MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmirredlem Structured version   Visualization version   GIF version

Theorem prmirredlem 21409
Description: A positive integer is irreducible over iff it is a prime number. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.)
Hypothesis
Ref Expression
prmirred.i 𝐼 = (Irred‘ℤring)
Assertion
Ref Expression
prmirredlem (𝐴 ∈ ℕ → (𝐴𝐼𝐴 ∈ ℙ))

Proof of Theorem prmirredlem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zringring 21386 . . . . . 6 ring ∈ Ring
2 prmirred.i . . . . . . 7 𝐼 = (Irred‘ℤring)
3 zring1 21396 . . . . . . 7 1 = (1r‘ℤring)
42, 3irredn1 20344 . . . . . 6 ((ℤring ∈ Ring ∧ 𝐴𝐼) → 𝐴 ≠ 1)
51, 4mpan 690 . . . . 5 (𝐴𝐼𝐴 ≠ 1)
65anim2i 617 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐴𝐼) → (𝐴 ∈ ℕ ∧ 𝐴 ≠ 1))
7 eluz2b3 12820 . . . 4 (𝐴 ∈ (ℤ‘2) ↔ (𝐴 ∈ ℕ ∧ 𝐴 ≠ 1))
86, 7sylibr 234 . . 3 ((𝐴 ∈ ℕ ∧ 𝐴𝐼) → 𝐴 ∈ (ℤ‘2))
9 nnz 12489 . . . . . . . 8 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
109ad2antrl 728 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦 ∈ ℤ)
11 simprr 772 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦𝐴)
12 nnne0 12159 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
1312ad2antrl 728 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦 ≠ 0)
14 nnz 12489 . . . . . . . . . 10 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
1514ad2antrr 726 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝐴 ∈ ℤ)
16 dvdsval2 16166 . . . . . . . . 9 ((𝑦 ∈ ℤ ∧ 𝑦 ≠ 0 ∧ 𝐴 ∈ ℤ) → (𝑦𝐴 ↔ (𝐴 / 𝑦) ∈ ℤ))
1710, 13, 15, 16syl3anc 1373 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦𝐴 ↔ (𝐴 / 𝑦) ∈ ℤ))
1811, 17mpbid 232 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝐴 / 𝑦) ∈ ℤ)
1915zcnd 12578 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝐴 ∈ ℂ)
20 nncn 12133 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
2120ad2antrl 728 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦 ∈ ℂ)
2219, 21, 13divcan2d 11899 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 · (𝐴 / 𝑦)) = 𝐴)
23 simplr 768 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝐴𝐼)
2422, 23eqeltrd 2831 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 · (𝐴 / 𝑦)) ∈ 𝐼)
25 zringbas 21390 . . . . . . . 8 ℤ = (Base‘ℤring)
26 eqid 2731 . . . . . . . 8 (Unit‘ℤring) = (Unit‘ℤring)
27 zringmulr 21394 . . . . . . . 8 · = (.r‘ℤring)
282, 25, 26, 27irredmul 20347 . . . . . . 7 ((𝑦 ∈ ℤ ∧ (𝐴 / 𝑦) ∈ ℤ ∧ (𝑦 · (𝐴 / 𝑦)) ∈ 𝐼) → (𝑦 ∈ (Unit‘ℤring) ∨ (𝐴 / 𝑦) ∈ (Unit‘ℤring)))
2910, 18, 24, 28syl3anc 1373 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 ∈ (Unit‘ℤring) ∨ (𝐴 / 𝑦) ∈ (Unit‘ℤring)))
30 zringunit 21403 . . . . . . . . . 10 (𝑦 ∈ (Unit‘ℤring) ↔ (𝑦 ∈ ℤ ∧ (abs‘𝑦) = 1))
3130baib 535 . . . . . . . . 9 (𝑦 ∈ ℤ → (𝑦 ∈ (Unit‘ℤring) ↔ (abs‘𝑦) = 1))
3210, 31syl 17 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 ∈ (Unit‘ℤring) ↔ (abs‘𝑦) = 1))
33 nnnn0 12388 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0)
