MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pjfval2 Structured version   Visualization version   GIF version

Theorem pjfval2 21256
Description: Value of the projection map with implicit domain. (Contributed by Mario Carneiro, 16-Oct-2015.)
Hypotheses
Ref Expression
pjfval2.o βŠ₯ = (ocvβ€˜π‘Š)
pjfval2.p 𝑃 = (proj1β€˜π‘Š)
pjfval2.k 𝐾 = (projβ€˜π‘Š)
Assertion
Ref Expression
pjfval2 𝐾 = (π‘₯ ∈ dom 𝐾 ↦ (π‘₯𝑃( βŠ₯ β€˜π‘₯)))
Distinct variable groups:   π‘₯,𝐾   π‘₯, βŠ₯   π‘₯,𝑃   π‘₯,π‘Š

Proof of Theorem pjfval2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-mpt 5232 . . 3 (π‘₯ ∈ (LSubSpβ€˜π‘Š) ↦ (π‘₯𝑃( βŠ₯ β€˜π‘₯))) = {⟨π‘₯, π‘¦βŸ© ∣ (π‘₯ ∈ (LSubSpβ€˜π‘Š) ∧ 𝑦 = (π‘₯𝑃( βŠ₯ β€˜π‘₯)))}
2 df-xp 5682 . . 3 (V Γ— ((Baseβ€˜π‘Š) ↑m (Baseβ€˜π‘Š))) = {⟨π‘₯, π‘¦βŸ© ∣ (π‘₯ ∈ V ∧ 𝑦 ∈ ((Baseβ€˜π‘Š) ↑m (Baseβ€˜π‘Š)))}
31, 2ineq12i 4210 . 2 ((π‘₯ ∈ (LSubSpβ€˜π‘Š) ↦ (π‘₯𝑃( βŠ₯ β€˜π‘₯))) ∩ (V Γ— ((Baseβ€˜π‘Š) ↑m (Baseβ€˜π‘Š)))) = ({⟨π‘₯, π‘¦βŸ© ∣ (π‘₯ ∈ (LSubSpβ€˜π‘Š) ∧ 𝑦 = (π‘₯𝑃( βŠ₯ β€˜π‘₯)))} ∩ {⟨π‘₯, π‘¦βŸ© ∣ (π‘₯ ∈ V ∧ 𝑦 ∈ ((Baseβ€˜π‘Š) ↑m (Baseβ€˜π‘Š)))})
4 eqid 2733 . . 3 (Baseβ€˜π‘Š) = (Baseβ€˜π‘Š)
5 eqid 2733 . . 3 (LSubSpβ€˜π‘Š) = (LSubSpβ€˜π‘Š)
6 pjfval2.o . . 3 βŠ₯ = (ocvβ€˜π‘Š)
7 pjfval2.p . . 3 𝑃 = (proj1β€˜π‘Š)
8 pjfval2.k . . 3 𝐾 = (projβ€˜π‘Š)
94, 5, 6, 7, 8pjfval 21253 . 2 𝐾 = ((π‘₯ ∈ (LSubSpβ€˜π‘Š) ↦ (π‘₯𝑃( βŠ₯ β€˜π‘₯))) ∩ (V Γ— ((Baseβ€˜π‘Š) ↑m (Baseβ€˜π‘Š))))
104, 5, 6, 7, 8pjdm 21254 . . . . . . 7 (π‘₯ ∈ dom 𝐾 ↔ (π‘₯ ∈ (LSubSpβ€˜π‘Š) ∧ (π‘₯𝑃( βŠ₯ β€˜π‘₯)):(Baseβ€˜π‘Š)⟢(Baseβ€˜π‘Š)))
