MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmirredlem Structured version   Visualization version   GIF version

Theorem prmirredlem 21033
Description: A positive integer is irreducible over β„€ iff it is a prime number. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.)
Hypothesis
Ref Expression
prmirred.i 𝐼 = (Irredβ€˜β„€ring)
Assertion
Ref Expression
prmirredlem (𝐴 ∈ β„• β†’ (𝐴 ∈ 𝐼 ↔ 𝐴 ∈ β„™))

Proof of Theorem prmirredlem
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zringring 21012 . . . . . 6 β„€ring ∈ Ring
2 prmirred.i . . . . . . 7 𝐼 = (Irredβ€˜β„€ring)
3 zring1 21020 . . . . . . 7 1 = (1rβ€˜β„€ring)
42, 3irredn1 20232 . . . . . 6 ((β„€ring ∈ Ring ∧ 𝐴 ∈ 𝐼) β†’ 𝐴 β‰  1)
51, 4mpan 688 . . . . 5 (𝐴 ∈ 𝐼 β†’ 𝐴 β‰  1)
65anim2i 617 . . . 4 ((𝐴 ∈ β„• ∧ 𝐴 ∈ 𝐼) β†’ (𝐴 ∈ β„• ∧ 𝐴 β‰  1))
7 eluz2b3 12902 . . . 4 (𝐴 ∈ (β„€β‰₯β€˜2) ↔ (𝐴 ∈ β„• ∧ 𝐴 β‰  1))
86, 7sylibr 233 . . 3 ((𝐴 ∈ β„• ∧ 𝐴 ∈ 𝐼) β†’ 𝐴 ∈ (β„€β‰₯β€˜2))
9 nnz 12575 . . . . . . . 8 (𝑦 ∈ β„• β†’ 𝑦 ∈ β„€)
109ad2antrl 726 . . . . . . 7 (((𝐴 ∈ β„• ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ β„• ∧ 𝑦 βˆ₯ 𝐴)) β†’ 𝑦 ∈ β„€)
11 simprr 771 . . . . . . . 8 (((𝐴 ∈ β„• ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ β„• ∧ 𝑦 βˆ₯ 𝐴)) β†’ 𝑦 βˆ₯ 𝐴)
12 nnne0 12242 . . . . . . . . . 10 (𝑦 ∈ β„• β†’ 𝑦 β‰  0)
1312ad2antrl 726 . . . . . . . . 9 (((𝐴 ∈ β„• ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ β„• ∧ 𝑦 βˆ₯ 𝐴)) β†’ 𝑦 β‰  0)
14 nnz 12575 . . . . . . . . . 10 (𝐴 ∈ β„• β†’ 𝐴 ∈ β„€)
1514ad2antrr 724 . . . . . . . . 9 (((𝐴 ∈ β„• ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ β„• ∧ 𝑦 βˆ₯ 𝐴)) β†’ 𝐴 ∈ β„€)
16 dvdsval2 16196 . . . . . . . . 9 ((𝑦 ∈ β„€ ∧ 𝑦 β‰  0 ∧ 𝐴 ∈ β„€) β†’ (𝑦 βˆ₯ 𝐴 ↔ (𝐴 / 𝑦) ∈ β„€))
1710, 13, 15, 16syl3anc 1371 . . . . . . . 8 (((𝐴 ∈ β„• ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ β„• ∧ 𝑦 βˆ₯ 𝐴)) β†’ (𝑦 βˆ₯ 𝐴 ↔ (𝐴 / 𝑦) ∈ β„€))
1811, 17mpbid 231 . . . . . . 7 (((𝐴 ∈ β„• ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ β„• ∧ 𝑦 βˆ₯ 𝐴)) β†’ (𝐴 / 𝑦) ∈ β„€)
1915zcnd 12663 . . . . . . . . 9 (((𝐴 ∈ β„• ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ β„• ∧ 𝑦 βˆ₯ 𝐴)) β†’ 𝐴 ∈ β„‚)
20 nncn 12216 . . . . . . . . . 10 (𝑦 ∈ β„• β†’ 𝑦 ∈ β„‚)
2120ad2antrl 726 . . . . . . . . 9 (((𝐴 ∈ β„• ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ β„• ∧ 𝑦 βˆ₯ 𝐴)) β†’ 𝑦 ∈ β„‚)
2219, 21, 13divcan2d 11988 . . . . . . . 8 (((𝐴 ∈ β„• ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ β„• ∧ 𝑦 βˆ₯ 𝐴)) β†’ (𝑦 Β· (𝐴 / 𝑦)) = 𝐴)
