MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmirredlem Structured version   Visualization version   GIF version

Theorem prmirredlem 20431
Description: A positive integer is irreducible over iff it is a prime number. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.)
Hypothesis
Ref Expression
prmirred.i 𝐼 = (Irred‘ℤring)
Assertion
Ref Expression
prmirredlem (𝐴 ∈ ℕ → (𝐴𝐼𝐴 ∈ ℙ))

Proof of Theorem prmirredlem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zringring 20410 . . . . . 6 ring ∈ Ring
2 prmirred.i . . . . . . 7 𝐼 = (Irred‘ℤring)
3 zring1 20418 . . . . . . 7 1 = (1r‘ℤring)
42, 3irredn1 19696 . . . . . 6 ((ℤring ∈ Ring ∧ 𝐴𝐼) → 𝐴 ≠ 1)
51, 4mpan 690 . . . . 5 (𝐴𝐼𝐴 ≠ 1)
65anim2i 620 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐴𝐼) → (𝐴 ∈ ℕ ∧ 𝐴 ≠ 1))
7 eluz2b3 12501 . . . 4 (𝐴 ∈ (ℤ‘2) ↔ (𝐴 ∈ ℕ ∧ 𝐴 ≠ 1))
86, 7sylibr 237 . . 3 ((𝐴 ∈ ℕ ∧ 𝐴𝐼) → 𝐴 ∈ (ℤ‘2))
9 nnz 12182 . . . . . . . 8 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
109ad2antrl 728 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦 ∈ ℤ)
11 simprr 773 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦𝐴)
12 nnne0 11847 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
1312ad2antrl 728 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦 ≠ 0)
14 nnz 12182 . . . . . . . . . 10 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
1514ad2antrr 726 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝐴 ∈ ℤ)
16 dvdsval2 15799 . . . . . . . . 9 ((𝑦 ∈ ℤ ∧ 𝑦 ≠ 0 ∧ 𝐴 ∈ ℤ) → (𝑦𝐴 ↔ (𝐴 / 𝑦) ∈ ℤ))
1710, 13, 15, 16syl3anc 1373 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦𝐴 ↔ (𝐴 / 𝑦) ∈ ℤ))
1811, 17mpbid 235 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝐴 / 𝑦) ∈ ℤ)
1915zcnd 12266 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝐴 ∈ ℂ)
20 nncn 11821 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
2120ad2antrl 728 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦 ∈ ℂ)
2219, 21, 13divcan2d 11593 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 · (𝐴 / 𝑦)) = 𝐴)
23 simplr 769 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝐴𝐼)
2422, 23eqeltrd 2834 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 · (𝐴 / 𝑦)) ∈ 𝐼)
25 zringbas 20413 . . . . . . . 8 ℤ = (Base‘ℤring)
26 eqid 2734 . . . . . . . 8 (Unit‘ℤring) = (Unit‘ℤring)
27 zringmulr 20416 . . . . . . . 8 · = (.r‘ℤring)
282, 25, 26, 27irredmul 19699 . . . . . . 7 ((𝑦 ∈ ℤ ∧ (𝐴 / 𝑦) ∈ ℤ ∧ (𝑦 · (𝐴 / 𝑦)) ∈ 𝐼) → (𝑦 ∈ (Unit‘ℤring) ∨ (𝐴 / 𝑦) ∈ (Unit‘ℤring)))
2910, 18, 24, 28syl3anc 1373 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 ∈ (Unit‘ℤring) ∨ (𝐴 / 𝑦) ∈ (Unit‘ℤring)))
30 zringunit 20425 . . . . . . . . . 10 (𝑦 ∈ (Unit‘ℤring) ↔ (𝑦 ∈ ℤ ∧ (abs‘𝑦) = 1))
3130baib 539 . . . . . . . . 9 (𝑦 ∈ ℤ → (𝑦 ∈ (Unit‘ℤring) ↔ (abs‘𝑦) = 1))
3210, 31syl 17 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 ∈ (Unit‘ℤring) ↔ (abs‘𝑦) = 1))
33 nnnn0 12080 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0)
34 nn0re 12082 . . . . . . . . . . . 12 (𝑦 ∈ ℕ0𝑦 ∈ ℝ)
35 nn0ge0 12098 . . . . . . . . . . . 12 (𝑦 ∈ ℕ0 → 0 ≤ 𝑦)
