MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crctcsh Structured version   Visualization version   GIF version

Theorem crctcsh 29787
Description: Cyclically shifting the indices of a circuit 𝐹, 𝑃 results in a circuit 𝐻, 𝑄. (Contributed by AV, 10-Mar-2021.) (Proof shortened by AV, 31-Oct-2021.)
Hypotheses
Ref Expression
crctcsh.v 𝑉 = (Vtx‘𝐺)
crctcsh.i 𝐼 = (iEdg‘𝐺)
crctcsh.d (𝜑𝐹(Circuits‘𝐺)𝑃)
crctcsh.n 𝑁 = (♯‘𝐹)
crctcsh.s (𝜑𝑆 ∈ (0..^𝑁))
crctcsh.h 𝐻 = (𝐹 cyclShift 𝑆)
crctcsh.q 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
Assertion
Ref Expression
crctcsh (𝜑𝐻(Circuits‘𝐺)𝑄)
Distinct variable groups:   𝑥,𝑁   𝑥,𝑃   𝑥,𝑆   𝜑,𝑥   𝑥,𝐹   𝑥,𝐼   𝑥,𝑉   𝑥,𝐻
Allowed substitution hints:   𝑄(𝑥)   𝐺(𝑥)

Proof of Theorem crctcsh
StepHypRef Expression
1 crctcsh.v . . . 4 𝑉 = (Vtx‘𝐺)
2 crctcsh.i . . . 4 𝐼 = (iEdg‘𝐺)
3 crctcsh.d . . . 4 (𝜑𝐹(Circuits‘𝐺)𝑃)
4 crctcsh.n . . . 4 𝑁 = (♯‘𝐹)
5 crctcsh.s . . . 4 (𝜑𝑆 ∈ (0..^𝑁))
6 crctcsh.h . . . 4 𝐻 = (𝐹 cyclShift 𝑆)
7 crctcsh.q . . . 4 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
81, 2, 3, 4, 5, 6, 7crctcshlem4 29783 . . 3 ((𝜑𝑆 = 0) → (𝐻 = 𝐹𝑄 = 𝑃))
9 breq12 5100 . . . . 5 ((𝐻 = 𝐹𝑄 = 𝑃) → (𝐻(Circuits‘𝐺)𝑄𝐹(Circuits‘𝐺)𝑃))
103, 9syl5ibrcom 247 . . . 4 (𝜑 → ((𝐻 = 𝐹𝑄 = 𝑃) → 𝐻(Circuits‘𝐺)𝑄))
1110adantr 480 . . 3 ((𝜑𝑆 = 0) → ((𝐻 = 𝐹𝑄 = 𝑃) → 𝐻(Circuits‘𝐺)𝑄))
128, 11mpd 15 . 2 ((𝜑𝑆 = 0) → 𝐻(Circuits‘𝐺)𝑄)
131, 2, 3, 4, 5, 6, 7crctcshtrl 29786 . . . 4 (𝜑𝐻(Trails‘𝐺)𝑄)
1413adantr 480 . . 3 ((𝜑𝑆 ≠ 0) → 𝐻(Trails‘𝐺)𝑄)
15 breq1 5098 . . . . . . 7 (𝑥 = 0 → (𝑥 ≤ (𝑁𝑆) ↔ 0 ≤ (𝑁𝑆)))
16 oveq1 7360 . . . . . . . 8 (𝑥 = 0 → (𝑥 + 𝑆) = (0 + 𝑆))
1716fveq2d 6830 . . . . . . 7 (𝑥 = 0 → (𝑃‘(𝑥 + 𝑆)) = (𝑃‘(0 + 𝑆)))
1816fvoveq1d 7375 . . . . . . 7 (𝑥 = 0 → (𝑃‘((𝑥 + 𝑆) − 𝑁)) = (𝑃‘((0 + 𝑆) − 𝑁)))
1915, 17, 18ifbieq12d 4507 . . . . . 6 (𝑥 = 0 → if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))) = if(0 ≤ (𝑁𝑆), (𝑃‘(0 + 𝑆)), (𝑃‘((0 + 𝑆) − 𝑁))))
20 elfzo0le 13624 . . . . . . . . . 10 (𝑆 ∈ (0..^𝑁) → 𝑆𝑁)
215, 20syl 17 . . . . . . . . 9 (𝜑𝑆𝑁)