23 simplr 767 . . . . . . . 8 (((𝐴 ∈ β„• ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ β„• ∧ 𝑦 βˆ₯ 𝐴)) β†’ 𝐴 ∈ 𝐼)
2422, 23eqeltrd 2833 . . . . . . 7 (((𝐴 ∈ β„• ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ β„• ∧ 𝑦 βˆ₯ 𝐴)) β†’ (𝑦 Β· (𝐴 / 𝑦)) ∈ 𝐼)
25 zringbas 21015 . . . . . . . 8 β„€ = (Baseβ€˜β„€ring)
26 eqid 2732 . . . . . . . 8 (Unitβ€˜β„€ring) = (Unitβ€˜β„€ring)
27 zringmulr 21018 . . . . . . . 8 Β· = (.rβ€˜β„€ring)
282, 25, 26, 27irredmul 20235 . . . . . . 7 ((𝑦 ∈ β„€ ∧ (𝐴 / 𝑦) ∈ β„€ ∧ (𝑦 Β· (𝐴 / 𝑦)) ∈ 𝐼) β†’ (𝑦 ∈ (Unitβ€˜β„€ring) ∨ (𝐴 / 𝑦) ∈ (Unitβ€˜β„€ring)))
2910, 18, 24, 28syl3anc 1371 . . . . . 6 (((𝐴 ∈ β„• ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ β„• ∧ 𝑦 βˆ₯ 𝐴)) β†’ (𝑦 ∈ (Unitβ€˜β„€ring) ∨ (𝐴 / 𝑦) ∈ (Unitβ€˜β„€ring)))
30 zringunit 21027 . . . . . . . . . 10 (𝑦 ∈ (Unitβ€˜β„€ring) ↔ (𝑦 ∈ β„€ ∧ (absβ€˜π‘¦) = 1))
3130baib 536 . . . . . . . . 9 (𝑦 ∈ β„€ β†’ (𝑦 ∈ (Unitβ€˜β„€ring) ↔ (absβ€˜π‘¦) = 1))
3210, 31syl 17 . . . . . . . 8 (((𝐴 ∈ β„• ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ β„• ∧ 𝑦 βˆ₯ 𝐴)) β†’ (𝑦 ∈ (Unitβ€˜β„€ring) ↔ (absβ€˜π‘¦) = 1))
33 nnnn0 12475 . . . . . . . . . . 11 (𝑦 ∈ β„• β†’ 𝑦 ∈ β„•0)
34 nn0re 12477 . . . . . . . . . . . 12 (𝑦 ∈ β„•0 β†’ 𝑦 ∈ ℝ)
35 nn0ge0 12493 . . . . . . . . . . . 12 (𝑦 ∈ β„•0 β†’ 0 ≀ 𝑦)
3634, 35absidd 15365 . . . . . . . . . . 11 (𝑦 ∈ β„•0 β†’ (absβ€˜π‘¦) = 𝑦)
3733, 36syl 17 . . . . . . . . . 10 (𝑦 ∈ β„• β†’ (absβ€˜π‘¦) = 𝑦)
3837ad2antrl 726 . . . . . . . . 9 (((𝐴 ∈ β„• ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ β„• ∧ 𝑦 βˆ₯ 𝐴)) β†’ (absβ€˜π‘¦) = 𝑦)
3938eqeq1d 2734 . . . . . . . 8 (((𝐴 ∈ β„• ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ β„• ∧ 𝑦 βˆ₯ 𝐴)) β†’ ((absβ€˜π‘¦) = 1 ↔ 𝑦 = 1))
4032, 39bitrd 278 . . . . . . 7 (((𝐴 ∈ β„• ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ β„• ∧ 𝑦 βˆ₯ 𝐴)) β†’ (𝑦 ∈ (Unitβ€˜β„€ring) ↔ 𝑦 = 1))
41 zringunit 21027 . . . . . . . . . 10 ((𝐴 / 𝑦) ∈ (Unitβ€˜β„€ring) ↔ ((𝐴 / 𝑦) ∈ β„€ ∧ (absβ€˜(𝐴 / 𝑦)) = 1))
4241baib 536 . . . . . . . . 9 ((𝐴 / 𝑦) ∈ β„€ β†’ ((𝐴 / 𝑦) ∈ (Unitβ€˜β„€ring) ↔ (absβ€˜(𝐴 / 𝑦)) = 1))
4318, 42syl 17 . . . . . . . 8 (((𝐴 ∈ β„• ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ β„• ∧ 𝑦 βˆ₯ 𝐴)) β†’ ((𝐴 / 𝑦) ∈ (Unitβ€˜β„€ring) ↔ (absβ€˜(𝐴 / 𝑦)) = 1))
44 nnre 12215 . . . . . . . . . . . . 13 (𝐴 ∈ β„• β†’ 𝐴 ∈ ℝ)