3634, 35absidd 14969 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → (abs‘𝑦) = 𝑦)
3733, 36syl 17 . . . . . . . . . 10 (𝑦 ∈ ℕ → (abs‘𝑦) = 𝑦)
3837ad2antrl 728 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (abs‘𝑦) = 𝑦)
3938eqeq1d 2736 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → ((abs‘𝑦) = 1 ↔ 𝑦 = 1))
4032, 39bitrd 282 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 ∈ (Unit‘ℤring) ↔ 𝑦 = 1))
41 zringunit 20425 . . . . . . . . . 10 ((𝐴 / 𝑦) ∈ (Unit‘ℤring) ↔ ((𝐴 / 𝑦) ∈ ℤ ∧ (abs‘(𝐴 / 𝑦)) = 1))
4241baib 539 . . . . . . . . 9 ((𝐴 / 𝑦) ∈ ℤ → ((𝐴 / 𝑦) ∈ (Unit‘ℤring) ↔ (abs‘(𝐴 / 𝑦)) = 1))
4318, 42syl 17 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → ((𝐴 / 𝑦) ∈ (Unit‘ℤring) ↔ (abs‘(𝐴 / 𝑦)) = 1))
44 nnre 11820 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
4544ad2antrr 726 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝐴 ∈ ℝ)
46 simprl 771 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦 ∈ ℕ)
4745, 46nndivred 11867 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝐴 / 𝑦) ∈ ℝ)
48 nnnn0 12080 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
49 nn0ge0 12098 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
5048, 49syl 17 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ → 0 ≤ 𝐴)
5150ad2antrr 726 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 0 ≤ 𝐴)
5246nnred 11828 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦 ∈ ℝ)
53 nngt0 11844 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → 0 < 𝑦)
5453ad2antrl 728 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 0 < 𝑦)
55 divge0 11684 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑦 ∈ ℝ ∧ 0 < 𝑦)) → 0 ≤ (𝐴 / 𝑦))
5645, 51, 52, 54, 55syl22anc 839 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 0 ≤ (𝐴 / 𝑦))
5747, 56absidd 14969 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (abs‘(𝐴 / 𝑦)) = (𝐴 / 𝑦))
5857eqeq1d 2736 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → ((abs‘(𝐴 / 𝑦)) = 1 ↔ (𝐴 / 𝑦) = 1))
59 1cnd 10811 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 1 ∈ ℂ)
6019, 21, 59, 13divmuld 11613 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → ((𝐴 / 𝑦) = 1 ↔ (𝑦 · 1) = 𝐴))
6121mulid1d 10833 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 · 1) = 𝑦)
6261eqeq1d 2736 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → ((𝑦 · 1) = 𝐴𝑦 = 𝐴))
6358, 60, 623bitrd 308 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → ((abs‘(𝐴 / 𝑦)) = 1 ↔ 𝑦 = 𝐴))
6443, 63bitrd 282 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → ((𝐴 / 𝑦) ∈ (Unit‘ℤring) ↔ 𝑦 = 𝐴))
6540, 64orbi12d 919 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → ((𝑦 ∈ (Unit‘ℤring) ∨ (𝐴 / 𝑦) ∈ (Unit‘ℤring)) ↔ (𝑦 = 1 ∨ 𝑦 = 𝐴)))
6629, 65mpbid 235 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 = 1 ∨ 𝑦 = 𝐴))
6766expr 460 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ 𝑦 ∈ ℕ) → (𝑦𝐴 → (𝑦 = 1 ∨ 𝑦 = 𝐴)))
6867ralrimiva 3098 . . 3 ((𝐴 ∈ ℕ ∧ 𝐴𝐼) → ∀𝑦 ∈ ℕ (𝑦𝐴 → (𝑦 = 1 ∨ 𝑦 = 𝐴)))
69 isprm2 16220 . . 3 (𝐴 ∈ ℙ ↔ (𝐴 ∈ (ℤ‘2) ∧ ∀𝑦 ∈ ℕ (𝑦𝐴 → (𝑦 = 1 ∨ 𝑦 = 𝐴))))
708, 68, 69sylanbrc 586 . 2 ((𝐴 ∈ ℕ ∧ 𝐴𝐼) → 𝐴 ∈ ℙ)
