MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjfval2 Structured version   Visualization version   GIF version

Theorem pjfval2 21594
Description: Value of the projection map with implicit domain. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
pjfval2.o = (ocv‘𝑊)
pjfval2.p 𝑃 = (proj1𝑊)
pjfval2.k 𝐾 = (proj‘𝑊)
Assertion
Ref Expression
pjfval2 𝐾 = (𝑥 ∈ dom 𝐾 ↦ (𝑥𝑃( 𝑥)))
Distinct variable groups:   𝑥,𝐾   𝑥,   𝑥,𝑃   𝑥,𝑊

Proof of Theorem pjfval2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-mpt 5184 . . 3 (𝑥 ∈ (LSubSp‘𝑊) ↦ (𝑥𝑃( 𝑥))) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( 𝑥)))}
2 df-xp 5637 . . 3 (V × ((Base‘𝑊) ↑m (Base‘𝑊))) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊)))}
31, 2ineq12i 4177 . 2 ((𝑥 ∈ (LSubSp‘𝑊) ↦ (𝑥𝑃( 𝑥))) ∩ (V × ((Base‘𝑊) ↑m (Base‘𝑊)))) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( 𝑥)))} ∩ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊)))})
4 eqid 2729 . . 3 (Base‘𝑊) = (Base‘𝑊)
5 eqid 2729 . . 3 (LSubSp‘𝑊) = (LSubSp‘𝑊)
6 pjfval2.o . . 3 = (ocv‘𝑊)
7 pjfval2.p . . 3 𝑃 = (proj1𝑊)
8 pjfval2.k . . 3 𝐾 = (proj‘𝑊)
94, 5, 6, 7, 8pjfval 21591 . 2 𝐾 = ((𝑥 ∈ (LSubSp‘𝑊) ↦ (𝑥𝑃( 𝑥))) ∩ (V × ((Base‘𝑊) ↑m (Base‘𝑊))))
104, 5, 6, 7, 8pjdm 21592 . . . . . . 7 (𝑥 ∈ dom 𝐾 ↔ (𝑥 ∈ (LSubSp‘𝑊) ∧ (𝑥𝑃( 𝑥)):(Base‘𝑊)⟶(Base‘𝑊)))
11 eleq1 2816 . . . . . . . . 9 (𝑦 = (𝑥𝑃( 𝑥)) → (𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊)) ↔ (𝑥𝑃( 𝑥)) ∈ ((Base‘𝑊) ↑m (Base‘𝑊))))
12 fvex 6853 . . . . . . . . . 10 (Base‘𝑊) ∈ V
1312, 12elmap 8821 . . . . . . . . 9 ((𝑥𝑃( 𝑥)) ∈ ((Base‘𝑊) ↑m (Base‘𝑊)) ↔ (𝑥𝑃( 𝑥)):(Base‘𝑊)⟶(Base‘𝑊))
1411, 13bitr2di 288 . . . . . . . 8 (𝑦 = (𝑥𝑃( 𝑥)) → ((𝑥𝑃( 𝑥)):(Base‘𝑊)⟶(Base‘𝑊) ↔ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊))))
1514anbi2d 630 . . . . . . 7 (𝑦 = (𝑥𝑃( 𝑥)) → ((𝑥 ∈ (LSubSp‘𝑊) ∧ (𝑥𝑃( 𝑥)):(Base‘𝑊)⟶(Base‘𝑊)) ↔ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊)))))
1610, 15bitrid 283 . . . . . 6 (𝑦 = (𝑥𝑃( 𝑥)) → (𝑥 ∈ dom 𝐾 ↔ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊)))))
1716pm5.32ri 575 . . . . 5 ((𝑥 ∈ dom 𝐾𝑦 = (𝑥𝑃( 𝑥))) ↔ ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊))) ∧ 𝑦 = (𝑥𝑃( 𝑥))))
18 an32 646 . . . . 5 (((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊))) ∧ 𝑦 = (𝑥𝑃( 𝑥))) ↔ ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( 𝑥))) ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊))))
19 vex 3448 . . . . . . 7 𝑥 ∈ V
2019biantrur 530 . . . . . 6 (𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊)) ↔ (𝑥 ∈ V ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊))))
2120anbi2i 623 . . . . 5 (((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( 𝑥))) ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊))) ↔ ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( 𝑥))) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊)))))
2217, 18, 213bitri 297 . . . 4 ((𝑥 ∈ dom 𝐾𝑦 = (𝑥𝑃( 𝑥))) ↔ ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( 𝑥))) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊)))))
2322opabbii 5169 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ dom 𝐾𝑦 = (𝑥𝑃( 𝑥)))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( 𝑥))) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊))))}
24 df-mpt 5184 . . 3 (𝑥 ∈ dom 𝐾 ↦ (𝑥𝑃( 𝑥))) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ dom 𝐾𝑦 = (𝑥𝑃( 𝑥)))}
25 inopab 5783 . . 3 ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( 𝑥)))} ∩ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊)))}) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( 𝑥))) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊))))}
2623, 24, 253eqtr4i 2762 . 2 (𝑥 ∈ dom 𝐾 ↦ (𝑥𝑃( 𝑥))) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( 𝑥)))} ∩ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊)))})
273, 9, 263eqtr4i 2762 1 𝐾 = (𝑥 ∈ dom 𝐾 ↦ (𝑥𝑃( 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  cin 3910  {copab 5164  cmpt 5183   × cxp 5629  dom cdm 5631  wf 6495  cfv 6499  (class class class)co 7369  m cmap 8776  Basecbs 17155  proj1cpj1 19541  LSubSpclss 20813  ocvcocv 21545  projcpj 21585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-map 8778  df-pj 21588
This theorem is referenced by:  pjval  21595  pjff  21597
  Copyright terms: Public domain W3C validator