Step | Hyp | Ref
| Expression |
1 | | zringring 21012 |
. . . . . 6
β’
β€ring β Ring |
2 | | prmirred.i |
. . . . . . 7
β’ πΌ =
(Irredββ€ring) |
3 | | zring1 21020 |
. . . . . . 7
β’ 1 =
(1rββ€ring) |
4 | 2, 3 | irredn1 20232 |
. . . . . 6
β’
((β€ring β Ring β§ π΄ β πΌ) β π΄ β 1) |
5 | 1, 4 | mpan 688 |
. . . . 5
β’ (π΄ β πΌ β π΄ β 1) |
6 | 5 | anim2i 617 |
. . . 4
β’ ((π΄ β β β§ π΄ β πΌ) β (π΄ β β β§ π΄ β 1)) |
7 | | eluz2b3 12902 |
. . . 4
β’ (π΄ β
(β€β₯β2) β (π΄ β β β§ π΄ β 1)) |
8 | 6, 7 | sylibr 233 |
. . 3
β’ ((π΄ β β β§ π΄ β πΌ) β π΄ β
(β€β₯β2)) |
9 | | nnz 12575 |
. . . . . . . 8
β’ (π¦ β β β π¦ β
β€) |
10 | 9 | ad2antrl 726 |
. . . . . . 7
β’ (((π΄ β β β§ π΄ β πΌ) β§ (π¦ β β β§ π¦ β₯ π΄)) β π¦ β β€) |
11 | | simprr 771 |
. . . . . . . 8
β’ (((π΄ β β β§ π΄ β πΌ) β§ (π¦ β β β§ π¦ β₯ π΄)) β π¦ β₯ π΄) |
12 | | nnne0 12242 |
. . . . . . . . . 10
β’ (π¦ β β β π¦ β 0) |
13 | 12 | ad2antrl 726 |
. . . . . . . . 9
β’ (((π΄ β β β§ π΄ β πΌ) β§ (π¦ β β β§ π¦ β₯ π΄)) β π¦ β 0) |
14 | | nnz 12575 |
. . . . . . . . . 10
β’ (π΄ β β β π΄ β
β€) |
15 | 14 | ad2antrr 724 |
. . . . . . . . 9
β’ (((π΄ β β β§ π΄ β πΌ) β§ (π¦ β β β§ π¦ β₯ π΄)) β π΄ β β€) |
16 | | dvdsval2 16196 |
. . . . . . . . 9
β’ ((π¦ β β€ β§ π¦ β 0 β§ π΄ β β€) β (π¦ β₯ π΄ β (π΄ / π¦) β β€)) |
17 | 10, 13, 15, 16 | syl3anc 1371 |
. . . . . . . 8
β’ (((π΄ β β β§ π΄ β πΌ) β§ (π¦ β β β§ π¦ β₯ π΄)) β (π¦ β₯ π΄ β (π΄ / π¦) β β€)) |
18 | 11, 17 | mpbid 231 |
. . . . . . 7
β’ (((π΄ β β β§ π΄ β πΌ) β§ (π¦ β β β§ π¦ β₯ π΄)) β (π΄ / π¦) β β€) |
19 | 15 | zcnd 12663 |
. . . . . . . . 9
β’ (((π΄ β β β§ π΄ β πΌ) β§ (π¦ β β β§ π¦ β₯ π΄)) β π΄ β β) |
20 | | nncn 12216 |
. . . . . . . . . 10
β’ (π¦ β β β π¦ β
β) |
21 | 20 | ad2antrl 726 |
. . . . . . . . 9
β’ (((π΄ β β β§ π΄ β πΌ) β§ (π¦ β β β§ π¦ β₯ π΄)) β π¦ β β) |
22 | 19, 21, 13 | divcan2d 11988 |
. . . . . . . 8
β’ (((π΄ β β β§ π΄ β πΌ) β§ (π¦ β β β§ π¦ β₯ π΄)) β (π¦ Β· (π΄ / π¦)) = π΄) |
23 | | simplr 767 |
. . . . . . . 8
β’ (((π΄ β β β§ π΄ β πΌ) β§ (π¦ β β β§ π¦ β₯ π΄)) β π΄ β πΌ) |