71 prmz 16213 . . . 4 (𝐴 ∈ ℙ → 𝐴 ∈ ℤ)
72 1nprm 16217 . . . . 5 ¬ 1 ∈ ℙ
73 zringunit 20425 . . . . . 6 (𝐴 ∈ (Unit‘ℤring) ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1))
74 prmnn 16212 . . . . . . . . . 10 (𝐴 ∈ ℙ → 𝐴 ∈ ℕ)
75 nn0re 12082 . . . . . . . . . . 11 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
7675, 49absidd 14969 . . . . . . . . . 10 (𝐴 ∈ ℕ0 → (abs‘𝐴) = 𝐴)
7774, 48, 763syl 18 . . . . . . . . 9 (𝐴 ∈ ℙ → (abs‘𝐴) = 𝐴)
78 id 22 . . . . . . . . 9 (𝐴 ∈ ℙ → 𝐴 ∈ ℙ)
7977, 78eqeltrd 2834 . . . . . . . 8 (𝐴 ∈ ℙ → (abs‘𝐴) ∈ ℙ)
80 eleq1 2821 . . . . . . . 8 ((abs‘𝐴) = 1 → ((abs‘𝐴) ∈ ℙ ↔ 1 ∈ ℙ))
8179, 80syl5ibcom 248 . . . . . . 7 (𝐴 ∈ ℙ → ((abs‘𝐴) = 1 → 1 ∈ ℙ))
8281adantld 494 . . . . . 6 (𝐴 ∈ ℙ → ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → 1 ∈ ℙ))
8373, 82syl5bi 245 . . . . 5 (𝐴 ∈ ℙ → (𝐴 ∈ (Unit‘ℤring) → 1 ∈ ℙ))
8472, 83mtoi 202 . . . 4 (𝐴 ∈ ℙ → ¬ 𝐴 ∈ (Unit‘ℤring))
85 dvdsmul1 15820 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑥 ∥ (𝑥 · 𝑦))
8685ad2antlr 727 . . . . . . . . . 10 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝑥 ∥ (𝑥 · 𝑦))
87 simpr 488 . . . . . . . . . 10 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (𝑥 · 𝑦) = 𝐴)
8886, 87breqtrd 5069 . . . . . . . . 9 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝑥𝐴)
89 simplrl 777 . . . . . . . . . 10 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝑥 ∈ ℤ)
9071ad2antrr 726 . . . . . . . . . 10 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝐴 ∈ ℤ)
91 absdvdsb 15817 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑥𝐴 ↔ (abs‘𝑥) ∥ 𝐴))
9289, 90, 91syl2anc 587 . . . . . . . . 9 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (𝑥𝐴 ↔ (abs‘𝑥) ∥ 𝐴))
9388, 92mpbid 235 . . . . . . . 8 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑥) ∥ 𝐴)
94 breq1 5046 . . . . . . . . . 10 (𝑦 = (abs‘𝑥) → (𝑦𝐴 ↔ (abs‘𝑥) ∥ 𝐴))
95 eqeq1 2738 . . . . . . . . . . 11 (𝑦 = (abs‘𝑥) → (𝑦 = 1 ↔ (abs‘𝑥) = 1))
96 eqeq1 2738 . . . . . . . . . . 11 (𝑦 = (abs‘𝑥) → (𝑦 = 𝐴 ↔ (abs‘𝑥) = 𝐴))
9795, 96orbi12d 919 . . . . . . . . . 10 (𝑦 = (abs‘𝑥) → ((𝑦 = 1 ∨ 𝑦 = 𝐴) ↔ ((abs‘𝑥) = 1 ∨ (abs‘𝑥) = 𝐴)))
9894, 97imbi12d 348 . . . . . . . . 9 (𝑦 = (abs‘𝑥) → ((𝑦𝐴 → (𝑦 = 1 ∨ 𝑦 = 𝐴)) ↔ ((abs‘𝑥) ∥ 𝐴 → ((abs‘𝑥) = 1 ∨ (abs‘𝑥) = 𝐴))))
9969simprbi 500 . . . . . . . . . 10 (𝐴 ∈ ℙ → ∀𝑦 ∈ ℕ (𝑦𝐴 → (𝑦 = 1 ∨ 𝑦 = 𝐴)))
10099ad2antrr 726 . . . . . . . . 9 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → ∀𝑦 ∈ ℕ (𝑦𝐴 → (𝑦 = 1 ∨ 𝑦 = 𝐴)))
10189zcnd 12266 . . . . . . . . . . . 12 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝑥 ∈ ℂ)
10274ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝐴 ∈ ℕ)
103102nnne0d 11863 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝐴 ≠ 0)
104 simplrr 778 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝑦 ∈ ℤ)
105104zcnd 12266 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝑦 ∈ ℂ)
106105mul02d 11013 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (0 · 𝑦) = 0)
107103, 87, 1063netr4d 3012 . . . . . . . . . . . . 13 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (𝑥 · 𝑦) ≠ (0 · 𝑦))