4544ad2antrr 724 . . . . . . . . . . . 12 (((𝐴 ∈ β„• ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ β„• ∧ 𝑦 βˆ₯ 𝐴)) β†’ 𝐴 ∈ ℝ)
46 simprl 769 . . . . . . . . . . . 12 (((𝐴 ∈ β„• ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ β„• ∧ 𝑦 βˆ₯ 𝐴)) β†’ 𝑦 ∈ β„•)
4745, 46nndivred 12262 . . . . . . . . . . 11 (((𝐴 ∈ β„• ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ β„• ∧ 𝑦 βˆ₯ 𝐴)) β†’ (𝐴 / 𝑦) ∈ ℝ)
48 nnnn0 12475 . . . . . . . . . . . . . 14 (𝐴 ∈ β„• β†’ 𝐴 ∈ β„•0)
49 nn0ge0 12493 . . . . . . . . . . . . . 14 (𝐴 ∈ β„•0 β†’ 0 ≀ 𝐴)
5048, 49syl 17 . . . . . . . . . . . . 13 (𝐴 ∈ β„• β†’ 0 ≀ 𝐴)
5150ad2antrr 724 . . . . . . . . . . . 12 (((𝐴 ∈ β„• ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ β„• ∧ 𝑦 βˆ₯ 𝐴)) β†’ 0 ≀ 𝐴)
5246nnred 12223 . . . . . . . . . . . 12 (((𝐴 ∈ β„• ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ β„• ∧ 𝑦 βˆ₯ 𝐴)) β†’ 𝑦 ∈ ℝ)
53 nngt0 12239 . . . . . . . . . . . . 13 (𝑦 ∈ β„• β†’ 0 < 𝑦)
5453ad2antrl 726 . . . . . . . . . . . 12 (((𝐴 ∈ β„• ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ β„• ∧ 𝑦 βˆ₯ 𝐴)) β†’ 0 < 𝑦)
55 divge0 12079 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 0 ≀ 𝐴) ∧ (𝑦 ∈ ℝ ∧ 0 < 𝑦)) β†’ 0 ≀ (𝐴 / 𝑦))
5645, 51, 52, 54, 55syl22anc 837 . . . . . . . . . . 11 (((𝐴 ∈ β„• ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ β„• ∧ 𝑦 βˆ₯ 𝐴)) β†’ 0 ≀ (𝐴 / 𝑦))
5747, 56absidd 15365 . . . . . . . . . 10 (((𝐴 ∈ β„• ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ β„• ∧ 𝑦 βˆ₯ 𝐴)) β†’ (absβ€˜(𝐴 / 𝑦)) = (𝐴 / 𝑦))
5857eqeq1d 2734 . . . . . . . . 9 (((𝐴 ∈ β„• ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ β„• ∧ 𝑦 βˆ₯ 𝐴)) β†’ ((absβ€˜(𝐴 / 𝑦)) = 1 ↔ (𝐴 / 𝑦) = 1))
59 1cnd 11205 . . . . . . . . . 10 (((𝐴 ∈ β„• ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ β„• ∧ 𝑦 βˆ₯ 𝐴)) β†’ 1 ∈ β„‚)
6019, 21, 59, 13divmuld 12008 . . . . . . . . 9 (((𝐴 ∈ β„• ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ β„• ∧ 𝑦 βˆ₯ 𝐴)) β†’ ((𝐴 / 𝑦) = 1 ↔ (𝑦 Β· 1) = 𝐴))
6121mulridd 11227 . . . . . . . . . 10 (((𝐴 ∈ β„• ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ β„• ∧ 𝑦 βˆ₯ 𝐴)) β†’ (𝑦 Β· 1) = 𝑦)
6261eqeq1d 2734 . . . . . . . . 9 (((𝐴 ∈ β„• ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ β„• ∧ 𝑦 βˆ₯ 𝐴)) β†’ ((𝑦 Β· 1) = 𝐴 ↔ 𝑦 = 𝐴))
6358, 60, 623bitrd 304 . . . . . . . 8 (((𝐴 ∈ β„• ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ β„• ∧ 𝑦 βˆ₯ 𝐴)) β†’ ((absβ€˜(𝐴 / 𝑦)) = 1 ↔ 𝑦 = 𝐴))