24 | 22, 23 | eqeltrd 2833 |
. . . . . . 7
β’ (((π΄ β β β§ π΄ β πΌ) β§ (π¦ β β β§ π¦ β₯ π΄)) β (π¦ Β· (π΄ / π¦)) β πΌ) |
25 | | zringbas 21015 |
. . . . . . . 8
β’ β€ =
(Baseββ€ring) |
26 | | eqid 2732 |
. . . . . . . 8
β’
(Unitββ€ring) =
(Unitββ€ring) |
27 | | zringmulr 21018 |
. . . . . . . 8
β’ Β·
= (.rββ€ring) |
28 | 2, 25, 26, 27 | irredmul 20235 |
. . . . . . 7
β’ ((π¦ β β€ β§ (π΄ / π¦) β β€ β§ (π¦ Β· (π΄ / π¦)) β πΌ) β (π¦ β (Unitββ€ring)
β¨ (π΄ / π¦) β
(Unitββ€ring))) |
29 | 10, 18, 24, 28 | syl3anc 1371 |
. . . . . 6
β’ (((π΄ β β β§ π΄ β πΌ) β§ (π¦ β β β§ π¦ β₯ π΄)) β (π¦ β (Unitββ€ring)
β¨ (π΄ / π¦) β
(Unitββ€ring))) |
30 | | zringunit 21027 |
. . . . . . . . . 10
β’ (π¦ β
(Unitββ€ring) β (π¦ β β€ β§ (absβπ¦) = 1)) |
31 | 30 | baib 536 |
. . . . . . . . 9
β’ (π¦ β β€ β (π¦ β
(Unitββ€ring) β (absβπ¦) = 1)) |
32 | 10, 31 | syl 17 |
. . . . . . . 8
β’ (((π΄ β β β§ π΄ β πΌ) β§ (π¦ β β β§ π¦ β₯ π΄)) β (π¦ β (Unitββ€ring)
β (absβπ¦) =
1)) |
33 | | nnnn0 12475 |
. . . . . . . . . . 11
β’ (π¦ β β β π¦ β
β0) |
34 | | nn0re 12477 |
. . . . . . . . . . . 12
β’ (π¦ β β0
β π¦ β
β) |
35 | | nn0ge0 12493 |
. . . . . . . . . . . 12
β’ (π¦ β β0
β 0 β€ π¦) |
36 | 34, 35 | absidd 15365 |
. . . . . . . . . . 11
β’ (π¦ β β0
β (absβπ¦) =
π¦) |
37 | 33, 36 | syl 17 |
. . . . . . . . . 10
β’ (π¦ β β β
(absβπ¦) = π¦) |
38 | 37 | ad2antrl 726 |
. . . . . . . . 9
β’ (((π΄ β β β§ π΄ β πΌ) β§ (π¦ β β β§ π¦ β₯ π΄)) β (absβπ¦) = π¦) |
39 | 38 | eqeq1d 2734 |
. . . . . . . 8
β’ (((π΄ β β β§ π΄ β πΌ) β§ (π¦ β β β§ π¦ β₯ π΄)) β ((absβπ¦) = 1 β π¦ = 1)) |
40 | 32, 39 | bitrd 278 |
. . . . . . 7
β’ (((π΄ β β β§ π΄ β πΌ) β§ (π¦ β β β§ π¦ β₯ π΄)) β (π¦ β (Unitββ€ring)
β π¦ =
1)) |
41 | | zringunit 21027 |
. . . . . . . . . 10
β’ ((π΄ / π¦) β (Unitββ€ring)
β ((π΄ / π¦) β β€ β§
(absβ(π΄ / π¦)) = 1)) |
42 | 41 | baib 536 |
. . . . . . . . 9
β’ ((π΄ / π¦) β β€ β ((π΄ / π¦) β (Unitββ€ring)
β (absβ(π΄ /
π¦)) = 1)) |
43 | 18, 42 | syl 17 |
. . . . . . . 8