221, 2, 3, 4crctcshlem1 29780 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
2322nn0red 12464 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ)
24 elfzoelz 13580 . . . . . . . . . . . 12 (𝑆 ∈ (0..^𝑁) → 𝑆 ∈ ℤ)
255, 24syl 17 . . . . . . . . . . 11 (𝜑𝑆 ∈ ℤ)
2625zred 12598 . . . . . . . . . 10 (𝜑𝑆 ∈ ℝ)
2723, 26subge0d 11728 . . . . . . . . 9 (𝜑 → (0 ≤ (𝑁𝑆) ↔ 𝑆𝑁))
2821, 27mpbird 257 . . . . . . . 8 (𝜑 → 0 ≤ (𝑁𝑆))
2928adantr 480 . . . . . . 7 ((𝜑𝑆 ≠ 0) → 0 ≤ (𝑁𝑆))
3029iftrued 4486 . . . . . 6 ((𝜑𝑆 ≠ 0) → if(0 ≤ (𝑁𝑆), (𝑃‘(0 + 𝑆)), (𝑃‘((0 + 𝑆) − 𝑁))) = (𝑃‘(0 + 𝑆)))
3119, 30sylan9eqr 2786 . . . . 5 (((𝜑𝑆 ≠ 0) ∧ 𝑥 = 0) → if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))) = (𝑃‘(0 + 𝑆)))
323adantr 480 . . . . . . 7 ((𝜑𝑆 ≠ 0) → 𝐹(Circuits‘𝐺)𝑃)
331, 2, 32, 4crctcshlem1 29780 . . . . . 6 ((𝜑𝑆 ≠ 0) → 𝑁 ∈ ℕ0)
34 0elfz 13545 . . . . . 6 (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))
3533, 34syl 17 . . . . 5 ((𝜑𝑆 ≠ 0) → 0 ∈ (0...𝑁))
36 fvexd 6841 . . . . 5 ((𝜑𝑆 ≠ 0) → (𝑃‘(0 + 𝑆)) ∈ V)
377, 31, 35, 36fvmptd2 6942 . . . 4 ((𝜑𝑆 ≠ 0) → (𝑄‘0) = (𝑃‘(0 + 𝑆)))
38 breq1 5098 . . . . . . . 8 (𝑥 = (♯‘𝐻) → (𝑥 ≤ (𝑁𝑆) ↔ (♯‘𝐻) ≤ (𝑁𝑆)))
39 oveq1 7360 . . . . . . . . 9 (𝑥 = (♯‘𝐻) → (𝑥 + 𝑆) = ((♯‘𝐻) + 𝑆))
4039fveq2d 6830 . . . . . . . 8 (𝑥 = (♯‘𝐻) → (𝑃‘(𝑥 + 𝑆)) = (𝑃‘((♯‘𝐻) + 𝑆)))
4139fvoveq1d 7375 . . . . . . . 8 (𝑥 = (♯‘𝐻) → (𝑃‘((𝑥 + 𝑆) − 𝑁)) = (𝑃‘(((♯‘𝐻) + 𝑆) − 𝑁)))
4238, 40, 41ifbieq12d 4507 . . . . . . 7 (𝑥 = (♯‘𝐻) → if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))) = if((♯‘𝐻) ≤ (𝑁𝑆), (𝑃‘((♯‘𝐻) + 𝑆)), (𝑃‘(((♯‘𝐻) + 𝑆) − 𝑁))))
43 elfzoel2 13579 . . . . . . . . . . . 12 (𝑆 ∈ (0..^𝑁) → 𝑁 ∈ ℤ)
44 elfzonn0 13628 . . . . . . . . . . . 12 (𝑆 ∈ (0..^𝑁) → 𝑆 ∈ ℕ0)
45 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0) → 𝑆 ∈ ℕ0)
4645anim1i 615 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0) ∧ 𝑆 ≠ 0) → (𝑆 ∈ ℕ0𝑆 ≠ 0))
47 elnnne0 12416 . . . . . . . . . . . . . . . 16 (𝑆 ∈ ℕ ↔ (𝑆 ∈ ℕ0𝑆 ≠ 0))
4846, 47sylibr 234 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0) ∧ 𝑆 ≠ 0) → 𝑆 ∈ ℕ)