6443, 63bitrd 278 . . . . . . 7 (((𝐴 ∈ β„• ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ β„• ∧ 𝑦 βˆ₯ 𝐴)) β†’ ((𝐴 / 𝑦) ∈ (Unitβ€˜β„€ring) ↔ 𝑦 = 𝐴))
6540, 64orbi12d 917 . . . . . 6 (((𝐴 ∈ β„• ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ β„• ∧ 𝑦 βˆ₯ 𝐴)) β†’ ((𝑦 ∈ (Unitβ€˜β„€ring) ∨ (𝐴 / 𝑦) ∈ (Unitβ€˜β„€ring)) ↔ (𝑦 = 1 ∨ 𝑦 = 𝐴)))
6629, 65mpbid 231 . . . . 5 (((𝐴 ∈ β„• ∧ 𝐴 ∈ 𝐼) ∧ (𝑦 ∈ β„• ∧ 𝑦 βˆ₯ 𝐴)) β†’ (𝑦 = 1 ∨ 𝑦 = 𝐴))
6766expr 457 . . . 4 (((𝐴 ∈ β„• ∧ 𝐴 ∈ 𝐼) ∧ 𝑦 ∈ β„•) β†’ (𝑦 βˆ₯ 𝐴 β†’ (𝑦 = 1 ∨ 𝑦 = 𝐴)))
6867ralrimiva 3146 . . 3 ((𝐴 ∈ β„• ∧ 𝐴 ∈ 𝐼) β†’ βˆ€π‘¦ ∈ β„• (𝑦 βˆ₯ 𝐴 β†’ (𝑦 = 1 ∨ 𝑦 = 𝐴)))
69 isprm2 16615 . . 3 (𝐴 ∈ β„™ ↔ (𝐴 ∈ (β„€β‰₯β€˜2) ∧ βˆ€π‘¦ ∈ β„• (𝑦 βˆ₯ 𝐴 β†’ (𝑦 = 1 ∨ 𝑦 = 𝐴))))
708, 68, 69sylanbrc 583 . 2 ((𝐴 ∈ β„• ∧ 𝐴 ∈ 𝐼) β†’ 𝐴 ∈ β„™)
71 prmz 16608 . . . 4 (𝐴 ∈ β„™ β†’ 𝐴 ∈ β„€)
72 1nprm 16612 . . . . 5 Β¬ 1 ∈ β„™
73 zringunit 21027 . . . . . 6 (𝐴 ∈ (Unitβ€˜β„€ring) ↔ (𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1))
74 prmnn 16607 . . . . . . . . . 10 (𝐴 ∈ β„™ β†’ 𝐴 ∈ β„•)
75 nn0re 12477 . . . . . . . . . . 11 (𝐴 ∈ β„•0 β†’ 𝐴 ∈ ℝ)
7675, 49absidd 15365 . . . . . . . . . 10 (𝐴 ∈ β„•0 β†’ (absβ€˜π΄) = 𝐴)
7774, 48, 763syl 18 . . . . . . . . 9 (𝐴 ∈ β„™ β†’ (absβ€˜π΄) = 𝐴)
78 id 22 . . . . . . . . 9 (𝐴 ∈ β„™ β†’ 𝐴 ∈ β„™)
7977, 78eqeltrd 2833 . . . . . . . 8 (𝐴 ∈ β„™ β†’ (absβ€˜π΄) ∈ β„™)
80 eleq1 2821 . . . . . . . 8 ((absβ€˜π΄) = 1 β†’ ((absβ€˜π΄) ∈ β„™ ↔ 1 ∈ β„™))
8179, 80syl5ibcom 244 . . . . . . 7 (𝐴 ∈ β„™ β†’ ((absβ€˜π΄) = 1 β†’ 1 ∈ β„™))
8281adantld 491 . . . . . 6 (𝐴 ∈ β„™ β†’ ((𝐴 ∈ β„€ ∧ (absβ€˜π΄) = 1) β†’ 1 ∈ β„™))
8373, 82biimtrid 241 . . . . 5 (𝐴 ∈ β„™ β†’ (𝐴 ∈ (Unitβ€˜β„€ring) β†’ 1 ∈ β„™))
8472, 83mtoi 198 . . . 4 (𝐴 ∈ β„™ β†’ Β¬ 𝐴 ∈ (Unitβ€˜β„€ring))
85 dvdsmul1 16217 . . . . . . . . . . 11 ((π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€) β†’ π‘₯ βˆ₯ (π‘₯ Β· 𝑦))
8685ad2antlr 725 . . . . . . . . . 10 (((𝐴 ∈ β„™ ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€)) ∧ (π‘₯ Β· 𝑦) = 𝐴) β†’ π‘₯ βˆ₯ (π‘₯ Β· 𝑦))
87 simpr 485 . . . . . . . . . 10 (((𝐴 ∈ β„™ ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€)) ∧ (π‘₯ Β· 𝑦) = 𝐴) β†’ (π‘₯ Β· 𝑦) = 𝐴)
8886, 87breqtrd 5173 . . . . . . . . 9 (((𝐴 ∈ β„™ ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€)) ∧ (π‘₯ Β· 𝑦) = 𝐴) β†’ π‘₯ βˆ₯ 𝐴)
89 simplrl 775 . . . . . . . . . 10 (((𝐴 ∈ β„™ ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€)) ∧ (π‘₯ Β· 𝑦) = 𝐴) β†’ π‘₯ ∈ β„€)