β’ (((π΄ β β β§ π΄ β πΌ) β§ (π¦ β β β§ π¦ β₯ π΄)) β ((π΄ / π¦) β (Unitββ€ring)
β (absβ(π΄ /
π¦)) = 1)) |
44 | | nnre 12215 |
. . . . . . . . . . . . 13
β’ (π΄ β β β π΄ β
β) |
45 | 44 | ad2antrr 724 |
. . . . . . . . . . . 12
β’ (((π΄ β β β§ π΄ β πΌ) β§ (π¦ β β β§ π¦ β₯ π΄)) β π΄ β β) |
46 | | simprl 769 |
. . . . . . . . . . . 12
β’ (((π΄ β β β§ π΄ β πΌ) β§ (π¦ β β β§ π¦ β₯ π΄)) β π¦ β β) |
47 | 45, 46 | nndivred 12262 |
. . . . . . . . . . 11
β’ (((π΄ β β β§ π΄ β πΌ) β§ (π¦ β β β§ π¦ β₯ π΄)) β (π΄ / π¦) β β) |
48 | | nnnn0 12475 |
. . . . . . . . . . . . . 14
β’ (π΄ β β β π΄ β
β0) |
49 | | nn0ge0 12493 |
. . . . . . . . . . . . . 14
β’ (π΄ β β0
β 0 β€ π΄) |
50 | 48, 49 | syl 17 |
. . . . . . . . . . . . 13
β’ (π΄ β β β 0 β€
π΄) |
51 | 50 | ad2antrr 724 |
. . . . . . . . . . . 12
β’ (((π΄ β β β§ π΄ β πΌ) β§ (π¦ β β β§ π¦ β₯ π΄)) β 0 β€ π΄) |
52 | 46 | nnred 12223 |
. . . . . . . . . . . 12
β’ (((π΄ β β β§ π΄ β πΌ) β§ (π¦ β β β§ π¦ β₯ π΄)) β π¦ β β) |
53 | | nngt0 12239 |
. . . . . . . . . . . . 13
β’ (π¦ β β β 0 <
π¦) |
54 | 53 | ad2antrl 726 |
. . . . . . . . . . . 12
β’ (((π΄ β β β§ π΄ β πΌ) β§ (π¦ β β β§ π¦ β₯ π΄)) β 0 < π¦) |
55 | | divge0 12079 |
. . . . . . . . . . . 12
β’ (((π΄ β β β§ 0 β€
π΄) β§ (π¦ β β β§ 0 <
π¦)) β 0 β€ (π΄ / π¦)) |
56 | 45, 51, 52, 54, 55 | syl22anc 837 |
. . . . . . . . . . 11
β’ (((π΄ β β β§ π΄ β πΌ) β§ (π¦ β β β§ π¦ β₯ π΄)) β 0 β€ (π΄ / π¦)) |
57 | 47, 56 | absidd 15365 |
. . . . . . . . . 10
β’ (((π΄ β β β§ π΄ β πΌ) β§ (π¦ β β β§ π¦ β₯ π΄)) β (absβ(π΄ / π¦)) = (π΄ / π¦)) |
58 | 57 | eqeq1d 2734 |
. . . . . . . . 9
β’ (((π΄ β β β§ π΄ β πΌ) β§ (π¦ β β β§ π¦ β₯ π΄)) β ((absβ(π΄ / π¦)) = 1 β (π΄ / π¦) = 1)) |
59 | | 1cnd 11205 |
. . . . . . . . . 10
β’ (((π΄ β β β§ π΄ β πΌ) β§ (π¦ β β β§ π¦ β₯ π΄)) β 1 β β) |
60 | 19, 21, 59, 13 | divmuld 12008 |
. . . . . . . . 9
β’ (((π΄ β β β§ π΄ β πΌ) β§ (π¦ β β β§ π¦ β₯ π΄)) β ((π΄ / π¦) = 1 β (π¦ Β· 1) = π΄)) |
61 | 21 | mulridd 11227 |
. . . . . . . . . 10
β’ (((π΄ β β β§ π΄ β πΌ) β§ (π¦ β β β§ π¦ β₯ π΄)) β (π¦ Β· 1) = π¦) |
