MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjfval2 Structured version   Visualization version   GIF version

Theorem pjfval2 20897
Description: Value of the projection map with implicit domain. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
pjfval2.o = (ocv‘𝑊)
pjfval2.p 𝑃 = (proj1𝑊)
pjfval2.k 𝐾 = (proj‘𝑊)
Assertion
Ref Expression
pjfval2 𝐾 = (𝑥 ∈ dom 𝐾 ↦ (𝑥𝑃( 𝑥)))
Distinct variable groups:   𝑥,𝐾   𝑥,   𝑥,𝑃   𝑥,𝑊

Proof of Theorem pjfval2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-mpt 5162 . . 3 (𝑥 ∈ (LSubSp‘𝑊) ↦ (𝑥𝑃( 𝑥))) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( 𝑥)))}
2 df-xp 5594 . . 3 (V × ((Base‘𝑊) ↑m (Base‘𝑊))) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊)))}
31, 2ineq12i 4149 . 2 ((𝑥 ∈ (LSubSp‘𝑊) ↦ (𝑥𝑃( 𝑥))) ∩ (V × ((Base‘𝑊) ↑m (Base‘𝑊)))) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( 𝑥)))} ∩ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊)))})
4 eqid 2739 . . 3 (Base‘𝑊) = (Base‘𝑊)
5 eqid 2739 . . 3 (LSubSp‘𝑊) = (LSubSp‘𝑊)
6 pjfval2.o . . 3 = (ocv‘𝑊)
7 pjfval2.p . . 3 𝑃 = (proj1𝑊)
8 pjfval2.k . . 3 𝐾 = (proj‘𝑊)
94, 5, 6, 7, 8pjfval 20894 . 2 𝐾 = ((𝑥 ∈ (LSubSp‘𝑊) ↦ (𝑥𝑃( 𝑥))) ∩ (V × ((Base‘𝑊) ↑m (Base‘𝑊))))
104, 5, 6, 7, 8pjdm 20895 . . . . . . 7 (𝑥 ∈ dom 𝐾 ↔ (𝑥 ∈ (LSubSp‘𝑊) ∧ (𝑥𝑃( 𝑥)):(Base‘𝑊)⟶(Base‘𝑊)))
11 eleq1 2827 . . . . . . . . 9 (𝑦 = (𝑥𝑃( 𝑥)) → (𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊)) ↔ (𝑥𝑃( 𝑥)) ∈ ((Base‘𝑊) ↑m (Base‘𝑊))))
12 fvex 6781 . . . . . . . . . 10 (Base‘𝑊) ∈ V
1312, 12elmap 8633 . . . . . . . . 9 ((𝑥𝑃( 𝑥)) ∈ ((Base‘𝑊) ↑m (Base‘𝑊)) ↔ (𝑥𝑃( 𝑥)):(Base‘𝑊)⟶(Base‘𝑊))
1411, 13bitr2di 287 . . . . . . . 8 (𝑦 = (𝑥𝑃( 𝑥)) → ((𝑥𝑃( 𝑥)):(Base‘𝑊)⟶(Base‘𝑊) ↔ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊))))
1514anbi2d 628 . . . . . . 7 (𝑦 = (𝑥𝑃( 𝑥)) → ((𝑥 ∈ (LSubSp‘𝑊) ∧ (𝑥𝑃( 𝑥)):(Base‘𝑊)⟶(Base‘𝑊)) ↔ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊)))))
1610, 15syl5bb 282 . . . . . 6 (𝑦 = (𝑥𝑃( 𝑥)) → (𝑥 ∈ dom 𝐾 ↔ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊)))))
1716pm5.32ri 575 . . . . 5 ((𝑥 ∈ dom 𝐾𝑦 = (𝑥𝑃( 𝑥))) ↔ ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊))) ∧ 𝑦 = (𝑥𝑃( 𝑥))))
18 an32 642 . . . . 5 (((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊))) ∧ 𝑦 = (𝑥𝑃( 𝑥))) ↔ ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( 𝑥))) ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊))))
19 vex 3434 . . . . . . 7 𝑥 ∈ V
2019biantrur 530 . . . . . 6 (𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊)) ↔ (𝑥 ∈ V ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊))))
2120anbi2i 622 . . . . 5 (((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( 𝑥))) ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊))) ↔ ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( 𝑥))) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊)))))
2217, 18, 213bitri 296 . . . 4 ((𝑥 ∈ dom 𝐾𝑦 = (𝑥𝑃( 𝑥))) ↔ ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( 𝑥))) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊)))))
2322opabbii 5145 . . 3 {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ dom 𝐾𝑦 = (𝑥𝑃( 𝑥)))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( 𝑥))) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊))))}
24 df-mpt 5162 . . 3 (𝑥 ∈ dom 𝐾 ↦ (𝑥𝑃( 𝑥))) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ dom 𝐾𝑦 = (𝑥𝑃( 𝑥)))}
25 inopab 5736 . . 3 ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( 𝑥)))} ∩ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊)))}) = {⟨𝑥, 𝑦⟩ ∣ ((𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( 𝑥))) ∧ (𝑥 ∈ V ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊))))}
2623, 24, 253eqtr4i 2777 . 2 (𝑥 ∈ dom 𝐾 ↦ (𝑥𝑃( 𝑥))) = ({⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (LSubSp‘𝑊) ∧ 𝑦 = (𝑥𝑃( 𝑥)))} ∩ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ V ∧ 𝑦 ∈ ((Base‘𝑊) ↑m (Base‘𝑊)))})
273, 9, 263eqtr4i 2777 1 𝐾 = (𝑥 ∈ dom 𝐾 ↦ (𝑥𝑃( 𝑥)))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2109  Vcvv 3430  cin 3890  {copab 5140  cmpt 5161   × cxp 5586  dom cdm 5588  wf 6426  cfv 6430  (class class class)co 7268  m cmap 8589  Basecbs 16893  proj1cpj1 19221  LSubSpclss 20174  ocvcocv 20846  projcpj 20888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-sbc 3720  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-map 8591  df-pj 20891
This theorem is referenced by:  pjval  20898  pjff  20900
  Copyright terms: Public domain W3C validator