MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prmirredlem Structured version   Visualization version   GIF version

Theorem prmirredlem 20606
Description: A positive integer is irreducible over iff it is a prime number. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by AV, 10-Jun-2019.)
Hypothesis
Ref Expression
prmirred.i 𝐼 = (Irred‘ℤring)
Assertion
Ref Expression
prmirredlem (𝐴 ∈ ℕ → (𝐴𝐼𝐴 ∈ ℙ))

Proof of Theorem prmirredlem
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 zringring 20585 . . . . . 6 ring ∈ Ring
2 prmirred.i . . . . . . 7 𝐼 = (Irred‘ℤring)
3 zring1 20593 . . . . . . 7 1 = (1r‘ℤring)
42, 3irredn1 19863 . . . . . 6 ((ℤring ∈ Ring ∧ 𝐴𝐼) → 𝐴 ≠ 1)
51, 4mpan 686 . . . . 5 (𝐴𝐼𝐴 ≠ 1)
65anim2i 616 . . . 4 ((𝐴 ∈ ℕ ∧ 𝐴𝐼) → (𝐴 ∈ ℕ ∧ 𝐴 ≠ 1))
7 eluz2b3 12591 . . . 4 (𝐴 ∈ (ℤ‘2) ↔ (𝐴 ∈ ℕ ∧ 𝐴 ≠ 1))
86, 7sylibr 233 . . 3 ((𝐴 ∈ ℕ ∧ 𝐴𝐼) → 𝐴 ∈ (ℤ‘2))
9 nnz 12272 . . . . . . . 8 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
109ad2antrl 724 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦 ∈ ℤ)
11 simprr 769 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦𝐴)
12 nnne0 11937 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
1312ad2antrl 724 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦 ≠ 0)
14 nnz 12272 . . . . . . . . . 10 (𝐴 ∈ ℕ → 𝐴 ∈ ℤ)
1514ad2antrr 722 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝐴 ∈ ℤ)
16 dvdsval2 15894 . . . . . . . . 9 ((𝑦 ∈ ℤ ∧ 𝑦 ≠ 0 ∧ 𝐴 ∈ ℤ) → (𝑦𝐴 ↔ (𝐴 / 𝑦) ∈ ℤ))
1710, 13, 15, 16syl3anc 1369 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦𝐴 ↔ (𝐴 / 𝑦) ∈ ℤ))
1811, 17mpbid 231 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝐴 / 𝑦) ∈ ℤ)
1915zcnd 12356 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝐴 ∈ ℂ)
20 nncn 11911 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
2120ad2antrl 724 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦 ∈ ℂ)
2219, 21, 13divcan2d 11683 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 · (𝐴 / 𝑦)) = 𝐴)
23 simplr 765 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝐴𝐼)
2422, 23eqeltrd 2839 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 · (𝐴 / 𝑦)) ∈ 𝐼)
25 zringbas 20588 . . . . . . . 8 ℤ = (Base‘ℤring)
26 eqid 2738 . . . . . . . 8 (Unit‘ℤring) = (Unit‘ℤring)
27 zringmulr 20591 . . . . . . . 8 · = (.r‘ℤring)
282, 25, 26, 27irredmul 19866 . . . . . . 7 ((𝑦 ∈ ℤ ∧ (𝐴 / 𝑦) ∈ ℤ ∧ (𝑦 · (𝐴 / 𝑦)) ∈ 𝐼) → (𝑦 ∈ (Unit‘ℤring) ∨ (𝐴 / 𝑦) ∈ (Unit‘ℤring)))
2910, 18, 24, 28syl3anc 1369 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 ∈ (Unit‘ℤring) ∨ (𝐴 / 𝑦) ∈ (Unit‘ℤring)))
30 zringunit 20600 . . . . . . . . . 10 (𝑦 ∈ (Unit‘ℤring) ↔ (𝑦 ∈ ℤ ∧ (abs‘𝑦) = 1))
3130baib 535 . . . . . . . . 9 (𝑦 ∈ ℤ → (𝑦 ∈ (Unit‘ℤring) ↔ (abs‘𝑦) = 1))
3210, 31syl 17 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 ∈ (Unit‘ℤring) ↔ (abs‘𝑦) = 1))
33 nnnn0 12170 . . . . . . . . . . 11 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0)