62 | 61 | eqeq1d 2734 |
. . . . . . . . 9
β’ (((π΄ β β β§ π΄ β πΌ) β§ (π¦ β β β§ π¦ β₯ π΄)) β ((π¦ Β· 1) = π΄ β π¦ = π΄)) |
63 | 58, 60, 62 | 3bitrd 304 |
. . . . . . . 8
β’ (((π΄ β β β§ π΄ β πΌ) β§ (π¦ β β β§ π¦ β₯ π΄)) β ((absβ(π΄ / π¦)) = 1 β π¦ = π΄)) |
64 | 43, 63 | bitrd 278 |
. . . . . . 7
β’ (((π΄ β β β§ π΄ β πΌ) β§ (π¦ β β β§ π¦ β₯ π΄)) β ((π΄ / π¦) β (Unitββ€ring)
β π¦ = π΄)) |
65 | 40, 64 | orbi12d 917 |
. . . . . 6
β’ (((π΄ β β β§ π΄ β πΌ) β§ (π¦ β β β§ π¦ β₯ π΄)) β ((π¦ β (Unitββ€ring)
β¨ (π΄ / π¦) β
(Unitββ€ring)) β (π¦ = 1 β¨ π¦ = π΄))) |
66 | 29, 65 | mpbid 231 |
. . . . 5
β’ (((π΄ β β β§ π΄ β πΌ) β§ (π¦ β β β§ π¦ β₯ π΄)) β (π¦ = 1 β¨ π¦ = π΄)) |
67 | 66 | expr 457 |
. . . 4
β’ (((π΄ β β β§ π΄ β πΌ) β§ π¦ β β) β (π¦ β₯ π΄ β (π¦ = 1 β¨ π¦ = π΄))) |
68 | 67 | ralrimiva 3146 |
. . 3
β’ ((π΄ β β β§ π΄ β πΌ) β βπ¦ β β (π¦ β₯ π΄ β (π¦ = 1 β¨ π¦ = π΄))) |
69 | | isprm2 16615 |
. . 3
β’ (π΄ β β β (π΄ β
(β€β₯β2) β§ βπ¦ β β (π¦ β₯ π΄ β (π¦ = 1 β¨ π¦ = π΄)))) |
70 | 8, 68, 69 | sylanbrc 583 |
. 2
β’ ((π΄ β β β§ π΄ β πΌ) β π΄ β β) |
71 | | prmz 16608 |
. . . 4
β’ (π΄ β β β π΄ β
β€) |
72 | | 1nprm 16612 |
. . . . 5
β’ Β¬ 1
β β |
73 | | zringunit 21027 |
. . . . . 6
β’ (π΄ β
(Unitββ€ring) β (π΄ β β€ β§ (absβπ΄) = 1)) |
74 | | prmnn 16607 |
. . . . . . . . . 10
β’ (π΄ β β β π΄ β
β) |
75 | | nn0re 12477 |
. . . . . . . . . . 11
β’ (π΄ β β0
β π΄ β
β) |
76 | 75, 49 | absidd 15365 |
. . . . . . . . . 10
β’ (π΄ β β0
β (absβπ΄) =
π΄) |
77 | 74, 48, 76 | 3syl 18 |
. . . . . . . . 9
β’ (π΄ β β β
(absβπ΄) = π΄) |
78 | | id 22 |
. . . . . . . . 9
β’ (π΄ β β β π΄ β
β) |
79 | 77, 78 | eqeltrd 2833 |
. . . . . . . 8
β’ (π΄ β β β
(absβπ΄) β
β) |
80 | | eleq1 2821 |
. . . . . . . 8
β’
((absβπ΄) = 1
β ((absβπ΄)
β β β 1 β β)) |
81 | 79, 80 | syl5ibcom 244 |
. . . . . . 7
β’ (π΄ β β β
((absβπ΄) = 1 β 1
β β)) |
82 | 81 | adantld 491 |
. . . . . 6
β’ (π΄ β β β ((π΄ β β€ β§
(absβπ΄) = 1) β 1
β β)) |
83 | 73, 82 | biimtrid 241 |
. . . . 5
β’ (π΄ β β β (π΄ β
(Unitββ€ring) β 1 β β)) |