9071ad2antrr 724 . . . . . . . . . 10 (((𝐴 ∈ β„™ ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€)) ∧ (π‘₯ Β· 𝑦) = 𝐴) β†’ 𝐴 ∈ β„€)
91 absdvdsb 16214 . . . . . . . . . 10 ((π‘₯ ∈ β„€ ∧ 𝐴 ∈ β„€) β†’ (π‘₯ βˆ₯ 𝐴 ↔ (absβ€˜π‘₯) βˆ₯ 𝐴))
9289, 90, 91syl2anc 584 . . . . . . . . 9 (((𝐴 ∈ β„™ ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€)) ∧ (π‘₯ Β· 𝑦) = 𝐴) β†’ (π‘₯ βˆ₯ 𝐴 ↔ (absβ€˜π‘₯) βˆ₯ 𝐴))
9388, 92mpbid 231 . . . . . . . 8 (((𝐴 ∈ β„™ ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€)) ∧ (π‘₯ Β· 𝑦) = 𝐴) β†’ (absβ€˜π‘₯) βˆ₯ 𝐴)
94 breq1 5150 . . . . . . . . . 10 (𝑦 = (absβ€˜π‘₯) β†’ (𝑦 βˆ₯ 𝐴 ↔ (absβ€˜π‘₯) βˆ₯ 𝐴))
95 eqeq1 2736 . . . . . . . . . . 11 (𝑦 = (absβ€˜π‘₯) β†’ (𝑦 = 1 ↔ (absβ€˜π‘₯) = 1))
96 eqeq1 2736 . . . . . . . . . . 11 (𝑦 = (absβ€˜π‘₯) β†’ (𝑦 = 𝐴 ↔ (absβ€˜π‘₯) = 𝐴))
9795, 96orbi12d 917 . . . . . . . . . 10 (𝑦 = (absβ€˜π‘₯) β†’ ((𝑦 = 1 ∨ 𝑦 = 𝐴) ↔ ((absβ€˜π‘₯) = 1 ∨ (absβ€˜π‘₯) = 𝐴)))
9894, 97imbi12d 344 . . . . . . . . 9 (𝑦 = (absβ€˜π‘₯) β†’ ((𝑦 βˆ₯ 𝐴 β†’ (𝑦 = 1 ∨ 𝑦 = 𝐴)) ↔ ((absβ€˜π‘₯) βˆ₯ 𝐴 β†’ ((absβ€˜π‘₯) = 1 ∨ (absβ€˜π‘₯) = 𝐴))))
9969simprbi 497 . . . . . . . . . 10 (𝐴 ∈ β„™ β†’ βˆ€π‘¦ ∈ β„• (𝑦 βˆ₯ 𝐴 β†’ (𝑦 = 1 ∨ 𝑦 = 𝐴)))
10099ad2antrr 724 . . . . . . . . 9 (((𝐴 ∈ β„™ ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€)) ∧ (π‘₯ Β· 𝑦) = 𝐴) β†’ βˆ€π‘¦ ∈ β„• (𝑦 βˆ₯ 𝐴 β†’ (𝑦 = 1 ∨ 𝑦 = 𝐴)))
10189zcnd 12663 . . . . . . . . . . . 12 (((𝐴 ∈ β„™ ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€)) ∧ (π‘₯ Β· 𝑦) = 𝐴) β†’ π‘₯ ∈ β„‚)
10274ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝐴 ∈ β„™ ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€)) ∧ (π‘₯ Β· 𝑦) = 𝐴) β†’ 𝐴 ∈ β„•)
103102nnne0d 12258 . . . . . . . . . . . . . 14 (((𝐴 ∈ β„™ ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€)) ∧ (π‘₯ Β· 𝑦) = 𝐴) β†’ 𝐴 β‰  0)
104 simplrr 776 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ β„™ ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€)) ∧ (π‘₯ Β· 𝑦) = 𝐴) β†’ 𝑦 ∈ β„€)
105104zcnd 12663 . . . . . . . . . . . . . . 15 (((𝐴 ∈ β„™ ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€)) ∧ (π‘₯ Β· 𝑦) = 𝐴) β†’ 𝑦 ∈ β„‚)
106105mul02d 11408 . . . . . . . . . . . . . 14 (((𝐴 ∈ β„™ ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€)) ∧ (π‘₯ Β· 𝑦) = 𝐴) β†’ (0 Β· 𝑦) = 0)
107103, 87, 1063netr4d 3018 . . . . . . . . . . . . 13 (((𝐴 ∈ β„™ ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€)) ∧ (π‘₯ Β· 𝑦) = 𝐴) β†’ (π‘₯ Β· 𝑦) β‰  (0 Β· 𝑦))