108 oveq1 7209 . . . . . . . . . . . . . 14 (𝑥 = 0 → (𝑥 · 𝑦) = (0 · 𝑦))
109108necon3i 2967 . . . . . . . . . . . . 13 ((𝑥 · 𝑦) ≠ (0 · 𝑦) → 𝑥 ≠ 0)
110107, 109syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝑥 ≠ 0)
111101, 110absne0d 14994 . . . . . . . . . . 11 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑥) ≠ 0)
112111neneqd 2940 . . . . . . . . . 10 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → ¬ (abs‘𝑥) = 0)
113 nn0abscl 14859 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → (abs‘𝑥) ∈ ℕ0)
11489, 113syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑥) ∈ ℕ0)
115 elnn0 12075 . . . . . . . . . . . 12 ((abs‘𝑥) ∈ ℕ0 ↔ ((abs‘𝑥) ∈ ℕ ∨ (abs‘𝑥) = 0))
116114, 115sylib 221 . . . . . . . . . . 11 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → ((abs‘𝑥) ∈ ℕ ∨ (abs‘𝑥) = 0))
117116ord 864 . . . . . . . . . 10 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (¬ (abs‘𝑥) ∈ ℕ → (abs‘𝑥) = 0))
118112, 117mt3d 150 . . . . . . . . 9 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑥) ∈ ℕ)
11998, 100, 118rspcdva 3532 . . . . . . . 8 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → ((abs‘𝑥) ∥ 𝐴 → ((abs‘𝑥) = 1 ∨ (abs‘𝑥) = 𝐴)))
12093, 119mpd 15 . . . . . . 7 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → ((abs‘𝑥) = 1 ∨ (abs‘𝑥) = 𝐴))
121 zringunit 20425 . . . . . . . . . 10 (𝑥 ∈ (Unit‘ℤring) ↔ (𝑥 ∈ ℤ ∧ (abs‘𝑥) = 1))
122121baib 539 . . . . . . . . 9 (𝑥 ∈ ℤ → (𝑥 ∈ (Unit‘ℤring) ↔ (abs‘𝑥) = 1))
12389, 122syl 17 . . . . . . . 8 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (𝑥 ∈ (Unit‘ℤring) ↔ (abs‘𝑥) = 1))
124104, 31syl 17 . . . . . . . . 9 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (𝑦 ∈ (Unit‘ℤring) ↔ (abs‘𝑦) = 1))
125105abscld 14983 . . . . . . . . . . 11 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑦) ∈ ℝ)
126125recnd 10844 . . . . . . . . . 10 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑦) ∈ ℂ)
127 1cnd 10811 . . . . . . . . . 10 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 1 ∈ ℂ)
128101abscld 14983 . . . . . . . . . . 11 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑥) ∈ ℝ)
129128recnd 10844 . . . . . . . . . 10 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑥) ∈ ℂ)
130126, 127, 129, 111mulcand 11448 . . . . . . . . 9 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (((abs‘𝑥) · (abs‘𝑦)) = ((abs‘𝑥) · 1) ↔ (abs‘𝑦) = 1))
13187fveq2d 6710 . . . . . . . . . . . 12 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘(𝑥 · 𝑦)) = (abs‘𝐴))
132101, 105absmuld 15001 . . . . . . . . . . . 12 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘(𝑥 · 𝑦)) = ((abs‘𝑥) · (abs‘𝑦)))
13377ad2antrr 726 . . . . . . . . . . . 12 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝐴) = 𝐴)
134131, 132, 1333eqtr3d 2782 . . . . . . . . . . 11 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → ((abs‘𝑥) · (abs‘𝑦)) = 𝐴)
135129mulid1d 10833 . . . . . . . . . . 11 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → ((abs‘𝑥) · 1) = (abs‘𝑥))
