MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjfval2 Structured version   Visualization version   GIF version

Theorem pjfval2 20961
Description: Value of the projection map with implicit domain. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
pjfval2.o = (ocv‘𝑊)
pjfval2.p 𝑃 = (proj1𝑊)
pjfval2.k 𝐾 = (proj‘𝑊)
Assertion
Ref Expression
pjfval2 𝐾 = (𝑥 ∈ dom 𝐾 ↦ (𝑥𝑃( 𝑥)))
Distinct variable groups:   𝑥,𝐾   𝑥,   𝑥,𝑃   𝑥,𝑊

Proof of Theorem pjfval2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-mpt 5165 . . 3 (𝑥 ∈ (LSubSp‘𝑊) ↦ (𝑥𝑃( 𝑥))) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( 𝑥)))}
2 df-xp 5606 . . 3 (V × ((Base‘𝑊) ↑m (Base‘𝑊))) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊)))}
31, 2ineq12i 4150 . 2 ((𝑥 ∈ (LSubSp‘𝑊) ↦ (𝑥𝑃( 𝑥))) ∩ (V × ((Base‘𝑊) ↑m (Base‘𝑊)))) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( 𝑥)))} ∩ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊)))})
4 eqid 2736 . . 3 (Base‘𝑊) = (Base‘𝑊)
5 eqid 2736 . . 3 (LSubSp‘𝑊) = (LSubSp‘𝑊)
6 pjfval2.o . . 3 = (ocv‘𝑊)
7 pjfval2.p . . 3 𝑃 = (proj1𝑊)
8 pjfval2.k . . 3 𝐾 = (proj‘𝑊)
94, 5, 6, 7, 8pjfval 20958 . 2 𝐾 = ((𝑥 ∈ (LSubSp‘𝑊) ↦ (𝑥𝑃( 𝑥))) ∩ (V × ((Base‘𝑊) ↑m (Base‘𝑊))))
104, 5, 6, 7, 8pjdm 20959 . . . . . . 7 (𝑥 ∈ dom 𝐾 ↔ (𝑥 ∈ (LSubSp‘𝑊) ∧ (𝑥𝑃( 𝑥)):(Base‘𝑊)⟶(Base‘𝑊)))
11 eleq1 2824 . . . . . . . . 9 (𝑦 = (𝑥𝑃( 𝑥)) → (𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊)) ↔ (𝑥𝑃( 𝑥)) ∈ ((Base‘𝑊) ↑m (Base‘𝑊))))
12 fvex 6817 . . . . . . . . . 10 (Base‘𝑊) ∈ V
1312, 12elmap 8690 . . . . . . . . 9 ((𝑥𝑃( 𝑥)) ∈ ((Base‘𝑊) ↑m (Base‘𝑊)) ↔ (𝑥𝑃( 𝑥)):(Base‘𝑊)⟶(Base‘𝑊))
1411, 13bitr2di 288 . . . . . . . 8 (𝑦 = (𝑥𝑃( 𝑥)) → ((𝑥𝑃( 𝑥)):(Base‘𝑊)⟶(Base‘𝑊) ↔ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊))))
1514anbi2d 630 . . . . . . 7 (𝑦 = (𝑥𝑃( 𝑥)) → ((𝑥 ∈ (LSubSp‘𝑊) ∧ (𝑥𝑃( 𝑥)):(Base‘𝑊)⟶(Base‘𝑊)) ↔ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊)))))
1610, 15bitrid 283 . . . . . 6 (𝑦 = (𝑥𝑃( 𝑥)) → (𝑥 ∈ dom 𝐾 ↔ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊)))))
1716pm5.32ri 577 . . . . 5 ((𝑥 ∈ dom 𝐾𝑦 = (𝑥𝑃( 𝑥))) ↔ ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊))) ∧ 𝑦 = (𝑥𝑃( 𝑥))))
18 an32 644 . . . . 5 (((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊))) ∧ 𝑦 = (𝑥𝑃( 𝑥))) ↔ ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( 𝑥))) ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊))))
19 vex 3441 . . . . . . 7 𝑥 ∈ V
2019biantrur 532 . . . . . 6 (𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊)) ↔ (𝑥 ∈ V ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊))))
2120anbi2i 624 . . . . 5 (((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( 𝑥))) ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊))) ↔ ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( 𝑥))) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊)))))
2217, 18, 213bitri 297 . . . 4 ((𝑥 ∈ dom 𝐾𝑦 = (𝑥𝑃( 𝑥))) ↔ ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( 𝑥))) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊)))))
2322opabbii 5148 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ dom 𝐾𝑦 = (𝑥𝑃( 𝑥)))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( 𝑥))) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊))))}
24 df-mpt 5165 . . 3 (𝑥 ∈ dom 𝐾 ↦ (𝑥𝑃( 𝑥))) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ dom 𝐾𝑦 = (𝑥𝑃( 𝑥)))}
25 inopab 5751 . . 3 ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( 𝑥)))} ∩ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊)))}) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( 𝑥))) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊))))}
2623, 24, 253eqtr4i 2774 . 2 (𝑥 ∈ dom 𝐾 ↦ (𝑥𝑃( 𝑥))) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( 𝑥)))} ∩ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊)))})
273, 9, 263eqtr4i 2774 1 𝐾 = (𝑥 ∈ dom 𝐾 ↦ (𝑥𝑃( 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wa 397   = wceq 1539  wcel 2104  Vcvv 3437  cin 3891  {copab 5143  cmpt 5164   × cxp 5598  dom cdm 5600  wf 6454  cfv 6458  (class class class)co 7307  m cmap 8646  Basecbs 16957  proj1cpj1 19285  LSubSpclss 20238  ocvcocv 20910  projcpj 20952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3287  df-v 3439  df-sbc 3722  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-fv 6466  df-ov 7310  df-oprab 7311  df-mpo 7312  df-map 8648  df-pj 20955
This theorem is referenced by:  pjval  20962  pjff  20964
  Copyright terms: Public domain W3C validator