34 nn0re 12390 . . . . . . . . . . . 12 (𝑦 ∈ ℕ0𝑦 ∈ ℝ)
35 nn0ge0 12406 . . . . . . . . . . . 12 (𝑦 ∈ ℕ0 → 0 ≤ 𝑦)
3634, 35absidd 15330 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → (abs‘𝑦) = 𝑦)
3733, 36syl 17 . . . . . . . . . 10 (𝑦 ∈ ℕ → (abs‘𝑦) = 𝑦)
3837ad2antrl 728 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (abs‘𝑦) = 𝑦)
3938eqeq1d 2733 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → ((abs‘𝑦) = 1 ↔ 𝑦 = 1))
4032, 39bitrd 279 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 ∈ (Unit‘ℤring) ↔ 𝑦 = 1))
41 zringunit 21403 . . . . . . . . . 10 ((𝐴 / 𝑦) ∈ (Unit‘ℤring) ↔ ((𝐴 / 𝑦) ∈ ℤ ∧ (abs‘(𝐴 / 𝑦)) = 1))
4241baib 535 . . . . . . . . 9 ((𝐴 / 𝑦) ∈ ℤ → ((𝐴 / 𝑦) ∈ (Unit‘ℤring) ↔ (abs‘(𝐴 / 𝑦)) = 1))
4318, 42syl 17 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → ((𝐴 / 𝑦) ∈ (Unit‘ℤring) ↔ (abs‘(𝐴 / 𝑦)) = 1))
44 nnre 12132 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
4544ad2antrr 726 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝐴 ∈ ℝ)
46 simprl 770 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦 ∈ ℕ)
4745, 46nndivred 12179 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝐴 / 𝑦) ∈ ℝ)
48 nnnn0 12388 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
49 nn0ge0 12406 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
5048, 49syl 17 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ → 0 ≤ 𝐴)
5150ad2antrr 726 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 0 ≤ 𝐴)
5246nnred 12140 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦 ∈ ℝ)
53 nngt0 12156 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → 0 < 𝑦)
5453ad2antrl 728 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 0 < 𝑦)
55 divge0 11991 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑦 ∈ ℝ ∧ 0 < 𝑦)) → 0 ≤ (𝐴 / 𝑦))
5645, 51, 52, 54, 55syl22anc 838 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 0 ≤ (𝐴 / 𝑦))
5747, 56absidd 15330 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (abs‘(𝐴 / 𝑦)) = (𝐴 / 𝑦))
5857eqeq1d 2733 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → ((abs‘(𝐴 / 𝑦)) = 1 ↔ (𝐴 / 𝑦) = 1))
59 1cnd 11107 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 1 ∈ ℂ)
6019, 21, 59, 13divmuld 11919 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → ((𝐴 / 𝑦) = 1 ↔ (𝑦 · 1) = 𝐴))
6121mulridd 11129 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 · 1) = 𝑦)
6261eqeq1d 2733 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → ((𝑦 · 1) = 𝐴𝑦 = 𝐴))
6358, 60, 623bitrd 305 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → ((abs‘(𝐴 / 𝑦)) = 1 ↔ 𝑦 = 𝐴))
6443, 63bitrd 279 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → ((𝐴 / 𝑦) ∈ (Unit‘ℤring) ↔ 𝑦 = 𝐴))
6540, 64orbi12d 918 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → ((𝑦 ∈ (Unit‘ℤring) ∨ (𝐴 / 𝑦) ∈ (Unit‘ℤring)) ↔ (𝑦 = 1 ∨ 𝑦 = 𝐴)))
6629, 65mpbid 232 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 = 1 ∨ 𝑦 = 𝐴))
6766expr 456 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ 𝑦 ∈ ℕ) → (𝑦𝐴 → (𝑦 = 1 ∨ 𝑦 = 𝐴)))
