MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infregelb Structured version   Visualization version   GIF version

Theorem infregelb 12147
Description: Any lower bound of a nonempty set of real numbers is less than or equal to its infimum. (Contributed by Jeff Hankins, 1-Sep-2013.) (Revised by AV, 4-Sep-2020.) (Proof modification is discouraged.)
Assertion
Ref Expression
infregelb (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ inf(𝐴, ℝ, < ) ↔ ∀𝑧𝐴 𝐵𝑧))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑧,𝐴   𝑧,𝐵
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem infregelb
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ltso 11243 . . . . . 6 < Or ℝ
21a1i 11 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → < Or ℝ)
3 infm3 12122 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑤𝐴 𝑤 < 𝑦)))
4 simp1 1137 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → 𝐴 ⊆ ℝ)
52, 3, 4infglbb 9435 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) ∧ 𝐵 ∈ ℝ) → (inf(𝐴, ℝ, < ) < 𝐵 ↔ ∃𝑤𝐴 𝑤 < 𝐵))
65notbid 318 . . 3 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) ∧ 𝐵 ∈ ℝ) → (¬ inf(𝐴, ℝ, < ) < 𝐵 ↔ ¬ ∃𝑤𝐴 𝑤 < 𝐵))
7 infrecl 12145 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → inf(𝐴, ℝ, < ) ∈ ℝ)
87anim1i 616 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) ∧ 𝐵 ∈ ℝ) → (inf(𝐴, ℝ, < ) ∈ ℝ ∧ 𝐵 ∈ ℝ))
98ancomd 463 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) ∧ 𝐵 ∈ ℝ) → (𝐵 ∈ ℝ ∧ inf(𝐴, ℝ, < ) ∈ ℝ))
10 lenlt 11241 . . . 4 ((𝐵 ∈ ℝ ∧ inf(𝐴, ℝ, < ) ∈ ℝ) → (𝐵 ≤ inf(𝐴, ℝ, < ) ↔ ¬ inf(𝐴, ℝ, < ) < 𝐵))
119, 10syl 17 . . 3 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ inf(𝐴, ℝ, < ) ↔ ¬ inf(𝐴, ℝ, < ) < 𝐵))
12 simplr 768 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑤𝐴) → 𝐵 ∈ ℝ)
13 ssel 3941 . . . . . . . . 9 (𝐴 ⊆ ℝ → (𝑤𝐴𝑤 ∈ ℝ))
1413adantr 482 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (𝑤𝐴𝑤 ∈ ℝ))
1514imp 408 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑤𝐴) → 𝑤 ∈ ℝ)
1612, 15lenltd 11309 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑤𝐴) → (𝐵𝑤 ↔ ¬ 𝑤 < 𝐵))
1716ralbidva 3169 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (∀𝑤𝐴 𝐵𝑤 ↔ ∀𝑤𝐴 ¬ 𝑤 < 𝐵))
18173ad2antl1 1186 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) ∧ 𝐵 ∈ ℝ) → (∀𝑤𝐴 𝐵𝑤 ↔ ∀𝑤𝐴 ¬ 𝑤 < 𝐵))
19 ralnex 3072 . . . 4 (∀𝑤𝐴 ¬ 𝑤 < 𝐵 ↔ ¬ ∃𝑤𝐴 𝑤 < 𝐵)
2018, 19bitrdi 287 . . 3 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) ∧ 𝐵 ∈ ℝ) → (∀𝑤𝐴 𝐵𝑤 ↔ ¬ ∃𝑤𝐴 𝑤 < 𝐵))
216, 11, 203bitr4d 311 . 2 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ inf(𝐴, ℝ, < ) ↔ ∀𝑤𝐴 𝐵𝑤))
22 breq2 5113 . . 3 (𝑤 = 𝑧 → (𝐵𝑤𝐵𝑧))
2322cbvralvw 3224 . 2 (∀𝑤𝐴 𝐵𝑤 ↔ ∀𝑧𝐴 𝐵𝑧)
2421, 23bitrdi 287 1 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ inf(𝐴, ℝ, < ) ↔ ∀𝑧𝐴 𝐵𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 397  w3a 1088  wcel 2107  wne 2940  wral 3061  wrex 3070  wss 3914  c0 4286   class class class wbr 5109   Or wor 5548  infcinf 9385  cr 11058   < clt 11197  cle 11198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136  ax-pre-sup 11137
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-po 5549  df-so 5550  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-er 8654  df-en 8890  df-dom 8891  df-sdom 8892  df-sup 9386  df-inf 9387  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396
This theorem is referenced by:  infxrre  13264  minveclem2  24813  minveclem3b  24815  minveclem4  24819  minveclem6  24821  pilem2  25834  pilem3  25835  pntlem3  26980  minvecolem2  29866  minvecolem4  29871  minvecolem5  29872  minvecolem6  29873  taupi  35844  infmrgelbi  41248
  Copyright terms: Public domain W3C validator