84 | 72, 83 | mtoi 198 |
. . . 4
β’ (π΄ β β β Β¬
π΄ β
(Unitββ€ring)) |
85 | | dvdsmul1 16217 |
. . . . . . . . . . 11
β’ ((π₯ β β€ β§ π¦ β β€) β π₯ β₯ (π₯ Β· π¦)) |
86 | 85 | ad2antlr 725 |
. . . . . . . . . 10
β’ (((π΄ β β β§ (π₯ β β€ β§ π¦ β β€)) β§ (π₯ Β· π¦) = π΄) β π₯ β₯ (π₯ Β· π¦)) |
87 | | simpr 485 |
. . . . . . . . . 10
β’ (((π΄ β β β§ (π₯ β β€ β§ π¦ β β€)) β§ (π₯ Β· π¦) = π΄) β (π₯ Β· π¦) = π΄) |
88 | 86, 87 | breqtrd 5173 |
. . . . . . . . 9
β’ (((π΄ β β β§ (π₯ β β€ β§ π¦ β β€)) β§ (π₯ Β· π¦) = π΄) β π₯ β₯ π΄) |
89 | | simplrl 775 |
. . . . . . . . . 10
β’ (((π΄ β β β§ (π₯ β β€ β§ π¦ β β€)) β§ (π₯ Β· π¦) = π΄) β π₯ β β€) |
90 | 71 | ad2antrr 724 |
. . . . . . . . . 10
β’ (((π΄ β β β§ (π₯ β β€ β§ π¦ β β€)) β§ (π₯ Β· π¦) = π΄) β π΄ β β€) |
91 | | absdvdsb 16214 |
. . . . . . . . . 10
β’ ((π₯ β β€ β§ π΄ β β€) β (π₯ β₯ π΄ β (absβπ₯) β₯ π΄)) |
92 | 89, 90, 91 | syl2anc 584 |
. . . . . . . . 9
β’ (((π΄ β β β§ (π₯ β β€ β§ π¦ β β€)) β§ (π₯ Β· π¦) = π΄) β (π₯ β₯ π΄ β (absβπ₯) β₯ π΄)) |
93 | 88, 92 | mpbid 231 |
. . . . . . . 8
β’ (((π΄ β β β§ (π₯ β β€ β§ π¦ β β€)) β§ (π₯ Β· π¦) = π΄) β (absβπ₯) β₯ π΄) |
94 | | breq1 5150 |
. . . . . . . . . 10
β’ (π¦ = (absβπ₯) β (π¦ β₯ π΄ β (absβπ₯) β₯ π΄)) |
95 | | eqeq1 2736 |
. . . . . . . . . . 11
β’ (π¦ = (absβπ₯) β (π¦ = 1 β (absβπ₯) = 1)) |
96 | | eqeq1 2736 |
. . . . . . . . . . 11
β’ (π¦ = (absβπ₯) β (π¦ = π΄ β (absβπ₯) = π΄)) |
97 | 95, 96 | orbi12d 917 |
. . . . . . . . . 10
β’ (π¦ = (absβπ₯) β ((π¦ = 1 β¨ π¦ = π΄) β ((absβπ₯) = 1 β¨ (absβπ₯) = π΄))) |
98 | 94, 97 | imbi12d 344 |
. . . . . . . . 9
β’ (π¦ = (absβπ₯) β ((π¦ β₯ π΄ β (π¦ = 1 β¨ π¦ = π΄)) β ((absβπ₯) β₯ π΄ β ((absβπ₯) = 1 β¨ (absβπ₯) = π΄)))) |
99 | 69 | simprbi 497 |
. . . . . . . . . 10
β’ (π΄ β β β
βπ¦ β β
(π¦ β₯ π΄ β (π¦ = 1 β¨ π¦ = π΄))) |
100 | 99 | ad2antrr 724 |
. . . . . . . . 9
β’ (((π΄ β β β§ (π₯ β β€ β§ π¦ β β€)) β§ (π₯ Β· π¦) = π΄) β βπ¦ β β (π¦ β₯ π΄ β (π¦ = 1 β¨ π¦ = π΄))) |
101 | 89 | zcnd 12663 |
. . . . . . . . . . . 12