11 eleq1 2822 . . . . . . . . 9 (𝑦 = (π‘₯𝑃( βŠ₯ β€˜π‘₯)) β†’ (𝑦 ∈ ((Baseβ€˜π‘Š) ↑m (Baseβ€˜π‘Š)) ↔ (π‘₯𝑃( βŠ₯ β€˜π‘₯)) ∈ ((Baseβ€˜π‘Š) ↑m (Baseβ€˜π‘Š))))
12 fvex 6902 . . . . . . . . . 10 (Baseβ€˜π‘Š) ∈ V
1312, 12elmap 8862 . . . . . . . . 9 ((π‘₯𝑃( βŠ₯ β€˜π‘₯)) ∈ ((Baseβ€˜π‘Š) ↑m (Baseβ€˜π‘Š)) ↔ (π‘₯𝑃( βŠ₯ β€˜π‘₯)):(Baseβ€˜π‘Š)⟢(Baseβ€˜π‘Š))
1411, 13bitr2di 288 . . . . . . . 8 (𝑦 = (π‘₯𝑃( βŠ₯ β€˜π‘₯)) β†’ ((π‘₯𝑃( βŠ₯ β€˜π‘₯)):(Baseβ€˜π‘Š)⟢(Baseβ€˜π‘Š) ↔ 𝑦 ∈ ((Baseβ€˜π‘Š) ↑m (Baseβ€˜π‘Š))))
1514anbi2d 630 . . . . . . 7 (𝑦 = (π‘₯𝑃( βŠ₯ β€˜π‘₯)) β†’ ((π‘₯ ∈ (LSubSpβ€˜π‘Š) ∧ (π‘₯𝑃( βŠ₯ β€˜π‘₯)):(Baseβ€˜π‘Š)⟢(Baseβ€˜π‘Š)) ↔ (π‘₯ ∈ (LSubSpβ€˜π‘Š) ∧ 𝑦 ∈ ((Baseβ€˜π‘Š) ↑m (Baseβ€˜π‘Š)))))
1610, 15bitrid 283 . . . . . 6 (𝑦 = (π‘₯𝑃( βŠ₯ β€˜π‘₯)) β†’ (π‘₯ ∈ dom 𝐾 ↔ (π‘₯ ∈ (LSubSpβ€˜π‘Š) ∧ 𝑦 ∈ ((Baseβ€˜π‘Š) ↑m (Baseβ€˜π‘Š)))))
1716pm5.32ri 577 . . . . 5 ((π‘₯ ∈ dom 𝐾 ∧ 𝑦 = (π‘₯𝑃( βŠ₯ β€˜π‘₯))) ↔ ((π‘₯ ∈ (LSubSpβ€˜π‘Š) ∧ 𝑦 ∈ ((Baseβ€˜π‘Š) ↑m (Baseβ€˜π‘Š))) ∧ 𝑦 = (π‘₯𝑃( βŠ₯ β€˜π‘₯))))
18 an32 645 . . . . 5 (((π‘₯ ∈ (LSubSpβ€˜π‘Š) ∧ 𝑦 ∈ ((Baseβ€˜π‘Š) ↑m (Baseβ€˜π‘Š))) ∧ 𝑦 = (π‘₯𝑃( βŠ₯ β€˜π‘₯))) ↔ ((π‘₯ ∈ (LSubSpβ€˜π‘Š) ∧ 𝑦 = (π‘₯𝑃( βŠ₯ β€˜π‘₯))) ∧ 𝑦 ∈ ((Baseβ€˜π‘Š) ↑m (Baseβ€˜π‘Š))))
19 vex 3479 . . . . . . 7 π‘₯ ∈ V
2019biantrur 532 . . . . . 6 (𝑦 ∈ ((Baseβ€˜π‘Š) ↑m (Baseβ€˜π‘Š)) ↔ (π‘₯ ∈ V ∧ 𝑦 ∈ ((Baseβ€˜π‘Š) ↑m (Baseβ€˜π‘Š))))
2120anbi2i 624 . . . . 5 (((π‘₯ ∈ (LSubSpβ€˜π‘Š) ∧ 𝑦 = (π‘₯𝑃( βŠ₯ β€˜π‘₯))) ∧ 𝑦 ∈ ((Baseβ€˜π‘Š) ↑m (Baseβ€˜π‘Š))) ↔ ((π‘₯ ∈ (LSubSpβ€˜π‘Š) ∧ 𝑦 = (π‘₯𝑃( βŠ₯ β€˜π‘₯))) ∧ (π‘₯ ∈ V ∧ 𝑦 ∈ ((Baseβ€˜π‘Š) ↑m (Baseβ€˜π‘Š)))))