34 nn0re 12172 . . . . . . . . . . . 12 (𝑦 ∈ ℕ0𝑦 ∈ ℝ)
35 nn0ge0 12188 . . . . . . . . . . . 12 (𝑦 ∈ ℕ0 → 0 ≤ 𝑦)
3634, 35absidd 15062 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → (abs‘𝑦) = 𝑦)
3733, 36syl 17 . . . . . . . . . 10 (𝑦 ∈ ℕ → (abs‘𝑦) = 𝑦)
3837ad2antrl 724 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (abs‘𝑦) = 𝑦)
3938eqeq1d 2740 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → ((abs‘𝑦) = 1 ↔ 𝑦 = 1))
4032, 39bitrd 278 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 ∈ (Unit‘ℤring) ↔ 𝑦 = 1))
41 zringunit 20600 . . . . . . . . . 10 ((𝐴 / 𝑦) ∈ (Unit‘ℤring) ↔ ((𝐴 / 𝑦) ∈ ℤ ∧ (abs‘(𝐴 / 𝑦)) = 1))
4241baib 535 . . . . . . . . 9 ((𝐴 / 𝑦) ∈ ℤ → ((𝐴 / 𝑦) ∈ (Unit‘ℤring) ↔ (abs‘(𝐴 / 𝑦)) = 1))
4318, 42syl 17 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → ((𝐴 / 𝑦) ∈ (Unit‘ℤring) ↔ (abs‘(𝐴 / 𝑦)) = 1))
44 nnre 11910 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
4544ad2antrr 722 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝐴 ∈ ℝ)
46 simprl 767 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦 ∈ ℕ)
4745, 46nndivred 11957 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝐴 / 𝑦) ∈ ℝ)
48 nnnn0 12170 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ → 𝐴 ∈ ℕ0)
49 nn0ge0 12188 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
5048, 49syl 17 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ → 0 ≤ 𝐴)
5150ad2antrr 722 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 0 ≤ 𝐴)
5246nnred 11918 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 𝑦 ∈ ℝ)
53 nngt0 11934 . . . . . . . . . . . . 13 (𝑦 ∈ ℕ → 0 < 𝑦)
5453ad2antrl 724 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 0 < 𝑦)
55 divge0 11774 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑦 ∈ ℝ ∧ 0 < 𝑦)) → 0 ≤ (𝐴 / 𝑦))
5645, 51, 52, 54, 55syl22anc 835 . . . . . . . . . . 11 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 0 ≤ (𝐴 / 𝑦))
5747, 56absidd 15062 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (abs‘(𝐴 / 𝑦)) = (𝐴 / 𝑦))
5857eqeq1d 2740 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → ((abs‘(𝐴 / 𝑦)) = 1 ↔ (𝐴 / 𝑦) = 1))
59 1cnd 10901 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → 1 ∈ ℂ)
6019, 21, 59, 13divmuld 11703 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → ((𝐴 / 𝑦) = 1 ↔ (𝑦 · 1) = 𝐴))
6121mulid1d 10923 . . . . . . . . . 10 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 · 1) = 𝑦)
6261eqeq1d 2740 . . . . . . . . 9 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → ((𝑦 · 1) = 𝐴𝑦 = 𝐴))
6358, 60, 623bitrd 304 . . . . . . . 8 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → ((abs‘(𝐴 / 𝑦)) = 1 ↔ 𝑦 = 𝐴))
6443, 63bitrd 278 . . . . . . 7 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → ((𝐴 / 𝑦) ∈ (Unit‘ℤring) ↔ 𝑦 = 𝐴))
6540, 64orbi12d 915 . . . . . 6 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → ((𝑦 ∈ (Unit‘ℤring) ∨ (𝐴 / 𝑦) ∈ (Unit‘ℤring)) ↔ (𝑦 = 1 ∨ 𝑦 = 𝐴)))