108 oveq1 7412 . . . . . . . . . . . . . 14 (π‘₯ = 0 β†’ (π‘₯ Β· 𝑦) = (0 Β· 𝑦))
109108necon3i 2973 . . . . . . . . . . . . 13 ((π‘₯ Β· 𝑦) β‰  (0 Β· 𝑦) β†’ π‘₯ β‰  0)
110107, 109syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ β„™ ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€)) ∧ (π‘₯ Β· 𝑦) = 𝐴) β†’ π‘₯ β‰  0)
111101, 110absne0d 15390 . . . . . . . . . . 11 (((𝐴 ∈ β„™ ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€)) ∧ (π‘₯ Β· 𝑦) = 𝐴) β†’ (absβ€˜π‘₯) β‰  0)
112111neneqd 2945 . . . . . . . . . 10 (((𝐴 ∈ β„™ ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€)) ∧ (π‘₯ Β· 𝑦) = 𝐴) β†’ Β¬ (absβ€˜π‘₯) = 0)
113 nn0abscl 15255 . . . . . . . . . . . . 13 (π‘₯ ∈ β„€ β†’ (absβ€˜π‘₯) ∈ β„•0)
11489, 113syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ β„™ ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€)) ∧ (π‘₯ Β· 𝑦) = 𝐴) β†’ (absβ€˜π‘₯) ∈ β„•0)
115 elnn0 12470 . . . . . . . . . . . 12 ((absβ€˜π‘₯) ∈ β„•0 ↔ ((absβ€˜π‘₯) ∈ β„• ∨ (absβ€˜π‘₯) = 0))
116114, 115sylib 217 . . . . . . . . . . 11 (((𝐴 ∈ β„™ ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€)) ∧ (π‘₯ Β· 𝑦) = 𝐴) β†’ ((absβ€˜π‘₯) ∈ β„• ∨ (absβ€˜π‘₯) = 0))
117116ord 862 . . . . . . . . . 10 (((𝐴 ∈ β„™ ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€)) ∧ (π‘₯ Β· 𝑦) = 𝐴) β†’ (Β¬ (absβ€˜π‘₯) ∈ β„• β†’ (absβ€˜π‘₯) = 0))
118112, 117mt3d 148 . . . . . . . . 9 (((𝐴 ∈ β„™ ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€)) ∧ (π‘₯ Β· 𝑦) = 𝐴) β†’ (absβ€˜π‘₯) ∈ β„•)
11998, 100, 118rspcdva 3613 . . . . . . . 8 (((𝐴 ∈ β„™ ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€)) ∧ (π‘₯ Β· 𝑦) = 𝐴) β†’ ((absβ€˜π‘₯) βˆ₯ 𝐴 β†’ ((absβ€˜π‘₯) = 1 ∨ (absβ€˜π‘₯) = 𝐴)))
12093, 119mpd 15 . . . . . . 7 (((𝐴 ∈ β„™ ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€)) ∧ (π‘₯ Β· 𝑦) = 𝐴) β†’ ((absβ€˜π‘₯) = 1 ∨ (absβ€˜π‘₯) = 𝐴))
121 zringunit 21027 . . . . . . . . . 10 (π‘₯ ∈ (Unitβ€˜β„€ring) ↔ (π‘₯ ∈ β„€ ∧ (absβ€˜π‘₯) = 1))
122121baib 536 . . . . . . . . 9 (π‘₯ ∈ β„€ β†’ (π‘₯ ∈ (Unitβ€˜β„€ring) ↔ (absβ€˜π‘₯) = 1))
12389, 122syl 17 . . . . . . . 8 (((𝐴 ∈ β„™ ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€)) ∧ (π‘₯ Β· 𝑦) = 𝐴) β†’ (π‘₯ ∈ (Unitβ€˜β„€ring) ↔ (absβ€˜π‘₯) = 1))
124104, 31syl 17 . . . . . . . . 9 (((𝐴 ∈ β„™ ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€)) ∧ (π‘₯ Β· 𝑦) = 𝐴) β†’ (𝑦 ∈ (Unitβ€˜β„€ring) ↔ (absβ€˜π‘¦) = 1))