6867ralrimiva 3124 . . 3 ((𝐴 ∈ ℕ ∧ 𝐴𝐼) → ∀𝑦 ∈ ℕ (𝑦𝐴 → (𝑦 = 1 ∨ 𝑦 = 𝐴)))
69 isprm2 16593 . . 3 (𝐴 ∈ ℙ ↔ (𝐴 ∈ (ℤ‘2) ∧ ∀𝑦 ∈ ℕ (𝑦𝐴 → (𝑦 = 1 ∨ 𝑦 = 𝐴))))
708, 68, 69sylanbrc 583 . 2 ((𝐴 ∈ ℕ ∧ 𝐴𝐼) → 𝐴 ∈ ℙ)
71 prmz 16586 . . . 4 (𝐴 ∈ ℙ → 𝐴 ∈ ℤ)
72 1nprm 16590 . . . . 5 ¬ 1 ∈ ℙ
73 zringunit 21403 . . . . . 6 (𝐴 ∈ (Unit‘ℤring) ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1))
74 prmnn 16585 . . . . . . . . . 10 (𝐴 ∈ ℙ → 𝐴 ∈ ℕ)
75 nn0re 12390 . . . . . . . . . . 11 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
7675, 49absidd 15330 . . . . . . . . . 10 (𝐴 ∈ ℕ0 → (abs‘𝐴) = 𝐴)
7774, 48, 763syl 18 . . . . . . . . 9 (𝐴 ∈ ℙ → (abs‘𝐴) = 𝐴)
78 id 22 . . . . . . . . 9 (𝐴 ∈ ℙ → 𝐴 ∈ ℙ)
7977, 78eqeltrd 2831 . . . . . . . 8 (𝐴 ∈ ℙ → (abs‘𝐴) ∈ ℙ)
80 eleq1 2819 . . . . . . . 8 ((abs‘𝐴) = 1 → ((abs‘𝐴) ∈ ℙ ↔ 1 ∈ ℙ))
8179, 80syl5ibcom 245 . . . . . . 7 (𝐴 ∈ ℙ → ((abs‘𝐴) = 1 → 1 ∈ ℙ))
8281adantld 490 . . . . . 6 (𝐴 ∈ ℙ → ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → 1 ∈ ℙ))
8373, 82biimtrid 242 . . . . 5 (𝐴 ∈ ℙ → (𝐴 ∈ (Unit‘ℤring) → 1 ∈ ℙ))
8472, 83mtoi 199 . . . 4 (𝐴 ∈ ℙ → ¬ 𝐴 ∈ (Unit‘ℤring))
85 dvdsmul1 16188 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑥 ∥ (𝑥 · 𝑦))
8685ad2antlr 727 . . . . . . . . . 10 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝑥 ∥ (𝑥 · 𝑦))
87 simpr 484 . . . . . . . . . 10 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (𝑥 · 𝑦) = 𝐴)
8886, 87breqtrd 5115 . . . . . . . . 9 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝑥𝐴)
89 simplrl 776 . . . . . . . . . 10 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝑥 ∈ ℤ)
9071ad2antrr 726 . . . . . . . . . 10 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝐴 ∈ ℤ)
91 absdvdsb 16185 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑥𝐴 ↔ (abs‘𝑥) ∥ 𝐴))
9289, 90, 91syl2anc 584 . . . . . . . . 9 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (𝑥𝐴 ↔ (abs‘𝑥) ∥ 𝐴))
9388, 92mpbid 232 . . . . . . . 8 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑥) ∥ 𝐴)
94 breq1 5092 . . . . . . . . . 10 (𝑦 = (abs‘𝑥) → (𝑦𝐴 ↔ (abs‘𝑥) ∥ 𝐴))
95 eqeq1 2735 . . . . . . . . . . 11 (𝑦 = (abs‘𝑥) → (𝑦 = 1 ↔ (abs‘𝑥) = 1))
96 eqeq1 2735 . . . . . . . . . . 11 (𝑦 = (abs‘𝑥) → (𝑦 = 𝐴 ↔ (abs‘𝑥) = 𝐴))
9795, 96orbi12d 918 . . . . . . . . . 10 (𝑦 = (abs‘𝑥) → ((𝑦 = 1 ∨ 𝑦 = 𝐴) ↔ ((abs‘𝑥) = 1 ∨ (abs‘𝑥) = 𝐴)))
9894, 97imbi12d 344 . . . . . . . . 9 (𝑦 = (abs‘𝑥) → ((𝑦𝐴 → (𝑦 = 1 ∨ 𝑦 = 𝐴)) ↔ ((abs‘𝑥) ∥ 𝐴 → ((abs‘𝑥) = 1 ∨ (abs‘𝑥) = 𝐴))))
9969simprbi 496 . . . . . . . . . 10 (𝐴 ∈ ℙ → ∀𝑦 ∈ ℕ (𝑦𝐴 → (𝑦 = 1 ∨ 𝑦 = 𝐴)))
10099ad2antrr 726 . . . . . . . . 9 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → ∀𝑦 ∈ ℕ (𝑦𝐴 → (𝑦 = 1 ∨ 𝑦 = 𝐴)))
10189zcnd 12578 . . . . . . . . . . . 12 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝑥 ∈ ℂ)
10274ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝐴 ∈ ℕ)
103102nnne0d 12175 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝐴 ≠ 0)
104 simplrr 777 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝑦 ∈ ℤ)
105104zcnd 12578 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝑦 ∈ ℂ)
106105mul02d 11311 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (0 · 𝑦) = 0)
107103, 87, 1063netr4d 3005 . . . . . . . . . . . . 13 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (𝑥 · 𝑦) ≠ (0 · 𝑦))
108 oveq1 7353 . . . . . . . . . . . . . 14 (𝑥 = 0 → (𝑥 · 𝑦) = (0 · 𝑦))
109108necon3i 2960 . . . . . . . . . . . . 13 ((𝑥 · 𝑦) ≠ (0 · 𝑦) → 𝑥 ≠ 0)
110107, 109syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝑥 ≠ 0)
111101, 110absne0d 15357 . . . . . . . . . . 11 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑥) ≠ 0)
112111neneqd 2933 . . . . . . . . . 10 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → ¬ (abs‘𝑥) = 0)
113 nn0abscl 15219 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → (abs‘𝑥) ∈ ℕ0)
11489, 113syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑥) ∈ ℕ0)
115 elnn0 12383 . . . . . . . . . . . 12 ((abs‘𝑥) ∈ ℕ0 ↔ ((abs‘𝑥) ∈ ℕ ∨ (abs‘𝑥) = 0))
116114, 115sylib 218 . . . . . . . . . . 11 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → ((abs‘𝑥) ∈ ℕ ∨ (abs‘𝑥) = 0))
117116ord 864 . . . . . . . . . 10 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (¬ (abs‘𝑥) ∈ ℕ → (abs‘𝑥) = 0))
118112, 117mt3d 148 . . . . . . . . 9 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑥) ∈ ℕ)
11998, 100, 118rspcdva 3573 . . . . . . . 8 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → ((abs‘𝑥) ∥ 𝐴 → ((abs‘𝑥) = 1 ∨ (abs‘𝑥) = 𝐴)))
12093, 119mpd 15 . . . . . . 7 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → ((abs‘𝑥) = 1 ∨ (abs‘𝑥) = 𝐴))
121 zringunit 21403 . . . . . . . . . 10 (𝑥 ∈ (Unit‘ℤring) ↔ (𝑥 ∈ ℤ ∧ (abs‘𝑥) = 1))
122121baib 535 . . . . . . . . 9 (𝑥 ∈ ℤ → (𝑥 ∈ (Unit‘ℤring) ↔ (abs‘𝑥) = 1))
12389, 122syl 17 . . . . . . . 8 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (𝑥 ∈ (Unit‘ℤring) ↔ (abs‘𝑥) = 1))
124104, 31syl 17 . . . . . . . . 9 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (𝑦 ∈ (Unit‘ℤring) ↔ (abs‘𝑦) = 1))
125105abscld 15346 . . . . . . . . . . 11 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑦) ∈ ℝ)
126125recnd 11140 . . . . . . . . . 10 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑦) ∈ ℂ)
127 1cnd 11107 . . . . . . . . . 10 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 1 ∈ ℂ)
128101abscld 15346 . . . . . . . . . . 11 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑥) ∈ ℝ)
129128recnd 11140 . . . . . . . . . 10 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑥) ∈ ℂ)
130126, 127, 129, 111mulcand 11750 . . . . . . . . 9 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (((abs‘𝑥) · (abs‘𝑦)) = ((abs‘𝑥) · 1) ↔ (abs‘𝑦) = 1))
13187fveq2d 6826 . . . . . . . . . . . 12 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘(𝑥 · 𝑦)) = (abs‘𝐴))
132101, 105absmuld 15364 . . . . . . . . . . . 12 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘(𝑥 · 𝑦)) = ((abs‘𝑥) · (abs‘𝑦)))