6629, 65mpbid 231 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ (𝑦 ∈ ℕ ∧ 𝑦𝐴)) → (𝑦 = 1 ∨ 𝑦 = 𝐴))
6766expr 456 . . . 4 (((𝐴 ∈ ℕ ∧ 𝐴𝐼) ∧ 𝑦 ∈ ℕ) → (𝑦𝐴 → (𝑦 = 1 ∨ 𝑦 = 𝐴)))
6867ralrimiva 3107 . . 3 ((𝐴 ∈ ℕ ∧ 𝐴𝐼) → ∀𝑦 ∈ ℕ (𝑦𝐴 → (𝑦 = 1 ∨ 𝑦 = 𝐴)))
69 isprm2 16315 . . 3 (𝐴 ∈ ℙ ↔ (𝐴 ∈ (ℤ‘2) ∧ ∀𝑦 ∈ ℕ (𝑦𝐴 → (𝑦 = 1 ∨ 𝑦 = 𝐴))))
708, 68, 69sylanbrc 582 . 2 ((𝐴 ∈ ℕ ∧ 𝐴𝐼) → 𝐴 ∈ ℙ)
71 prmz 16308 . . . 4 (𝐴 ∈ ℙ → 𝐴 ∈ ℤ)
72 1nprm 16312 . . . . 5 ¬ 1 ∈ ℙ
73 zringunit 20600 . . . . . 6 (𝐴 ∈ (Unit‘ℤring) ↔ (𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1))
74 prmnn 16307 . . . . . . . . . 10 (𝐴 ∈ ℙ → 𝐴 ∈ ℕ)
75 nn0re 12172 . . . . . . . . . . 11 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
7675, 49absidd 15062 . . . . . . . . . 10 (𝐴 ∈ ℕ0 → (abs‘𝐴) = 𝐴)
7774, 48, 763syl 18 . . . . . . . . 9 (𝐴 ∈ ℙ → (abs‘𝐴) = 𝐴)
78 id 22 . . . . . . . . 9 (𝐴 ∈ ℙ → 𝐴 ∈ ℙ)
7977, 78eqeltrd 2839 . . . . . . . 8 (𝐴 ∈ ℙ → (abs‘𝐴) ∈ ℙ)
80 eleq1 2826 . . . . . . . 8 ((abs‘𝐴) = 1 → ((abs‘𝐴) ∈ ℙ ↔ 1 ∈ ℙ))
8179, 80syl5ibcom 244 . . . . . . 7 (𝐴 ∈ ℙ → ((abs‘𝐴) = 1 → 1 ∈ ℙ))
8281adantld 490 . . . . . 6 (𝐴 ∈ ℙ → ((𝐴 ∈ ℤ ∧ (abs‘𝐴) = 1) → 1 ∈ ℙ))
8373, 82syl5bi 241 . . . . 5 (𝐴 ∈ ℙ → (𝐴 ∈ (Unit‘ℤring) → 1 ∈ ℙ))
8472, 83mtoi 198 . . . 4 (𝐴 ∈ ℙ → ¬ 𝐴 ∈ (Unit‘ℤring))
85 dvdsmul1 15915 . . . . . . . . . . 11 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑥 ∥ (𝑥 · 𝑦))
8685ad2antlr 723 . . . . . . . . . 10 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝑥 ∥ (𝑥 · 𝑦))
87 simpr 484 . . . . . . . . . 10 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (𝑥 · 𝑦) = 𝐴)
8886, 87breqtrd 5096 . . . . . . . . 9 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝑥𝐴)
89 simplrl 773 . . . . . . . . . 10 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝑥 ∈ ℤ)
9071ad2antrr 722 . . . . . . . . . 10 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝐴 ∈ ℤ)
91 absdvdsb 15912 . . . . . . . . . 10 ((𝑥 ∈ ℤ ∧ 𝐴 ∈ ℤ) → (𝑥𝐴 ↔ (abs‘𝑥) ∥ 𝐴))
9289, 90, 91syl2anc 583 . . . . . . . . 9 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (𝑥𝐴 ↔ (abs‘𝑥) ∥ 𝐴))
9388, 92mpbid 231 . . . . . . . 8 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑥) ∥ 𝐴)
94 breq1 5073 . . . . . . . . . 10 (𝑦 = (abs‘𝑥) → (𝑦𝐴 ↔ (abs‘𝑥) ∥ 𝐴))
95 eqeq1 2742 . . . . . . . . . . 11 (𝑦 = (abs‘𝑥) → (𝑦 = 1 ↔ (abs‘𝑥) = 1))
96 eqeq1 2742 . . . . . . . . . . 11 (𝑦 = (abs‘𝑥) → (𝑦 = 𝐴 ↔ (abs‘𝑥) = 𝐴))
9795, 96orbi12d 915 . . . . . . . . . 10 (𝑦 = (abs‘𝑥) → ((𝑦 = 1 ∨ 𝑦 = 𝐴) ↔ ((abs‘𝑥) = 1 ∨ (abs‘𝑥) = 𝐴)))
9894, 97imbi12d 344 . . . . . . . . 9 (𝑦 = (abs‘𝑥) → ((𝑦𝐴 → (𝑦 = 1 ∨ 𝑦 = 𝐴)) ↔ ((abs‘𝑥) ∥ 𝐴 → ((abs‘𝑥) = 1 ∨ (abs‘𝑥) = 𝐴))))
9969simprbi 496 . . . . . . . . . 10 (𝐴 ∈ ℙ → ∀𝑦 ∈ ℕ (𝑦𝐴 → (𝑦 = 1 ∨ 𝑦 = 𝐴)))
10099ad2antrr 722 . . . . . . . . 9 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → ∀𝑦 ∈ ℕ (𝑦𝐴 → (𝑦 = 1 ∨ 𝑦 = 𝐴)))
10189zcnd 12356 . . . . . . . . . . . 12 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝑥 ∈ ℂ)