2217, 18, 213bitri 297 . . . 4 ((π‘₯ ∈ dom 𝐾 ∧ 𝑦 = (π‘₯𝑃( βŠ₯ β€˜π‘₯))) ↔ ((π‘₯ ∈ (LSubSpβ€˜π‘Š) ∧ 𝑦 = (π‘₯𝑃( βŠ₯ β€˜π‘₯))) ∧ (π‘₯ ∈ V ∧ 𝑦 ∈ ((Baseβ€˜π‘Š) ↑m (Baseβ€˜π‘Š)))))
2322opabbii 5215 . . 3 {⟨π‘₯, π‘¦βŸ© ∣ (π‘₯ ∈ dom 𝐾 ∧ 𝑦 = (π‘₯𝑃( βŠ₯ β€˜π‘₯)))} = {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ (LSubSpβ€˜π‘Š) ∧ 𝑦 = (π‘₯𝑃( βŠ₯ β€˜π‘₯))) ∧ (π‘₯ ∈ V ∧ 𝑦 ∈ ((Baseβ€˜π‘Š) ↑m (Baseβ€˜π‘Š))))}
24 df-mpt 5232 . . 3 (π‘₯ ∈ dom 𝐾 ↦ (π‘₯𝑃( βŠ₯ β€˜π‘₯))) = {⟨π‘₯, π‘¦βŸ© ∣ (π‘₯ ∈ dom 𝐾 ∧ 𝑦 = (π‘₯𝑃( βŠ₯ β€˜π‘₯)))}
25 inopab 5828 . . 3 ({⟨π‘₯, π‘¦βŸ© ∣ (π‘₯ ∈ (LSubSpβ€˜π‘Š) ∧ 𝑦 = (π‘₯𝑃( βŠ₯ β€˜π‘₯)))} ∩ {⟨π‘₯, π‘¦βŸ© ∣ (π‘₯ ∈ V ∧ 𝑦 ∈ ((Baseβ€˜π‘Š) ↑m (Baseβ€˜π‘Š)))}) = {⟨π‘₯, π‘¦βŸ© ∣ ((π‘₯ ∈ (LSubSpβ€˜π‘Š) ∧ 𝑦 = (π‘₯𝑃( βŠ₯ β€˜π‘₯))) ∧ (π‘₯ ∈ V ∧ 𝑦 ∈ ((Baseβ€˜π‘Š) ↑m (Baseβ€˜π‘Š))))}
2623, 24, 253eqtr4i 2771 . 2 (π‘₯ ∈ dom 𝐾 ↦ (π‘₯𝑃( βŠ₯ β€˜π‘₯))) = ({⟨π‘₯, π‘¦βŸ© ∣ (π‘₯ ∈ (LSubSpβ€˜π‘Š) ∧ 𝑦 = (π‘₯𝑃( βŠ₯ β€˜π‘₯)))} ∩ {⟨π‘₯, π‘¦βŸ© ∣ (π‘₯ ∈ V ∧ 𝑦 ∈ ((Baseβ€˜π‘Š) ↑m (Baseβ€˜π‘Š)))})
273, 9, 263eqtr4i 2771 1 𝐾 = (π‘₯ ∈ dom 𝐾 ↦ (π‘₯𝑃( βŠ₯ β€˜π‘₯)))
Colors of variables: wff setvar class
Syntax hints:   ∧ wa 397   = wceq 1542   ∈ wcel 2107  Vcvv 3475   ∩ cin 3947  {copab 5210   ↦ cmpt 5231   Γ— cxp 5674  dom cdm 5676  βŸΆwf 6537  β€˜cfv 6541  (class class class)co 7406   ↑m cmap 8817  Basecbs 17141  proj1cpj1 19498  LSubSpclss 20535  ocvcocv 21205  projcpj 21247
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-fv 6549  df-ov 7409  df-oprab 7410  df-mpo 7411  df-map 8819  df-pj 21250
This theorem is referenced by:  pjval  21257  pjff  21259
  Copyright terms: Public domain W3C validator