![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infregelb | Structured version Visualization version GIF version |
Description: Any lower bound of a nonempty set of real numbers is less than or equal to its infimum. (Contributed by Jeff Hankins, 1-Sep-2013.) (Revised by AV, 4-Sep-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
infregelb | ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ inf(𝐴, ℝ, < ) ↔ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltso 11298 | . . . . . 6 ⊢ < Or ℝ | |
2 | 1 | a1i 11 | . . . . 5 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → < Or ℝ) |
3 | infm3 12177 | . . . . 5 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑤 ∈ 𝐴 𝑤 < 𝑦))) | |
4 | simp1 1133 | . . . . 5 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → 𝐴 ⊆ ℝ) | |
5 | 2, 3, 4 | infglbb 9488 | . . . 4 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ 𝐵 ∈ ℝ) → (inf(𝐴, ℝ, < ) < 𝐵 ↔ ∃𝑤 ∈ 𝐴 𝑤 < 𝐵)) |
6 | 5 | notbid 318 | . . 3 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ 𝐵 ∈ ℝ) → (¬ inf(𝐴, ℝ, < ) < 𝐵 ↔ ¬ ∃𝑤 ∈ 𝐴 𝑤 < 𝐵)) |
7 | infrecl 12200 | . . . . . 6 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → inf(𝐴, ℝ, < ) ∈ ℝ) | |
8 | 7 | anim1i 614 | . . . . 5 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ 𝐵 ∈ ℝ) → (inf(𝐴, ℝ, < ) ∈ ℝ ∧ 𝐵 ∈ ℝ)) |
9 | 8 | ancomd 461 | . . . 4 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ 𝐵 ∈ ℝ) → (𝐵 ∈ ℝ ∧ inf(𝐴, ℝ, < ) ∈ ℝ)) |
10 | lenlt 11296 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ inf(𝐴, ℝ, < ) ∈ ℝ) → (𝐵 ≤ inf(𝐴, ℝ, < ) ↔ ¬ inf(𝐴, ℝ, < ) < 𝐵)) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ inf(𝐴, ℝ, < ) ↔ ¬ inf(𝐴, ℝ, < ) < 𝐵)) |
12 | simplr 766 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑤 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
13 | ssel 3970 | . . . . . . . . 9 ⊢ (𝐴 ⊆ ℝ → (𝑤 ∈ 𝐴 → 𝑤 ∈ ℝ)) | |
14 | 13 | adantr 480 | . . . . . . . 8 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (𝑤 ∈ 𝐴 → 𝑤 ∈ ℝ)) |
15 | 14 | imp 406 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑤 ∈ 𝐴) → 𝑤 ∈ ℝ) |
16 | 12, 15 | lenltd 11364 | . . . . . 6 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑤 ∈ 𝐴) → (𝐵 ≤ 𝑤 ↔ ¬ 𝑤 < 𝐵)) |
17 | 16 | ralbidva 3169 | . . . . 5 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (∀𝑤 ∈ 𝐴 𝐵 ≤ 𝑤 ↔ ∀𝑤 ∈ 𝐴 ¬ 𝑤 < 𝐵)) |
18 | 17 | 3ad2antl1 1182 | . . . 4 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ 𝐵 ∈ ℝ) → (∀𝑤 ∈ 𝐴 𝐵 ≤ 𝑤 ↔ ∀𝑤 ∈ 𝐴 ¬ 𝑤 < 𝐵)) |
19 | ralnex 3066 | . . . 4 ⊢ (∀𝑤 ∈ 𝐴 ¬ 𝑤 < 𝐵 ↔ ¬ ∃𝑤 ∈ 𝐴 𝑤 < 𝐵) | |
20 | 18, 19 | bitrdi 287 | . . 3 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ 𝐵 ∈ ℝ) → (∀𝑤 ∈ 𝐴 𝐵 ≤ 𝑤 ↔ ¬ ∃𝑤 ∈ 𝐴 𝑤 < 𝐵)) |
21 | 6, 11, 20 | 3bitr4d 311 | . 2 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ inf(𝐴, ℝ, < ) ↔ ∀𝑤 ∈ 𝐴 𝐵 ≤ 𝑤)) |
22 | breq2 5145 | . . 3 ⊢ (𝑤 = 𝑧 → (𝐵 ≤ 𝑤 ↔ 𝐵 ≤ 𝑧)) | |
23 | 22 | cbvralvw 3228 | . 2 ⊢ (∀𝑤 ∈ 𝐴 𝐵 ≤ 𝑤 ↔ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧) |
24 | 21, 23 | bitrdi 287 | 1 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ inf(𝐴, ℝ, < ) ↔ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1084 ∈ wcel 2098 ≠ wne 2934 ∀wral 3055 ∃wrex 3064 ⊆ wss 3943 ∅c0 4317 class class class wbr 5141 Or wor 5580 infcinf 9438 ℝcr 11111 < clt 11252 ≤ cle 11253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-po 5581 df-so 5582 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-sup 9439 df-inf 9440 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 |
This theorem is referenced by: infxrre 13321 minveclem2 25309 minveclem3b 25311 minveclem4 25315 minveclem6 25317 pilem2 26344 pilem3 26345 pntlem3 27497 minvecolem2 30637 minvecolem4 30642 minvecolem5 30643 minvecolem6 30644 taupi 36711 infmrgelbi 42194 |
Copyright terms: Public domain | W3C validator |