125105abscld 15379 . . . . . . . . . . 11 (((𝐴 ∈ β„™ ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€)) ∧ (π‘₯ Β· 𝑦) = 𝐴) β†’ (absβ€˜π‘¦) ∈ ℝ)
126125recnd 11238 . . . . . . . . . 10 (((𝐴 ∈ β„™ ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€)) ∧ (π‘₯ Β· 𝑦) = 𝐴) β†’ (absβ€˜π‘¦) ∈ β„‚)
127 1cnd 11205 . . . . . . . . . 10 (((𝐴 ∈ β„™ ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€)) ∧ (π‘₯ Β· 𝑦) = 𝐴) β†’ 1 ∈ β„‚)
128101abscld 15379 . . . . . . . . . . 11 (((𝐴 ∈ β„™ ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€)) ∧ (π‘₯ Β· 𝑦) = 𝐴) β†’ (absβ€˜π‘₯) ∈ ℝ)
129128recnd 11238 . . . . . . . . . 10 (((𝐴 ∈ β„™ ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€)) ∧ (π‘₯ Β· 𝑦) = 𝐴) β†’ (absβ€˜π‘₯) ∈ β„‚)
130126, 127, 129, 111mulcand 11843 . . . . . . . . 9 (((𝐴 ∈ β„™ ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€)) ∧ (π‘₯ Β· 𝑦) = 𝐴) β†’ (((absβ€˜π‘₯) Β· (absβ€˜π‘¦)) = ((absβ€˜π‘₯) Β· 1) ↔ (absβ€˜π‘¦) = 1))
13187fveq2d 6892 . . . . . . . . . . . 12 (((𝐴 ∈ β„™ ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€)) ∧ (π‘₯ Β· 𝑦) = 𝐴) β†’ (absβ€˜(π‘₯ Β· 𝑦)) = (absβ€˜π΄))
132101, 105absmuld 15397 . . . . . . . . . . . 12 (((𝐴 ∈ β„™ ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€)) ∧ (π‘₯ Β· 𝑦) = 𝐴) β†’ (absβ€˜(π‘₯ Β· 𝑦)) = ((absβ€˜π‘₯) Β· (absβ€˜π‘¦)))
13377ad2antrr 724 . . . . . . . . . . . 12 (((𝐴 ∈ β„™ ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€)) ∧ (π‘₯ Β· 𝑦) = 𝐴) β†’ (absβ€˜π΄) = 𝐴)
134131, 132, 1333eqtr3d 2780 . . . . . . . . . . 11 (((𝐴 ∈ β„™ ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€)) ∧ (π‘₯ Β· 𝑦) = 𝐴) β†’ ((absβ€˜π‘₯) Β· (absβ€˜π‘¦)) = 𝐴)
135129mulridd 11227 . . . . . . . . . . 11 (((𝐴 ∈ β„™ ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€)) ∧ (π‘₯ Β· 𝑦) = 𝐴) β†’ ((absβ€˜π‘₯) Β· 1) = (absβ€˜π‘₯))
136134, 135eqeq12d 2748 . . . . . . . . . 10 (((𝐴 ∈ β„™ ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€)) ∧ (π‘₯ Β· 𝑦) = 𝐴) β†’ (((absβ€˜π‘₯) Β· (absβ€˜π‘¦)) = ((absβ€˜π‘₯) Β· 1) ↔ 𝐴 = (absβ€˜π‘₯)))
137 eqcom 2739 . . . . . . . . . 10 (𝐴 = (absβ€˜π‘₯) ↔ (absβ€˜π‘₯) = 𝐴)
138136, 137bitrdi 286 . . . . . . . . 9 (((𝐴 ∈ β„™ ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€)) ∧ (π‘₯ Β· 𝑦) = 𝐴) β†’ (((absβ€˜π‘₯) Β· (absβ€˜π‘¦)) = ((absβ€˜π‘₯) Β· 1) ↔ (absβ€˜π‘₯) = 𝐴))
139124, 130, 1383bitr2d 306 . . . . . . . 8 (((𝐴 ∈ β„™ ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€)) ∧ (π‘₯ Β· 𝑦) = 𝐴) β†’ (𝑦 ∈ (Unitβ€˜β„€ring) ↔ (absβ€˜π‘₯) = 𝐴))
