MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  irredlmul Structured version   Visualization version   GIF version

Theorem irredlmul 19020
Description: The product of a unit and an irreducible element is irreducible. (Contributed by Mario Carneiro, 4-Dec-2014.)
Hypotheses
Ref Expression
irredn0.i 𝐼 = (Irred‘𝑅)
irredrmul.u 𝑈 = (Unit‘𝑅)
irredrmul.t · = (.r𝑅)
Assertion
Ref Expression
irredlmul ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝐼) → (𝑋 · 𝑌) ∈ 𝐼)

Proof of Theorem irredlmul
StepHypRef Expression
1 eqid 2797 . . 3 (Base‘𝑅) = (Base‘𝑅)
2 irredrmul.t . . 3 · = (.r𝑅)
3 eqid 2797 . . 3 (oppr𝑅) = (oppr𝑅)
4 eqid 2797 . . 3 (.r‘(oppr𝑅)) = (.r‘(oppr𝑅))
51, 2, 3, 4opprmul 18938 . 2 (𝑌(.r‘(oppr𝑅))𝑋) = (𝑋 · 𝑌)
63opprring 18943 . . . 4 (𝑅 ∈ Ring → (oppr𝑅) ∈ Ring)
7 irredn0.i . . . . . 6 𝐼 = (Irred‘𝑅)
83, 7opprirred 19014 . . . . 5 𝐼 = (Irred‘(oppr𝑅))
9 irredrmul.u . . . . . 6 𝑈 = (Unit‘𝑅)
109, 3opprunit 18973 . . . . 5 𝑈 = (Unit‘(oppr𝑅))
118, 10, 4irredrmul 19019 . . . 4 (((oppr𝑅) ∈ Ring ∧ 𝑌𝐼𝑋𝑈) → (𝑌(.r‘(oppr𝑅))𝑋) ∈ 𝐼)
126, 11syl3an1 1203 . . 3 ((𝑅 ∈ Ring ∧ 𝑌𝐼𝑋𝑈) → (𝑌(.r‘(oppr𝑅))𝑋) ∈ 𝐼)
13123com23 1157 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝐼) → (𝑌(.r‘(oppr𝑅))𝑋) ∈ 𝐼)
145, 13syl5eqelr 2881 1 ((𝑅 ∈ Ring ∧ 𝑋𝑈𝑌𝐼) → (𝑋 · 𝑌) ∈ 𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1108   = wceq 1653  wcel 2157  cfv 6099  (class class class)co 6876  Basecbs 16180  .rcmulr 16264  Ringcrg 18859  opprcoppr 18934  Unitcui 18951  Irredcir 18952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2375  ax-ext 2775  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-cnex 10278  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298  ax-pre-mulgt0 10299
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rmo 3095  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-uni 4627  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-pred 5896  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-om 7298  df-1st 7399  df-2nd 7400  df-tpos 7588  df-wrecs 7643  df-recs 7705  df-rdg 7743  df-er 7980  df-en 8194  df-dom 8195  df-sdom 8196  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-sub 10556  df-neg 10557  df-nn 11311  df-2 11372  df-3 11373  df-ndx 16183  df-slot 16184  df-base 16186  df-sets 16187  df-ress 16188  df-plusg 16276  df-mulr 16277  df-0g 16413  df-mgm 17553  df-sgrp 17595  df-mnd 17606  df-grp 17737  df-minusg 17738  df-mgp 18802  df-ur 18814  df-ring 18861  df-oppr 18935  df-dvdsr 18953  df-unit 18954  df-irred 18955  df-invr 18984  df-dvr 18995
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator