| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > infxrge0glb | Structured version Visualization version GIF version | ||
| Description: The infimum of a set of nonnegative extended reals is the greatest lower bound. (Contributed by Thierry Arnoux, 19-Jul-2020.) (Revised by AV, 4-Oct-2020.) |
| Ref | Expression |
|---|---|
| infxrge0glb.a | ⊢ (𝜑 → 𝐴 ⊆ (0[,]+∞)) |
| infxrge0glb.b | ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) |
| Ref | Expression |
|---|---|
| infxrge0glb | ⊢ (𝜑 → (inf(𝐴, (0[,]+∞), < ) < 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑥 < 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | infxrge0glb.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ (0[,]+∞)) | |
| 2 | iccssxr 13333 | . . . . . 6 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 3 | xrltso 13043 | . . . . . 6 ⊢ < Or ℝ* | |
| 4 | soss 5547 | . . . . . 6 ⊢ ((0[,]+∞) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]+∞))) | |
| 5 | 2, 3, 4 | mp2 9 | . . . . 5 ⊢ < Or (0[,]+∞) |
| 6 | 5 | a1i 11 | . . . 4 ⊢ (𝜑 → < Or (0[,]+∞)) |
| 7 | infxrge0glb.a | . . . . 5 ⊢ (𝜑 → 𝐴 ⊆ (0[,]+∞)) | |
| 8 | xrge0infss 32703 | . . . . 5 ⊢ (𝐴 ⊆ (0[,]+∞) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) | |
| 9 | 7, 8 | syl 17 | . . . 4 ⊢ (𝜑 → ∃𝑥 ∈ (0[,]+∞)(∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧 ∈ 𝐴 𝑧 < 𝑦))) |
| 10 | 6, 9, 7 | infglbb 9382 | . . 3 ⊢ ((𝜑 ∧ 𝐵 ∈ (0[,]+∞)) → (inf(𝐴, (0[,]+∞), < ) < 𝐵 ↔ ∃𝑧 ∈ 𝐴 𝑧 < 𝐵)) |
| 11 | 1, 10 | mpdan 687 | . 2 ⊢ (𝜑 → (inf(𝐴, (0[,]+∞), < ) < 𝐵 ↔ ∃𝑧 ∈ 𝐴 𝑧 < 𝐵)) |
| 12 | breq1 5095 | . . 3 ⊢ (𝑥 = 𝑧 → (𝑥 < 𝐵 ↔ 𝑧 < 𝐵)) | |
| 13 | 12 | cbvrexvw 3208 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝑥 < 𝐵 ↔ ∃𝑧 ∈ 𝐴 𝑧 < 𝐵) |
| 14 | 11, 13 | bitr4di 289 | 1 ⊢ (𝜑 → (inf(𝐴, (0[,]+∞), < ) < 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑥 < 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ⊆ wss 3903 class class class wbr 5092 Or wor 5526 (class class class)co 7349 infcinf 9331 0cc0 11009 +∞cpnf 11146 ℝ*cxr 11148 < clt 11149 [,]cicc 13251 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-po 5527 df-so 5528 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-icc 13255 |
| This theorem is referenced by: infxrge0gelb 32709 |
| Copyright terms: Public domain | W3C validator |