![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > infxrge0glb | Structured version Visualization version GIF version |
Description: The infimum of a set of nonnegative extended reals is the greatest lower bound. (Contributed by Thierry Arnoux, 19-Jul-2020.) (Revised by AV, 4-Oct-2020.) |
Ref | Expression |
---|---|
infxrge0glb.a | ⊢ (𝜑 → 𝐴 ⊆ (0[,]+∞)) |
infxrge0glb.b | ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) |
Ref | Expression |
---|---|
infxrge0glb | ⊢ (𝜑 → (inf(𝐴, (0[,]+∞), < ) < 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑥 < 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | infxrge0glb.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) | |
2 | iccssxr 13437 | . . . . . 6 ⊢ (0[,]+∞) ⊆ ℝ* | |
3 | xrltso 13150 | . . . . . 6 ⊢ < Or ℝ* | |
4 | soss 5604 | . . . . . 6 ⊢ ((0[,]+∞) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]+∞))) | |
5 | 2, 3, 4 | mp2 9 | . . . . 5 ⊢ < Or (0[,]+∞) |
6 | 5 | a1i 11 | . . . 4 ⊢ (𝜑 → < Or (0[,]+∞)) |
7 | infxrge0glb.a | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ (0[,]+∞)) | |
8 | xrge0infss 32573 | . . . . 5 ⊢ (𝐴 ⊆ (0[,]+∞) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) | |
9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ (0[,]+∞)(∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
10 | 6, 9, 7 | infglbb 9512 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ (0[,]+∞)) → (inf(𝐴, (0[,]+∞), < ) < 𝐵 ↔ ∃𝑧 ∈ 𝐴 𝑧 < 𝐵)) |
11 | 1, 10 | mpdan 685 | . 2 ⊢ (𝜑 → (inf(𝐴, (0[,]+∞), < ) < 𝐵 ↔ ∃𝑧 ∈ 𝐴 𝑧 < 𝐵)) |
12 | breq1 5146 | . . 3 ⊢ (𝑥 = 𝑧 → (𝑥 < 𝐵 ↔ 𝑧 < 𝐵)) | |
13 | 12 | cbvrexvw 3226 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝑥 < 𝐵 ↔ ∃𝑧 ∈ 𝐴 𝑧 < 𝐵) |
14 | 11, 13 | bitr4di 288 | 1 ⊢ (𝜑 → (inf(𝐴, (0[,]+∞), < ) < 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑥 < 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2098 ∀wral 3051 ∃wrex 3060 ⊆ wss 3940 class class class wbr 5143 Or wor 5583 (class class class)co 7415 infcinf 9462 0cc0 11136 +∞cpnf 11273 ℝ*cxr 11275 < clt 11276 [,]cicc 13357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-po 5584 df-so 5585 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-1st 7989 df-2nd 7990 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-sup 9463 df-inf 9464 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-icc 13361 |
This theorem is referenced by: infxrge0gelb 32579 |
Copyright terms: Public domain | W3C validator |