  0cc0 10515  +∞cpnf 10650  *cxr 10652   < clt 10653  [,]cicc 12720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439  ax-cnex 10571  ax-resscn 10572  ax-1cn 10573  ax-icn 10574  ax-addcl 10575  ax-addrcl 10576  ax-mulcl 10577  ax-mulrcl 10578  ax-mulcom 10579  ax-addass 10580  ax-mulass 10581  ax-distr 10582  ax-i2m1 10583  ax-1ne0 10584  ax-1rid 10585  ax-rnegex 10586  ax-rrecex 10587  ax-cnre 10588  ax-pre-lttri 10589  ax-pre-lttrn 10590  ax-pre-ltadd 10591  ax-pre-mulgt0 10592  ax-pre-sup 10593
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-op 4550  df-uni 4815  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5436  df-po 5450  df-so 5451  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-ima 5544  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-f1 6336  df-fo 6337  df-f1o 6338  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-1st 7667  df-2nd 7668  df-er 8267  df-en 8488  df-dom 8489  df-sdom 8490  df-sup 8884  df-inf 8885  df-pnf 10655  df-mnf 10656  df-xr 10657  df-ltxr 10658  df-le 10659  df-sub 10850  df-neg 10851  df-icc 12724
This theorem is referenced by:  infxrge0gelb  30477
  Copyright terms: Public domain W3C validator