4948nngt0d 12195 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0) ∧ 𝑆 ≠ 0) → 0 < 𝑆)
50 zre 12493 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
51 nn0re 12411 . . . . . . . . . . . . . . . . 17 (𝑆 ∈ ℕ0𝑆 ∈ ℝ)
5250, 51anim12ci 614 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0) → (𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ))
5352adantr 480 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0) ∧ 𝑆 ≠ 0) → (𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ))
54 ltsubpos 11630 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < 𝑆 ↔ (𝑁𝑆) < 𝑁))
5554bicomd 223 . . . . . . . . . . . . . . 15 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑁𝑆) < 𝑁 ↔ 0 < 𝑆))
5653, 55syl 17 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0) ∧ 𝑆 ≠ 0) → ((𝑁𝑆) < 𝑁 ↔ 0 < 𝑆))
5749, 56mpbird 257 . . . . . . . . . . . . 13 (((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0) ∧ 𝑆 ≠ 0) → (𝑁𝑆) < 𝑁)
5857ex 412 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0) → (𝑆 ≠ 0 → (𝑁𝑆) < 𝑁))
5943, 44, 58syl2anc 584 . . . . . . . . . . 11 (𝑆 ∈ (0..^𝑁) → (𝑆 ≠ 0 → (𝑁𝑆) < 𝑁))
605, 59syl 17 . . . . . . . . . 10 (𝜑 → (𝑆 ≠ 0 → (𝑁𝑆) < 𝑁))
6160imp 406 . . . . . . . . 9 ((𝜑𝑆 ≠ 0) → (𝑁𝑆) < 𝑁)
625adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑆 ≠ 0) → 𝑆 ∈ (0..^𝑁))
631, 2, 32, 4, 62, 6crctcshlem2 29781 . . . . . . . . . . . 12 ((𝜑𝑆 ≠ 0) → (♯‘𝐻) = 𝑁)
6463breq1d 5105 . . . . . . . . . . 11 ((𝜑𝑆 ≠ 0) → ((♯‘𝐻) ≤ (𝑁𝑆) ↔ 𝑁 ≤ (𝑁𝑆)))
6564notbid 318 . . . . . . . . . 10 ((𝜑𝑆 ≠ 0) → (¬ (♯‘𝐻) ≤ (𝑁𝑆) ↔ ¬ 𝑁 ≤ (𝑁𝑆)))
6623, 26resubcld 11566 . . . . . . . . . . . . 13 (𝜑 → (𝑁𝑆) ∈ ℝ)
6766, 23jca 511 . . . . . . . . . . . 12 (𝜑 → ((𝑁𝑆) ∈ ℝ ∧ 𝑁 ∈ ℝ))
6867adantr 480 . . . . . . . . . . 11 ((𝜑𝑆 ≠ 0) → ((𝑁𝑆) ∈ ℝ ∧ 𝑁 ∈ ℝ))
69 ltnle 11213 . . . . . . . . . . 11 (((𝑁𝑆) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑁𝑆) < 𝑁 ↔ ¬ 𝑁 ≤ (𝑁𝑆)))
7068, 69syl 17 . . . . . . . . . 10 ((𝜑𝑆 ≠ 0) → ((𝑁𝑆) < 𝑁 ↔ ¬ 𝑁 ≤ (𝑁𝑆)))
