MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjfval2 Structured version   Visualization version   GIF version

Theorem pjfval2 21616
Description: Value of the projection map with implicit domain. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
pjfval2.o = (ocv‘𝑊)
pjfval2.p 𝑃 = (proj1𝑊)
pjfval2.k 𝐾 = (proj‘𝑊)
Assertion
Ref Expression
pjfval2 𝐾 = (𝑥 ∈ dom 𝐾 ↦ (𝑥𝑃( 𝑥)))
Distinct variable groups:   𝑥,𝐾   𝑥,   𝑥,𝑃   𝑥,𝑊

Proof of Theorem pjfval2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-mpt 5174 . . 3 (𝑥 ∈ (LSubSp‘𝑊) ↦ (𝑥𝑃( 𝑥))) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( 𝑥)))}
2 df-xp 5625 . . 3 (V × ((Base‘𝑊) ↑m (Base‘𝑊))) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊)))}
31, 2ineq12i 4169 . 2 ((𝑥 ∈ (LSubSp‘𝑊) ↦ (𝑥𝑃( 𝑥))) ∩ (V × ((Base‘𝑊) ↑m (Base‘𝑊)))) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( 𝑥)))} ∩ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊)))})
4 eqid 2729 . . 3 (Base‘𝑊) = (Base‘𝑊)
5 eqid 2729 . . 3 (LSubSp‘𝑊) = (LSubSp‘𝑊)
6 pjfval2.o . . 3 = (ocv‘𝑊)
7 pjfval2.p . . 3 𝑃 = (proj1𝑊)
8 pjfval2.k . . 3 𝐾 = (proj‘𝑊)
94, 5, 6, 7, 8pjfval 21613 . 2 𝐾 = ((𝑥 ∈ (LSubSp‘𝑊) ↦ (𝑥𝑃( 𝑥))) ∩ (V × ((Base‘𝑊) ↑m (Base‘𝑊))))
104, 5, 6, 7, 8pjdm 21614 . . . . . . 7 (𝑥 ∈ dom 𝐾 ↔ (𝑥 ∈ (LSubSp‘𝑊) ∧ (𝑥𝑃( 𝑥)):(Base‘𝑊)⟶(Base‘𝑊)))
11 eleq1 2816 . . . . . . . . 9 (𝑦 = (𝑥𝑃( 𝑥)) → (𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊)) ↔ (𝑥𝑃( 𝑥)) ∈ ((Base‘𝑊) ↑m (Base‘𝑊))))
12 fvex 6835 . . . . . . . . . 10 (Base‘𝑊) ∈ V
1312, 12elmap 8798 . . . . . . . . 9 ((𝑥𝑃( 𝑥)) ∈ ((Base‘𝑊) ↑m (Base‘𝑊)) ↔ (𝑥𝑃( 𝑥)):(Base‘𝑊)⟶(Base‘𝑊))
1411, 13bitr2di 288 . . . . . . . 8 (𝑦 = (𝑥𝑃( 𝑥)) → ((𝑥𝑃( 𝑥)):(Base‘𝑊)⟶(Base‘𝑊) ↔ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊))))
1514anbi2d 630 . . . . . . 7 (𝑦 = (𝑥𝑃( 𝑥)) → ((𝑥 ∈ (LSubSp‘𝑊) ∧ (𝑥𝑃( 𝑥)):(Base‘𝑊)⟶(Base‘𝑊)) ↔ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊)))))
1610, 15bitrid 283 . . . . . 6 (𝑦 = (𝑥𝑃( 𝑥)) → (𝑥 ∈ dom 𝐾 ↔ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊)))))
1716pm5.32ri 575 . . . . 5 ((𝑥 ∈ dom 𝐾𝑦 = (𝑥𝑃( 𝑥))) ↔ ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊))) ∧ 𝑦 = (𝑥𝑃( 𝑥))))
18 an32 646 . . . . 5 (((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊))) ∧ 𝑦 = (𝑥𝑃( 𝑥))) ↔ ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( 𝑥))) ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊))))
19 vex 3440 . . . . . . 7 𝑥 ∈ V
2019biantrur 530 . . . . . 6 (𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊)) ↔ (𝑥 ∈ V ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊))))
2120anbi2i 623 . . . . 5 (((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( 𝑥))) ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊))) ↔ ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( 𝑥))) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊)))))
2217, 18, 213bitri 297 . . . 4 ((𝑥 ∈ dom 𝐾𝑦 = (𝑥𝑃( 𝑥))) ↔ ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( 𝑥))) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊)))))
2322opabbii 5159 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ dom 𝐾𝑦 = (𝑥𝑃( 𝑥)))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( 𝑥))) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊))))}
24 df-mpt 5174 . . 3 (𝑥 ∈ dom 𝐾 ↦ (𝑥𝑃( 𝑥))) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ dom 𝐾𝑦 = (𝑥𝑃( 𝑥)))}
25 inopab 5772 . . 3 ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( 𝑥)))} ∩ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊)))}) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( 𝑥))) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊))))}
2623, 24, 253eqtr4i 2762 . 2 (𝑥 ∈ dom 𝐾 ↦ (𝑥𝑃( 𝑥))) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( 𝑥)))} ∩ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊)))})
273, 9, 263eqtr4i 2762 1 𝐾 = (𝑥 ∈ dom 𝐾 ↦ (𝑥𝑃( 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  Vcvv 3436  cin 3902  {copab 5154  cmpt 5173   × cxp 5617  dom cdm 5619  wf 6478  cfv 6482  (class class class)co 7349  m cmap 8753  Basecbs 17120  proj1cpj1 19514  LSubSpclss 20834  ocvcocv 21567  projcpj 21607
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-map 8755  df-pj 21610
This theorem is referenced by:  pjval  21617  pjff  21619
  Copyright terms: Public domain W3C validator