MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infregelb Structured version   Visualization version   GIF version

Theorem infregelb 12127
Description: Any lower bound of a nonempty set of real numbers is less than or equal to its infimum. (Contributed by Jeff Hankins, 1-Sep-2013.) (Revised by AV, 4-Sep-2020.) (Proof modification is discouraged.)
Assertion
Ref Expression
infregelb (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ inf(𝐴, ℝ, < ) ↔ ∀𝑧𝐴 𝐵𝑧))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑧,𝐴   𝑧,𝐵
Allowed substitution hints:   𝐵(𝑥,𝑦)

Proof of Theorem infregelb
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ltso 11214 . . . . . 6 < Or ℝ
21a1i 11 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → < Or ℝ)
3 infm3 12102 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → ∃𝑥 ∈ ℝ (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑤𝐴 𝑤 < 𝑦)))
4 simp1 1136 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → 𝐴 ⊆ ℝ)
52, 3, 4infglbb 9401 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) ∧ 𝐵 ∈ ℝ) → (inf(𝐴, ℝ, < ) < 𝐵 ↔ ∃𝑤𝐴 𝑤 < 𝐵))
65notbid 318 . . 3 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) ∧ 𝐵 ∈ ℝ) → (¬ inf(𝐴, ℝ, < ) < 𝐵 ↔ ¬ ∃𝑤𝐴 𝑤 < 𝐵))
7 infrecl 12125 . . . . . 6 ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) → inf(𝐴, ℝ, < ) ∈ ℝ)
87anim1i 615 . . . . 5 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) ∧ 𝐵 ∈ ℝ) → (inf(𝐴, ℝ, < ) ∈ ℝ ∧ 𝐵 ∈ ℝ))
98ancomd 461 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) ∧ 𝐵 ∈ ℝ) → (𝐵 ∈ ℝ ∧ inf(𝐴, ℝ, < ) ∈ ℝ))
10 lenlt 11212 . . . 4 ((𝐵 ∈ ℝ ∧ inf(𝐴, ℝ, < ) ∈ ℝ) → (𝐵 ≤ inf(𝐴, ℝ, < ) ↔ ¬ inf(𝐴, ℝ, < ) < 𝐵))
119, 10syl 17 . . 3 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ inf(𝐴, ℝ, < ) ↔ ¬ inf(𝐴, ℝ, < ) < 𝐵))
12 simplr 768 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑤𝐴) → 𝐵 ∈ ℝ)
13 ssel 3931 . . . . . . . . 9 (𝐴 ⊆ ℝ → (𝑤𝐴𝑤 ∈ ℝ))
1413adantr 480 . . . . . . . 8 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (𝑤𝐴𝑤 ∈ ℝ))
1514imp 406 . . . . . . 7 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑤𝐴) → 𝑤 ∈ ℝ)
1612, 15lenltd 11280 . . . . . 6 (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑤𝐴) → (𝐵𝑤 ↔ ¬ 𝑤 < 𝐵))
1716ralbidva 3150 . . . . 5 ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (∀𝑤𝐴 𝐵𝑤 ↔ ∀𝑤𝐴 ¬ 𝑤 < 𝐵))
18173ad2antl1 1186 . . . 4 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) ∧ 𝐵 ∈ ℝ) → (∀𝑤𝐴 𝐵𝑤 ↔ ∀𝑤𝐴 ¬ 𝑤 < 𝐵))
19 ralnex 3055 . . . 4 (∀𝑤𝐴 ¬ 𝑤 < 𝐵 ↔ ¬ ∃𝑤𝐴 𝑤 < 𝐵)
2018, 19bitrdi 287 . . 3 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) ∧ 𝐵 ∈ ℝ) → (∀𝑤𝐴 𝐵𝑤 ↔ ¬ ∃𝑤𝐴 𝑤 < 𝐵))
216, 11, 203bitr4d 311 . 2 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ inf(𝐴, ℝ, < ) ↔ ∀𝑤𝐴 𝐵𝑤))
22 breq2 5099 . . 3 (𝑤 = 𝑧 → (𝐵𝑤𝐵𝑧))
2322cbvralvw 3207 . 2 (∀𝑤𝐴 𝐵𝑤 ↔ ∀𝑧𝐴 𝐵𝑧)
2421, 23bitrdi 287 1 (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ inf(𝐴, ℝ, < ) ↔ ∀𝑧𝐴 𝐵𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086  wcel 2109  wne 2925  wral 3044  wrex 3053  wss 3905  c0 4286   class class class wbr 5095   Or wor 5530  infcinf 9350  cr 11027   < clt 11168  cle 11169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-sup 9351  df-inf 9352  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368
This theorem is referenced by:  infxrre  13257  minveclem2  25342  minveclem3b  25344  minveclem4  25348  minveclem6  25350  pilem2  26378  pilem3  26379  pntlem3  27536  minvecolem2  30837  minvecolem4  30842  minvecolem5  30843  minvecolem6  30844  taupi  37296  infmrgelbi  42851
  Copyright terms: Public domain W3C validator