13377ad2antrr 726 . . . . . . . . . . . 12 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝐴) = 𝐴)
134131, 132, 1333eqtr3d 2774 . . . . . . . . . . 11 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → ((abs‘𝑥) · (abs‘𝑦)) = 𝐴)
135129mulridd 11129 . . . . . . . . . . 11 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → ((abs‘𝑥) · 1) = (abs‘𝑥))
136134, 135eqeq12d 2747 . . . . . . . . . 10 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (((abs‘𝑥) · (abs‘𝑦)) = ((abs‘𝑥) · 1) ↔ 𝐴 = (abs‘𝑥)))
137 eqcom 2738 . . . . . . . . . 10 (𝐴 = (abs‘𝑥) ↔ (abs‘𝑥) = 𝐴)
138136, 137bitrdi 287 . . . . . . . . 9 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (((abs‘𝑥) · (abs‘𝑦)) = ((abs‘𝑥) · 1) ↔ (abs‘𝑥) = 𝐴))
139124, 130, 1383bitr2d 307 . . . . . . . 8 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (𝑦 ∈ (Unit‘ℤring) ↔ (abs‘𝑥) = 𝐴))
140123, 139orbi12d 918 . . . . . . 7 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → ((𝑥 ∈ (Unit‘ℤring) ∨ 𝑦 ∈ (Unit‘ℤring)) ↔ ((abs‘𝑥) = 1 ∨ (abs‘𝑥) = 𝐴)))
141120, 140mpbird 257 . . . . . 6 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (𝑥 ∈ (Unit‘ℤring) ∨ 𝑦 ∈ (Unit‘ℤring)))
142141ex 412 . . . . 5 ((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑦) = 𝐴 → (𝑥 ∈ (Unit‘ℤring) ∨ 𝑦 ∈ (Unit‘ℤring))))
143142ralrimivva 3175 . . . 4 (𝐴 ∈ ℙ → ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ ((𝑥 · 𝑦) = 𝐴 → (𝑥 ∈ (Unit‘ℤring) ∨ 𝑦 ∈ (Unit‘ℤring))))
14425, 26, 2, 27isirred2 20339 . . . 4 (𝐴𝐼 ↔ (𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ (Unit‘ℤring) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ ((𝑥 · 𝑦) = 𝐴 → (𝑥 ∈ (Unit‘ℤring) ∨ 𝑦 ∈ (Unit‘ℤring)))))
14571, 84, 143, 144syl3anbrc 1344 . . 3 (𝐴 ∈ ℙ → 𝐴𝐼)
146145adantl 481 . 2 ((𝐴 ∈ ℕ ∧ 𝐴 ∈ ℙ) → 𝐴𝐼)
14770, 146impbida 800 1 (𝐴 ∈ ℕ → (𝐴𝐼𝐴 ∈ ℙ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928  wral 3047   class class class wbr 5089  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  0cc0 11006  1c1 11007   · cmul 11011   < clt 11146  cle 11147   / cdiv 11774  cn 12125  2c2 12180  0cn0 12381  cz 12468  cuz 12732  abscabs 15141  cdvds 16163  cprime 16582  Ringcrg 20151  Unitcui 20273  Irredcir 20274  ringczring 21383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-tpos 8156  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-rp 12891  df-fz 13408  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-prm 16583  df-gz 16842  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-0g 17345  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-grp 18849  df-minusg 18850  df-subg 19036  df-cmn 19694  df-abl 19695  df-mgp 20059  df-rng 20071  df-ur 20100  df-ring 20153  df-cring 20154  df-oppr 20255  df-dvdsr 20275  df-unit 20276  df-irred 20277  df-invr 20306  df-dvr 20319  df-subrng 20461  df-subrg 20485  df-drng 20646  df-cnfld 21292  df-zring 21384
This theorem is referenced by:  dfprm2  21410  prmirred  21411
  Copyright terms: Public domain W3C validator