β’ (((π΄ β β β§ (π₯ β β€ β§ π¦ β β€)) β§ (π₯ Β· π¦) = π΄) β π₯ β β) |
102 | 74 | ad2antrr 724 |
. . . . . . . . . . . . . . 15
β’ (((π΄ β β β§ (π₯ β β€ β§ π¦ β β€)) β§ (π₯ Β· π¦) = π΄) β π΄ β β) |
103 | 102 | nnne0d 12258 |
. . . . . . . . . . . . . 14
β’ (((π΄ β β β§ (π₯ β β€ β§ π¦ β β€)) β§ (π₯ Β· π¦) = π΄) β π΄ β 0) |
104 | | simplrr 776 |
. . . . . . . . . . . . . . . 16
β’ (((π΄ β β β§ (π₯ β β€ β§ π¦ β β€)) β§ (π₯ Β· π¦) = π΄) β π¦ β β€) |
105 | 104 | zcnd 12663 |
. . . . . . . . . . . . . . 15
β’ (((π΄ β β β§ (π₯ β β€ β§ π¦ β β€)) β§ (π₯ Β· π¦) = π΄) β π¦ β β) |
106 | 105 | mul02d 11408 |
. . . . . . . . . . . . . 14
β’ (((π΄ β β β§ (π₯ β β€ β§ π¦ β β€)) β§ (π₯ Β· π¦) = π΄) β (0 Β· π¦) = 0) |
107 | 103, 87, 106 | 3netr4d 3018 |
. . . . . . . . . . . . 13
β’ (((π΄ β β β§ (π₯ β β€ β§ π¦ β β€)) β§ (π₯ Β· π¦) = π΄) β (π₯ Β· π¦) β (0 Β· π¦)) |
108 | | oveq1 7412 |
. . . . . . . . . . . . . 14
β’ (π₯ = 0 β (π₯ Β· π¦) = (0 Β· π¦)) |
109 | 108 | necon3i 2973 |
. . . . . . . . . . . . 13
β’ ((π₯ Β· π¦) β (0 Β· π¦) β π₯ β 0) |
110 | 107, 109 | syl 17 |
. . . . . . . . . . . 12
β’ (((π΄ β β β§ (π₯ β β€ β§ π¦ β β€)) β§ (π₯ Β· π¦) = π΄) β π₯ β 0) |
111 | 101, 110 | absne0d 15390 |
. . . . . . . . . . 11
β’ (((π΄ β β β§ (π₯ β β€ β§ π¦ β β€)) β§ (π₯ Β· π¦) = π΄) β (absβπ₯) β 0) |
112 | 111 | neneqd 2945 |
. . . . . . . . . 10
β’ (((π΄ β β β§ (π₯ β β€ β§ π¦ β β€)) β§ (π₯ Β· π¦) = π΄) β Β¬ (absβπ₯) = 0) |
113 | | nn0abscl 15255 |
. . . . . . . . . . . . 13
β’ (π₯ β β€ β
(absβπ₯) β
β0) |
114 | 89, 113 | syl 17 |
. . . . . . . . . . . 12
β’ (((π΄ β β β§ (π₯ β β€ β§ π¦ β β€)) β§ (π₯ Β· π¦) = π΄) β (absβπ₯) β
β0) |
115 | | elnn0 12470 |
. . . . . . . . . . . 12
β’
((absβπ₯)
β β0 β ((absβπ₯) β β β¨ (absβπ₯) = 0)) |
116 | 114, 115 | sylib 217 |
. . . . . . . . . . 11
β’ (((π΄ β β β§ (π₯ β β€ β§ π¦ β β€)) β§ (π₯ Β· π¦) = π΄) β ((absβπ₯) β β β¨ (absβπ₯) = 0)) |
117 | 116 | ord 862 |
. . . . . . . . . 10
β’ (((π΄ β β β§ (π₯ β β€ β§ π¦ β β€)) β§ (π₯ Β· π¦) = π΄) β (Β¬ (absβπ₯) β β β
(absβπ₯) =
