Step | Hyp | Ref
| Expression |
1 | | df-mpt 5162 |
. . 3
⊢ (𝑥 ∈ (LSubSp‘𝑊) ↦ (𝑥𝑃( ⊥ ‘𝑥))) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( ⊥ ‘𝑥)))} |
2 | | df-xp 5594 |
. . 3
⊢ (V
× ((Base‘𝑊)
↑m (Base‘𝑊))) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊)))} |
3 | 1, 2 | ineq12i 4149 |
. 2
⊢ ((𝑥 ∈ (LSubSp‘𝑊) ↦ (𝑥𝑃( ⊥ ‘𝑥))) ∩ (V ×
((Base‘𝑊)
↑m (Base‘𝑊)))) = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( ⊥ ‘𝑥)))} ∩ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊)))}) |
4 | | eqid 2739 |
. . 3
⊢
(Base‘𝑊) =
(Base‘𝑊) |
5 | | eqid 2739 |
. . 3
⊢
(LSubSp‘𝑊) =
(LSubSp‘𝑊) |
6 | | pjfval2.o |
. . 3
⊢ ⊥ =
(ocv‘𝑊) |
7 | | pjfval2.p |
. . 3
⊢ 𝑃 = (proj1‘𝑊) |
8 | | pjfval2.k |
. . 3
⊢ 𝐾 = (proj‘𝑊) |
9 | 4, 5, 6, 7, 8 | pjfval 20894 |
. 2
⊢ 𝐾 = ((𝑥 ∈ (LSubSp‘𝑊) ↦ (𝑥𝑃( ⊥ ‘𝑥))) ∩ (V ×
((Base‘𝑊)
↑m (Base‘𝑊)))) |
10 | 4, 5, 6, 7, 8 | pjdm 20895 |
. . . . . . 7
⊢ (𝑥 ∈ dom 𝐾 ↔ (𝑥 ∈ (LSubSp‘𝑊) ∧ (𝑥𝑃( ⊥ ‘𝑥)):(Base‘𝑊)⟶(Base‘𝑊))) |
11 | | eleq1 2827 |
. . . . . . . . 9
⊢ (𝑦 = (𝑥𝑃( ⊥ ‘𝑥)) → (𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊)) ↔ (𝑥𝑃( ⊥ ‘𝑥)) ∈ ((Base‘𝑊) ↑m
(Base‘𝑊)))) |
12 | | fvex 6781 |
. . . . . . . . . 10
⊢
(Base‘𝑊)
∈ V |
13 | 12, 12 | elmap 8633 |
. . . . . . . . 9
⊢ ((𝑥𝑃( ⊥ ‘𝑥)) ∈ ((Base‘𝑊) ↑m
(Base‘𝑊)) ↔
(𝑥𝑃( ⊥ ‘𝑥)):(Base‘𝑊)⟶(Base‘𝑊)) |
14 | 11, 13 | bitr2di 287 |
. . . . . . . 8
⊢ (𝑦 = (𝑥𝑃( ⊥ ‘𝑥)) → ((𝑥𝑃( ⊥ ‘𝑥)):(Base‘𝑊)⟶(Base‘𝑊) ↔ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊)))) |
15 | 14 | anbi2d 628 |
. . . . . . 7
⊢ (𝑦 = (𝑥𝑃( ⊥ ‘𝑥)) → ((𝑥 ∈ (LSubSp‘𝑊) ∧ (𝑥𝑃( ⊥ ‘𝑥)):(Base‘𝑊)⟶(Base‘𝑊)) ↔ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊))))) |
16 | 10, 15 | syl5bb 282 |
. . . . . 6
⊢ (𝑦 = (𝑥𝑃( ⊥ ‘𝑥)) → (𝑥 ∈ dom 𝐾 ↔ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊))))) |
17 | 16 | pm5.32ri 575 |
. . . . 5
⊢ ((𝑥 ∈ dom 𝐾 ∧ 𝑦 = (𝑥𝑃( ⊥ ‘𝑥))) ↔ ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊))) ∧ 𝑦 = (𝑥𝑃( ⊥ ‘𝑥)))) |
18 | | an32 642 |
. . . . 5
⊢ (((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊))) ∧ 𝑦 = (𝑥𝑃( ⊥ ‘𝑥))) ↔ ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( ⊥ ‘𝑥))) ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊)))) |
19 | | vex 3434 |
. . . . . . 7
⊢ 𝑥 ∈ V |
20 | 19 | biantrur 530 |
. . . . . 6
⊢ (𝑦 ∈ ((Base‘𝑊) ↑m
(Base‘𝑊)) ↔
(𝑥 ∈ V ∧ 𝑦 ∈ ((Base‘𝑊) ↑m
(Base‘𝑊)))) |
21 | 20 | anbi2i 622 |
. . . . 5
⊢ (((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( ⊥ ‘𝑥))) ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊))) ↔ ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( ⊥ ‘𝑥))) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊))))) |
22 | 17, 18, 21 | 3bitri 296 |
. . . 4
⊢ ((𝑥 ∈ dom 𝐾 ∧ 𝑦 = (𝑥𝑃( ⊥ ‘𝑥))) ↔ ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( ⊥ ‘𝑥))) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊))))) |
23 | 22 | opabbii 5145 |
. . 3
⊢
{〈𝑥, 𝑦〉 ∣ (𝑥 ∈ dom 𝐾 ∧ 𝑦 = (𝑥𝑃( ⊥ ‘𝑥)))} = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( ⊥ ‘𝑥))) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊))))} |
24 | | df-mpt 5162 |
. . 3
⊢ (𝑥 ∈ dom 𝐾 ↦ (𝑥𝑃( ⊥ ‘𝑥))) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ dom 𝐾 ∧ 𝑦 = (𝑥𝑃( ⊥ ‘𝑥)))} |
25 | | inopab 5736 |
. . 3
⊢
({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( ⊥ ‘𝑥)))} ∩ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊)))}) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( ⊥ ‘𝑥))) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊))))} |
26 | 23, 24, 25 | 3eqtr4i 2777 |
. 2
⊢ (𝑥 ∈ dom 𝐾 ↦ (𝑥𝑃( ⊥ ‘𝑥))) = ({〈𝑥, 𝑦〉 ∣ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( ⊥ ‘𝑥)))} ∩ {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ V ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊)))}) |
27 | 3, 9, 26 | 3eqtr4i 2777 |
1
⊢ 𝐾 = (𝑥 ∈ dom 𝐾 ↦ (𝑥𝑃( ⊥ ‘𝑥))) |