10274ad2antrr 722 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝐴 ∈ ℕ)
103102nnne0d 11953 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝐴 ≠ 0)
104 simplrr 774 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝑦 ∈ ℤ)
105104zcnd 12356 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝑦 ∈ ℂ)
106105mul02d 11103 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (0 · 𝑦) = 0)
107103, 87, 1063netr4d 3020 . . . . . . . . . . . . 13 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (𝑥 · 𝑦) ≠ (0 · 𝑦))
108 oveq1 7262 . . . . . . . . . . . . . 14 (𝑥 = 0 → (𝑥 · 𝑦) = (0 · 𝑦))
109108necon3i 2975 . . . . . . . . . . . . 13 ((𝑥 · 𝑦) ≠ (0 · 𝑦) → 𝑥 ≠ 0)
110107, 109syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 𝑥 ≠ 0)
111101, 110absne0d 15087 . . . . . . . . . . 11 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑥) ≠ 0)
112111neneqd 2947 . . . . . . . . . 10 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → ¬ (abs‘𝑥) = 0)
113 nn0abscl 14952 . . . . . . . . . . . . 13 (𝑥 ∈ ℤ → (abs‘𝑥) ∈ ℕ0)
11489, 113syl 17 . . . . . . . . . . . 12 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑥) ∈ ℕ0)
115 elnn0 12165 . . . . . . . . . . . 12 ((abs‘𝑥) ∈ ℕ0 ↔ ((abs‘𝑥) ∈ ℕ ∨ (abs‘𝑥) = 0))
116114, 115sylib 217 . . . . . . . . . . 11 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → ((abs‘𝑥) ∈ ℕ ∨ (abs‘𝑥) = 0))
117116ord 860 . . . . . . . . . 10 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (¬ (abs‘𝑥) ∈ ℕ → (abs‘𝑥) = 0))
118112, 117mt3d 148 . . . . . . . . 9 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑥) ∈ ℕ)
11998, 100, 118rspcdva 3554 . . . . . . . 8 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → ((abs‘𝑥) ∥ 𝐴 → ((abs‘𝑥) = 1 ∨ (abs‘𝑥) = 𝐴)))
12093, 119mpd 15 . . . . . . 7 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → ((abs‘𝑥) = 1 ∨ (abs‘𝑥) = 𝐴))
121 zringunit 20600 . . . . . . . . . 10 (𝑥 ∈ (Unit‘ℤring) ↔ (𝑥 ∈ ℤ ∧ (abs‘𝑥) = 1))
122121baib 535 . . . . . . . . 9 (𝑥 ∈ ℤ → (𝑥 ∈ (Unit‘ℤring) ↔ (abs‘𝑥) = 1))
12389, 122syl 17 . . . . . . . 8 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (𝑥 ∈ (Unit‘ℤring) ↔ (abs‘𝑥) = 1))
124104, 31syl 17 . . . . . . . . 9 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (𝑦 ∈ (Unit‘ℤring) ↔ (abs‘𝑦) = 1))
125105abscld 15076 . . . . . . . . . . 11 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑦) ∈ ℝ)
126125recnd 10934 . . . . . . . . . 10 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑦) ∈ ℂ)
127 1cnd 10901 . . . . . . . . . 10 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → 1 ∈ ℂ)
128101abscld 15076 . . . . . . . . . . 11 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑥) ∈ ℝ)
129128recnd 10934 . . . . . . . . . 10 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝑥) ∈ ℂ)
130126, 127, 129, 111mulcand 11538 . . . . . . . . 9 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (((abs‘𝑥) · (abs‘𝑦)) = ((abs‘𝑥) · 1) ↔ (abs‘𝑦) = 1))