0)) |
118 | 112, 117 | mt3d 148 |
. . . . . . . . 9
β’ (((π΄ β β β§ (π₯ β β€ β§ π¦ β β€)) β§ (π₯ Β· π¦) = π΄) β (absβπ₯) β β) |
119 | 98, 100, 118 | rspcdva 3613 |
. . . . . . . 8
β’ (((π΄ β β β§ (π₯ β β€ β§ π¦ β β€)) β§ (π₯ Β· π¦) = π΄) β ((absβπ₯) β₯ π΄ β ((absβπ₯) = 1 β¨ (absβπ₯) = π΄))) |
120 | 93, 119 | mpd 15 |
. . . . . . 7
β’ (((π΄ β β β§ (π₯ β β€ β§ π¦ β β€)) β§ (π₯ Β· π¦) = π΄) β ((absβπ₯) = 1 β¨ (absβπ₯) = π΄)) |
121 | | zringunit 21027 |
. . . . . . . . . 10
β’ (π₯ β
(Unitββ€ring) β (π₯ β β€ β§ (absβπ₯) = 1)) |
122 | 121 | baib 536 |
. . . . . . . . 9
β’ (π₯ β β€ β (π₯ β
(Unitββ€ring) β (absβπ₯) = 1)) |
123 | 89, 122 | syl 17 |
. . . . . . . 8
β’ (((π΄ β β β§ (π₯ β β€ β§ π¦ β β€)) β§ (π₯ Β· π¦) = π΄) β (π₯ β (Unitββ€ring)
β (absβπ₯) =
1)) |
124 | 104, 31 | syl 17 |
. . . . . . . . 9
β’ (((π΄ β β β§ (π₯ β β€ β§ π¦ β β€)) β§ (π₯ Β· π¦) = π΄) β (π¦ β (Unitββ€ring)
β (absβπ¦) =
1)) |
125 | 105 | abscld 15379 |
. . . . . . . . . . 11
β’ (((π΄ β β β§ (π₯ β β€ β§ π¦ β β€)) β§ (π₯ Β· π¦) = π΄) β (absβπ¦) β β) |
126 | 125 | recnd 11238 |
. . . . . . . . . 10
β’ (((π΄ β β β§ (π₯ β β€ β§ π¦ β β€)) β§ (π₯ Β· π¦) = π΄) β (absβπ¦) β β) |
127 | | 1cnd 11205 |
. . . . . . . . . 10
β’ (((π΄ β β β§ (π₯ β β€ β§ π¦ β β€)) β§ (π₯ Β· π¦) = π΄) β 1 β β) |
128 | 101 | abscld 15379 |
. . . . . . . . . . 11
β’ (((π΄ β β β§ (π₯ β β€ β§ π¦ β β€)) β§ (π₯ Β· π¦) = π΄) β (absβπ₯) β β) |
129 | 128 | recnd 11238 |
. . . . . . . . . 10
β’ (((π΄ β β β§ (π₯ β β€ β§ π¦ β β€)) β§ (π₯ Β· π¦) = π΄) β (absβπ₯) β β) |
130 | 126, 127,
129, 111 | mulcand 11843 |
. . . . . . . . 9
β’ (((π΄ β β β§ (π₯ β β€ β§ π¦ β β€)) β§ (π₯ Β· π¦) = π΄) β (((absβπ₯) Β· (absβπ¦)) = ((absβπ₯) Β· 1) β (absβπ¦) = 1)) |
131 | 87 | fveq2d 6892 |
. . . . . . . . . . . 12
β’ (((π΄ β β β§ (π₯ β β€ β§ π¦ β β€)) β§ (π₯ Β· π¦) = π΄) β (absβ(π₯ Β· π¦)) = (absβπ΄)) |
132 | 101, 105 | absmuld 15397 |
. . . . . . . . . . . 12
β’ (((π΄ β β β§ (π₯ β β€ β§ π¦ β β€)) β§ (π₯ Β· π¦) = π΄) β (absβ(π₯ Β· π¦)) = ((absβπ₯) Β· (absβπ¦))) |