140123, 139orbi12d 917 . . . . . . 7 (((𝐴 ∈ β„™ ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€)) ∧ (π‘₯ Β· 𝑦) = 𝐴) β†’ ((π‘₯ ∈ (Unitβ€˜β„€ring) ∨ 𝑦 ∈ (Unitβ€˜β„€ring)) ↔ ((absβ€˜π‘₯) = 1 ∨ (absβ€˜π‘₯) = 𝐴)))
141120, 140mpbird 256 . . . . . 6 (((𝐴 ∈ β„™ ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€)) ∧ (π‘₯ Β· 𝑦) = 𝐴) β†’ (π‘₯ ∈ (Unitβ€˜β„€ring) ∨ 𝑦 ∈ (Unitβ€˜β„€ring)))
142141ex 413 . . . . 5 ((𝐴 ∈ β„™ ∧ (π‘₯ ∈ β„€ ∧ 𝑦 ∈ β„€)) β†’ ((π‘₯ Β· 𝑦) = 𝐴 β†’ (π‘₯ ∈ (Unitβ€˜β„€ring) ∨ 𝑦 ∈ (Unitβ€˜β„€ring))))
143142ralrimivva 3200 . . . 4 (𝐴 ∈ β„™ β†’ βˆ€π‘₯ ∈ β„€ βˆ€π‘¦ ∈ β„€ ((π‘₯ Β· 𝑦) = 𝐴 β†’ (π‘₯ ∈ (Unitβ€˜β„€ring) ∨ 𝑦 ∈ (Unitβ€˜β„€ring))))
14425, 26, 2, 27isirred2 20227 . . . 4 (𝐴 ∈ 𝐼 ↔ (𝐴 ∈ β„€ ∧ Β¬ 𝐴 ∈ (Unitβ€˜β„€ring) ∧ βˆ€π‘₯ ∈ β„€ βˆ€π‘¦ ∈ β„€ ((π‘₯ Β· 𝑦) = 𝐴 β†’ (π‘₯ ∈ (Unitβ€˜β„€ring) ∨ 𝑦 ∈ (Unitβ€˜β„€ring)))))
14571, 84, 143, 144syl3anbrc 1343 . . 3 (𝐴 ∈ β„™ β†’ 𝐴 ∈ 𝐼)
146145adantl 482 . 2 ((𝐴 ∈ β„• ∧ 𝐴 ∈ β„™) β†’ 𝐴 ∈ 𝐼)
14770, 146impbida 799 1 (𝐴 ∈ β„• β†’ (𝐴 ∈ 𝐼 ↔ 𝐴 ∈ β„™))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∨ wo 845   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405  β„‚cc 11104  β„cr 11105  0cc0 11106  1c1 11107   Β· cmul 11111   < clt 11244   ≀ cle 11245   / cdiv 11867  β„•cn 12208  2c2 12263  β„•0cn0 12468  β„€cz 12554  β„€β‰₯cuz 12818  abscabs 15177   βˆ₯ cdvds 16193  β„™cprime 16604  Ringcrg 20049  Unitcui 20161  Irredcir 20162  β„€ringczring 21009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-tpos 8207  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-5 12274  df-6 12275  df-7 12276  df-8 12277  df-9 12278  df-n0 12469  df-z 12555  df-dec 12674  df-uz 12819  df-rp 12971  df-fz 13481  df-seq 13963  df-exp 14024  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-dvds 16194  df-prm 16605  df-gz 16859  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-mulr 17207  df-starv 17208  df-tset 17212  df-ple 17213  df-ds 17215  df-unif 17216  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-minusg 18819  df-subg 18997  df-cmn 19644  df-mgp 19982  df-ur 19999  df-ring 20051  df-cring 20052  df-oppr 20142  df-dvdsr 20163  df-unit 20164  df-irred 20165  df-invr 20194  df-dvr 20207  df-drng 20309  df-subrg 20353  df-cnfld 20937  df-zring 21010
This theorem is referenced by:  dfprm2  21034  prmirred  21035
  Copyright terms: Public domain W3C validator