136134, 135eqeq12d 2750 . . . . . . . . . 10 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (((abs‘𝑥) · (abs‘𝑦)) = ((abs‘𝑥) · 1) ↔ 𝐴 = (abs‘𝑥)))
137 eqcom 2741 . . . . . . . . . 10 (𝐴 = (abs‘𝑥) ↔ (abs‘𝑥) = 𝐴)
138136, 137bitrdi 290 . . . . . . . . 9 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (((abs‘𝑥) · (abs‘𝑦)) = ((abs‘𝑥) · 1) ↔ (abs‘𝑥) = 𝐴))
139124, 130, 1383bitr2d 310 . . . . . . . 8 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (𝑦 ∈ (Unit‘ℤring) ↔ (abs‘𝑥) = 𝐴))
140123, 139orbi12d 919 . . . . . . 7 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → ((𝑥 ∈ (Unit‘ℤring) ∨ 𝑦 ∈ (Unit‘ℤring)) ↔ ((abs‘𝑥) = 1 ∨ (abs‘𝑥) = 𝐴)))
141120, 140mpbird 260 . . . . . 6 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (𝑥 ∈ (Unit‘ℤring) ∨ 𝑦 ∈ (Unit‘ℤring)))
142141ex 416 . . . . 5 ((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑦) = 𝐴 → (𝑥 ∈ (Unit‘ℤring) ∨ 𝑦 ∈ (Unit‘ℤring))))
143142ralrimivva 3105 . . . 4 (𝐴 ∈ ℙ → ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ ((𝑥 · 𝑦) = 𝐴 → (𝑥 ∈ (Unit‘ℤring) ∨ 𝑦 ∈ (Unit‘ℤring))))
14425, 26, 2, 27isirred2 19691 . . . 4 (𝐴𝐼 ↔ (𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ (Unit‘ℤring) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ ((𝑥 · 𝑦) = 𝐴 → (𝑥 ∈ (Unit‘ℤring) ∨ 𝑦 ∈ (Unit‘ℤring)))))
14571, 84, 143, 144syl3anbrc 1345 . . 3 (𝐴 ∈ ℙ → 𝐴𝐼)
146145adantl 485 . 2 ((𝐴 ∈ ℕ ∧ 𝐴 ∈ ℙ) → 𝐴𝐼)
14770, 146impbida 801 1 (𝐴 ∈ ℕ → (𝐴𝐼𝐴 ∈ ℙ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 847   = wceq 1543  wcel 2110  wne 2935  wral 3054   class class class wbr 5043  cfv 6369  (class class class)co 7202  cc 10710  cr 10711  0cc0 10712  1c1 10713   · cmul 10717   < clt 10850  cle 10851   / cdiv 11472  cn 11813  2c2 11868  0cn0 12073  cz 12159  cuz 12421  abscabs 14780  cdvds 15796  cprime 16209  Ringcrg 19534  Unitcui 19629  Irredcir 19630  ringzring 20407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-pre-sup 10790  ax-addf 10791  ax-mulf 10792
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-tpos 7957  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-2o 8192  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-sup 9047  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-4 11878  df-5 11879  df-6 11880  df-7 11881  df-8 11882  df-9 11883  df-n0 12074  df-z 12160  df-dec 12277  df-uz 12422  df-rp 12570  df-fz 13079  df-seq 13558  df-exp 13619  df-cj 14645  df-re 14646  df-im 14647  df-sqrt 14781  df-abs 14782  df-dvds 15797  df-prm 16210  df-gz 16464  df-struct 16686  df-ndx 16687  df-slot 16688  df-base 16690  df-sets 16691  df-ress 16692  df-plusg 16780  df-mulr 16781  df-starv 16782  df-tset 16786  df-ple 16787  df-ds 16789  df-unif 16790  df-0g 16918  df-mgm 18086  df-sgrp 18135  df-mnd 18146  df-grp 18340  df-minusg 18341  df-subg 18512  df-cmn 19144  df-mgp 19477  df-ur 19489  df-ring 19536  df-cring 19537  df-oppr 19613  df-dvdsr 19631  df-unit 19632  df-irred 19633  df-invr 19662  df-dvr 19673  df-drng 19741  df-subrg 19770  df-cnfld 20336  df-zring 20408
This theorem is referenced by:  dfprm2  20432  prmirred  20433
  Copyright terms: Public domain W3C validator