133 | 77 | ad2antrr 724 |
. . . . . . . . . . . 12
β’ (((π΄ β β β§ (π₯ β β€ β§ π¦ β β€)) β§ (π₯ Β· π¦) = π΄) β (absβπ΄) = π΄) |
134 | 131, 132,
133 | 3eqtr3d 2780 |
. . . . . . . . . . 11
β’ (((π΄ β β β§ (π₯ β β€ β§ π¦ β β€)) β§ (π₯ Β· π¦) = π΄) β ((absβπ₯) Β· (absβπ¦)) = π΄) |
135 | 129 | mulridd 11227 |
. . . . . . . . . . 11
β’ (((π΄ β β β§ (π₯ β β€ β§ π¦ β β€)) β§ (π₯ Β· π¦) = π΄) β ((absβπ₯) Β· 1) = (absβπ₯)) |
136 | 134, 135 | eqeq12d 2748 |
. . . . . . . . . 10
β’ (((π΄ β β β§ (π₯ β β€ β§ π¦ β β€)) β§ (π₯ Β· π¦) = π΄) β (((absβπ₯) Β· (absβπ¦)) = ((absβπ₯) Β· 1) β π΄ = (absβπ₯))) |
137 | | eqcom 2739 |
. . . . . . . . . 10
β’ (π΄ = (absβπ₯) β (absβπ₯) = π΄) |
138 | 136, 137 | bitrdi 286 |
. . . . . . . . 9
β’ (((π΄ β β β§ (π₯ β β€ β§ π¦ β β€)) β§ (π₯ Β· π¦) = π΄) β (((absβπ₯) Β· (absβπ¦)) = ((absβπ₯) Β· 1) β (absβπ₯) = π΄)) |
139 | 124, 130,
138 | 3bitr2d 306 |
. . . . . . . 8
β’ (((π΄ β β β§ (π₯ β β€ β§ π¦ β β€)) β§ (π₯ Β· π¦) = π΄) β (π¦ β (Unitββ€ring)
β (absβπ₯) =
π΄)) |
140 | 123, 139 | orbi12d 917 |
. . . . . . 7
β’ (((π΄ β β β§ (π₯ β β€ β§ π¦ β β€)) β§ (π₯ Β· π¦) = π΄) β ((π₯ β (Unitββ€ring)
β¨ π¦ β
(Unitββ€ring)) β ((absβπ₯) = 1 β¨ (absβπ₯) = π΄))) |
141 | 120, 140 | mpbird 256 |
. . . . . 6
β’ (((π΄ β β β§ (π₯ β β€ β§ π¦ β β€)) β§ (π₯ Β· π¦) = π΄) β (π₯ β (Unitββ€ring)
β¨ π¦ β
(Unitββ€ring))) |
142 | 141 | ex 413 |
. . . . 5
β’ ((π΄ β β β§ (π₯ β β€ β§ π¦ β β€)) β ((π₯ Β· π¦) = π΄ β (π₯ β (Unitββ€ring)
β¨ π¦ β
(Unitββ€ring)))) |
143 | 142 | ralrimivva 3200 |
. . . 4
β’ (π΄ β β β
βπ₯ β β€
βπ¦ β β€
((π₯ Β· π¦) = π΄ β (π₯ β (Unitββ€ring)
β¨ π¦ β
(Unitββ€ring)))) |
144 | 25, 26, 2, 27 | isirred2 20227 |
. . . 4
β’ (π΄ β πΌ β (π΄ β β€ β§ Β¬ π΄ β
(Unitββ€ring) β§ βπ₯ β β€ βπ¦ β β€ ((π₯ Β· π¦) = π΄ β (π₯ β (Unitββ€ring)
β¨ π¦ β
(Unitββ€ring))))) |
145 | 71, 84, 143, 144 | syl3anbrc 1343 |
. . 3
β’ (π΄ β β β π΄ β πΌ) |
146 | 145 | adantl 482 |
. 2
β’ ((π΄ β β β§ π΄ β β) β π΄ β πΌ) |
147 | 70, 146 | impbida 799 |
1
β’ (π΄ β β β (π΄ β πΌ β π΄ β β)) |