| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > infregelb | Structured version Visualization version GIF version | ||
| Description: Any lower bound of a nonempty set of real numbers is less than or equal to its infimum. (Contributed by Jeff Hankins, 1-Sep-2013.) (Revised by AV, 4-Sep-2020.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| infregelb | ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ inf(𝐴, ℝ, < ) ↔ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltso 11190 | . . . . . 6 ⊢ < Or ℝ | |
| 2 | 1 | a1i 11 | . . . . 5 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → < Or ℝ) |
| 3 | infm3 12078 | . . . . 5 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → ∃𝑥 ∈ ℝ (∀𝑦 ∈ 𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ (𝑥 < 𝑦 → ∃𝑤 ∈ 𝐴 𝑤 < 𝑦))) | |
| 4 | simp1 1136 | . . . . 5 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → 𝐴 ⊆ ℝ) | |
| 5 | 2, 3, 4 | infglbb 9376 | . . . 4 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ 𝐵 ∈ ℝ) → (inf(𝐴, ℝ, < ) < 𝐵 ↔ ∃𝑤 ∈ 𝐴 𝑤 < 𝐵)) |
| 6 | 5 | notbid 318 | . . 3 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ 𝐵 ∈ ℝ) → (¬ inf(𝐴, ℝ, < ) < 𝐵 ↔ ¬ ∃𝑤 ∈ 𝐴 𝑤 < 𝐵)) |
| 7 | infrecl 12101 | . . . . . 6 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) → inf(𝐴, ℝ, < ) ∈ ℝ) | |
| 8 | 7 | anim1i 615 | . . . . 5 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ 𝐵 ∈ ℝ) → (inf(𝐴, ℝ, < ) ∈ ℝ ∧ 𝐵 ∈ ℝ)) |
| 9 | 8 | ancomd 461 | . . . 4 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ 𝐵 ∈ ℝ) → (𝐵 ∈ ℝ ∧ inf(𝐴, ℝ, < ) ∈ ℝ)) |
| 10 | lenlt 11188 | . . . 4 ⊢ ((𝐵 ∈ ℝ ∧ inf(𝐴, ℝ, < ) ∈ ℝ) → (𝐵 ≤ inf(𝐴, ℝ, < ) ↔ ¬ inf(𝐴, ℝ, < ) < 𝐵)) | |
| 11 | 9, 10 | syl 17 | . . 3 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ inf(𝐴, ℝ, < ) ↔ ¬ inf(𝐴, ℝ, < ) < 𝐵)) |
| 12 | simplr 768 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑤 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
| 13 | ssel 3928 | . . . . . . . . 9 ⊢ (𝐴 ⊆ ℝ → (𝑤 ∈ 𝐴 → 𝑤 ∈ ℝ)) | |
| 14 | 13 | adantr 480 | . . . . . . . 8 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (𝑤 ∈ 𝐴 → 𝑤 ∈ ℝ)) |
| 15 | 14 | imp 406 | . . . . . . 7 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑤 ∈ 𝐴) → 𝑤 ∈ ℝ) |
| 16 | 12, 15 | lenltd 11256 | . . . . . 6 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) ∧ 𝑤 ∈ 𝐴) → (𝐵 ≤ 𝑤 ↔ ¬ 𝑤 < 𝐵)) |
| 17 | 16 | ralbidva 3153 | . . . . 5 ⊢ ((𝐴 ⊆ ℝ ∧ 𝐵 ∈ ℝ) → (∀𝑤 ∈ 𝐴 𝐵 ≤ 𝑤 ↔ ∀𝑤 ∈ 𝐴 ¬ 𝑤 < 𝐵)) |
| 18 | 17 | 3ad2antl1 1186 | . . . 4 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ 𝐵 ∈ ℝ) → (∀𝑤 ∈ 𝐴 𝐵 ≤ 𝑤 ↔ ∀𝑤 ∈ 𝐴 ¬ 𝑤 < 𝐵)) |
| 19 | ralnex 3058 | . . . 4 ⊢ (∀𝑤 ∈ 𝐴 ¬ 𝑤 < 𝐵 ↔ ¬ ∃𝑤 ∈ 𝐴 𝑤 < 𝐵) | |
| 20 | 18, 19 | bitrdi 287 | . . 3 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ 𝐵 ∈ ℝ) → (∀𝑤 ∈ 𝐴 𝐵 ≤ 𝑤 ↔ ¬ ∃𝑤 ∈ 𝐴 𝑤 < 𝐵)) |
| 21 | 6, 11, 20 | 3bitr4d 311 | . 2 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ inf(𝐴, ℝ, < ) ↔ ∀𝑤 ∈ 𝐴 𝐵 ≤ 𝑤)) |
| 22 | breq2 5095 | . . 3 ⊢ (𝑤 = 𝑧 → (𝐵 ≤ 𝑤 ↔ 𝐵 ≤ 𝑧)) | |
| 23 | 22 | cbvralvw 3210 | . 2 ⊢ (∀𝑤 ∈ 𝐴 𝐵 ≤ 𝑤 ↔ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧) |
| 24 | 21, 23 | bitrdi 287 | 1 ⊢ (((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝑥 ≤ 𝑦) ∧ 𝐵 ∈ ℝ) → (𝐵 ≤ inf(𝐴, ℝ, < ) ↔ ∀𝑧 ∈ 𝐴 𝐵 ≤ 𝑧)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ∃wrex 3056 ⊆ wss 3902 ∅c0 4283 class class class wbr 5091 Or wor 5523 infcinf 9325 ℝcr 11002 < clt 11143 ≤ cle 11144 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 ax-pre-sup 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-po 5524 df-so 5525 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-sup 9326 df-inf 9327 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 |
| This theorem is referenced by: infxrre 13233 minveclem2 25351 minveclem3b 25353 minveclem4 25357 minveclem6 25359 pilem2 26387 pilem3 26388 pntlem3 27545 minvecolem2 30850 minvecolem4 30855 minvecolem5 30856 minvecolem6 30857 taupi 37356 infmrgelbi 42910 |
| Copyright terms: Public domain | W3C validator |