13187fveq2d 6760 . . . . . . . . . . . 12 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘(𝑥 · 𝑦)) = (abs‘𝐴))
132101, 105absmuld 15094 . . . . . . . . . . . 12 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘(𝑥 · 𝑦)) = ((abs‘𝑥) · (abs‘𝑦)))
13377ad2antrr 722 . . . . . . . . . . . 12 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (abs‘𝐴) = 𝐴)
134131, 132, 1333eqtr3d 2786 . . . . . . . . . . 11 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → ((abs‘𝑥) · (abs‘𝑦)) = 𝐴)
135129mulid1d 10923 . . . . . . . . . . 11 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → ((abs‘𝑥) · 1) = (abs‘𝑥))
136134, 135eqeq12d 2754 . . . . . . . . . 10 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (((abs‘𝑥) · (abs‘𝑦)) = ((abs‘𝑥) · 1) ↔ 𝐴 = (abs‘𝑥)))
137 eqcom 2745 . . . . . . . . . 10 (𝐴 = (abs‘𝑥) ↔ (abs‘𝑥) = 𝐴)
138136, 137bitrdi 286 . . . . . . . . 9 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (((abs‘𝑥) · (abs‘𝑦)) = ((abs‘𝑥) · 1) ↔ (abs‘𝑥) = 𝐴))
139124, 130, 1383bitr2d 306 . . . . . . . 8 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (𝑦 ∈ (Unit‘ℤring) ↔ (abs‘𝑥) = 𝐴))
140123, 139orbi12d 915 . . . . . . 7 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → ((𝑥 ∈ (Unit‘ℤring) ∨ 𝑦 ∈ (Unit‘ℤring)) ↔ ((abs‘𝑥) = 1 ∨ (abs‘𝑥) = 𝐴)))
141120, 140mpbird 256 . . . . . 6 (((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ (𝑥 · 𝑦) = 𝐴) → (𝑥 ∈ (Unit‘ℤring) ∨ 𝑦 ∈ (Unit‘ℤring)))
142141ex 412 . . . . 5 ((𝐴 ∈ ℙ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑦) = 𝐴 → (𝑥 ∈ (Unit‘ℤring) ∨ 𝑦 ∈ (Unit‘ℤring))))
143142ralrimivva 3114 . . . 4 (𝐴 ∈ ℙ → ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ ((𝑥 · 𝑦) = 𝐴 → (𝑥 ∈ (Unit‘ℤring) ∨ 𝑦 ∈ (Unit‘ℤring))))
14425, 26, 2, 27isirred2 19858 . . . 4 (𝐴𝐼 ↔ (𝐴 ∈ ℤ ∧ ¬ 𝐴 ∈ (Unit‘ℤring) ∧ ∀𝑥 ∈ ℤ ∀𝑦 ∈ ℤ ((𝑥 · 𝑦) = 𝐴 → (𝑥 ∈ (Unit‘ℤring) ∨ 𝑦 ∈ (Unit‘ℤring)))))
14571, 84, 143, 144syl3anbrc 1341 . . 3 (𝐴 ∈ ℙ → 𝐴𝐼)
146145adantl 481 . 2 ((𝐴 ∈ ℕ ∧ 𝐴 ∈ ℙ) → 𝐴𝐼)
14770, 146impbida 797 1 (𝐴 ∈ ℕ → (𝐴𝐼𝐴 ∈ ℙ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  wral 3063   class class class wbr 5070  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802  1c1 10803   · cmul 10807   < clt 10940  cle 10941   / cdiv 11562  cn 11903  2c2 11958  0cn0 12163  cz 12249  cuz 12511  abscabs 14873  cdvds 15891  cprime 16304  Ringcrg 19698  Unitcui 19796  Irredcir 19797  ringzring 20582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-rp 12660  df-fz 13169  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-dvds 15892  df-prm 16305  df-gz 16559  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-subg 18667  df-cmn 19303  df-mgp 19636  df-ur 19653  df-ring 19700  df-cring 19701  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-irred 19800  df-invr 19829  df-dvr 19840  df-drng 19908  df-subrg 19937  df-cnfld 20511  df-zring 20583
This theorem is referenced by:  dfprm2  20607  prmirred  20608
  Copyright terms: Public domain W3C validator