![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infregelb | Structured version Visualization version GIF version |
Description: Any lower bound of a nonempty set of real numbers is less than or equal to its infimum. (Contributed by Jeff Hankins, 1-Sep-2013.) (Revised by AV, 4-Sep-2020.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
infregelb | ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ inf(𝐴, ℝ, < ) ↔ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ltso 11370 | . . . . . 6 ⊢ < Or ℝ | |
2 | 1 | a1i 11 | . . . . 5 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → < Or ℝ) |
3 | infm3 12254 | . . . . 5 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑤 ∈ 𝐴 𝑤 < 𝑦))) | |
4 | simp1 1136 | . . . . 5 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → 𝐴 ⊆ ℝ) | |
5 | 2, 3, 4 | infglbb 9560 | . . . 4 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ 𝐵 ∈ ℝ) → (inf(𝐴, ℝ, < ) < 𝐵 ↔ ∃𝑤 ∈ 𝐴 𝑤 < 𝐵)) |
6 | 5 | notbid 318 | . . 3 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ 𝐵 ∈ ℝ) → (¬ inf(𝐴, ℝ, < ) < 𝐵 ↔ ¬ ∃𝑤 ∈ 𝐴 𝑤 < 𝐵)) |
7 | infrecl 12277 | . . . . . 6 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → inf(𝐴, ℝ, < ) ∈ ℝ) | |
8 | 7 | anim1i 614 | . . . . 5 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ 𝐵 ∈ ℝ) → (inf(𝐴, ℝ, < ) ∈ ℝ ∧ 𝐵 ∈ ℝ)) |
9 | 8 | ancomd 461 | . . . 4 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ 𝐵 ∈ ℝ) → (𝐵 ∈ ℝ ∧ inf(𝐴, ℝ, < ) ∈ ℝ)) |
10 | lenlt 11368 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ inf(𝐴, ℝ, < ) ∈ ℝ) → (𝐵 ≤ inf(𝐴, ℝ, < ) ↔ ¬ inf(𝐴, ℝ, < ) < 𝐵)) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ inf(𝐴, ℝ, < ) ↔ ¬ inf(𝐴, ℝ, < ) < 𝐵)) |
12 | simplr 768 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑤 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
13 | ssel 4002 | . . . . . . . . 9 ⊢ (𝐴 ⊆ ℝ → (𝑤 ∈ 𝐴 → 𝑤 ∈ ℝ)) | |
14 | 13 | adantr 480 | . . . . . . . 8 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (𝑤 ∈ 𝐴 → 𝑤 ∈ ℝ)) |
15 | 14 | imp 406 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑤 ∈ 𝐴) → 𝑤 ∈ ℝ) |
16 | 12, 15 | lenltd 11436 | . . . . . 6 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑤 ∈ 𝐴) → (𝐵 ≤ 𝑤 ↔ ¬ 𝑤 < 𝐵)) |
17 | 16 | ralbidva 3182 | . . . . 5 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (∀𝑤 ∈ 𝐴 𝐵 ≤ 𝑤 ↔ ∀𝑤 ∈ 𝐴 ¬ 𝑤 < 𝐵)) |
18 | 17 | 3ad2antl1 1185 | . . . 4 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ 𝐵 ∈ ℝ) → (∀𝑤 ∈ 𝐴 𝐵 ≤ 𝑤 ↔ ∀𝑤 ∈ 𝐴 ¬ 𝑤 < 𝐵)) |
19 | ralnex 3078 | . . . 4 ⊢ (∀𝑤 ∈ 𝐴 ¬ 𝑤 < 𝐵 ↔ ¬ ∃𝑤 ∈ 𝐴 𝑤 < 𝐵) | |
20 | 18, 19 | bitrdi 287 | . . 3 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ 𝐵 ∈ ℝ) → (∀𝑤 ∈ 𝐴 𝐵 ≤ 𝑤 ↔ ¬ ∃𝑤 ∈ 𝐴 𝑤 < 𝐵)) |
21 | 6, 11, 20 | 3bitr4d 311 | . 2 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ inf(𝐴, ℝ, < ) ↔ ∀𝑤 ∈ 𝐴 𝐵 ≤ 𝑤)) |
22 | breq2 5170 | . . 3 ⊢ (𝑤 = 𝑧 → (𝐵 ≤ 𝑤 ↔ 𝐵 ≤ 𝑧)) | |
23 | 22 | cbvralvw 3243 | . 2 ⊢ (∀𝑤 ∈ 𝐴 𝐵 ≤ 𝑤 ↔ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧) |
24 | 21, 23 | bitrdi 287 | 1 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ inf(𝐴, ℝ, < ) ↔ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 ⊆ wss 3976 ∅c0 4352 class class class wbr 5166 Or wor 5606 infcinf 9510 ℝcr 11183 < clt 11324 ≤ cle 11325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 |
This theorem is referenced by: infxrre 13398 minveclem2 25479 minveclem3b 25481 minveclem4 25485 minveclem6 25487 pilem2 26514 pilem3 26515 pntlem3 27671 minvecolem2 30907 minvecolem4 30912 minvecolem5 30913 minvecolem6 30914 taupi 37289 infmrgelbi 42834 |
Copyright terms: Public domain | W3C validator |