7165, 70bitr4d 282 . . . . . . . . 9 ((𝜑𝑆 ≠ 0) → (¬ (♯‘𝐻) ≤ (𝑁𝑆) ↔ (𝑁𝑆) < 𝑁))
7261, 71mpbird 257 . . . . . . . 8 ((𝜑𝑆 ≠ 0) → ¬ (♯‘𝐻) ≤ (𝑁𝑆))
7372iffalsed 4489 . . . . . . 7 ((𝜑𝑆 ≠ 0) → if((♯‘𝐻) ≤ (𝑁𝑆), (𝑃‘((♯‘𝐻) + 𝑆)), (𝑃‘(((♯‘𝐻) + 𝑆) − 𝑁))) = (𝑃‘(((♯‘𝐻) + 𝑆) − 𝑁)))
7442, 73sylan9eqr 2786 . . . . . 6 (((𝜑𝑆 ≠ 0) ∧ 𝑥 = (♯‘𝐻)) → if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))) = (𝑃‘(((♯‘𝐻) + 𝑆) − 𝑁)))
751, 2, 3, 4, 5, 6crctcshlem2 29781 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝐻) = 𝑁)
7675, 22eqeltrd 2828 . . . . . . . . . . . 12 (𝜑 → (♯‘𝐻) ∈ ℕ0)
7776nn0cnd 12465 . . . . . . . . . . 11 (𝜑 → (♯‘𝐻) ∈ ℂ)
7825zcnd 12599 . . . . . . . . . . 11 (𝜑𝑆 ∈ ℂ)
7922nn0cnd 12465 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
8077, 78, 79addsubd 11514 . . . . . . . . . 10 (𝜑 → (((♯‘𝐻) + 𝑆) − 𝑁) = (((♯‘𝐻) − 𝑁) + 𝑆))
8175oveq1d 7368 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝐻) − 𝑁) = (𝑁𝑁))
8279subidd 11481 . . . . . . . . . . . 12 (𝜑 → (𝑁𝑁) = 0)
8381, 82eqtrd 2764 . . . . . . . . . . 11 (𝜑 → ((♯‘𝐻) − 𝑁) = 0)
8483oveq1d 7368 . . . . . . . . . 10 (𝜑 → (((♯‘𝐻) − 𝑁) + 𝑆) = (0 + 𝑆))
8580, 84eqtrd 2764 . . . . . . . . 9 (𝜑 → (((♯‘𝐻) + 𝑆) − 𝑁) = (0 + 𝑆))
8685fveq2d 6830 . . . . . . . 8 (𝜑 → (𝑃‘(((♯‘𝐻) + 𝑆) − 𝑁)) = (𝑃‘(0 + 𝑆)))
8786adantr 480 . . . . . . 7 ((𝜑𝑆 ≠ 0) → (𝑃‘(((♯‘𝐻) + 𝑆) − 𝑁)) = (𝑃‘(0 + 𝑆)))
8887adantr 480 . . . . . 6 (((𝜑𝑆 ≠ 0) ∧ 𝑥 = (♯‘𝐻)) → (𝑃‘(((♯‘𝐻) + 𝑆) − 𝑁)) = (𝑃‘(0 + 𝑆)))
8974, 88eqtrd 2764 . . . . 5 (((𝜑𝑆 ≠ 0) ∧ 𝑥 = (♯‘𝐻)) → if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))) = (𝑃‘(0 + 𝑆)))
9075adantr 480 . . . . . 6 ((𝜑𝑆 ≠ 0) → (♯‘𝐻) = 𝑁)
91 nn0fz0 13546 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ (0...𝑁))
9222, 91sylib 218 . . . . . . 7 (𝜑𝑁 ∈ (0...𝑁))
9392adantr 480 . . . . . 6 ((𝜑𝑆 ≠ 0) → 𝑁 ∈ (0...𝑁))
9490, 93eqeltrd 2828 . . . . 5 ((𝜑𝑆 ≠ 0) → (♯‘𝐻) ∈ (0...𝑁))
957, 89, 94, 36fvmptd2 6942 . . . 4 ((𝜑𝑆 ≠ 0) → (𝑄‘(♯‘𝐻)) = (𝑃‘(0 + 𝑆)))
9637, 95eqtr4d 2767 . . 3 ((𝜑𝑆 ≠ 0) → (𝑄‘0) = (𝑄‘(♯‘𝐻)))
97 iscrct 29753 . . 3 (𝐻(Circuits‘𝐺)𝑄 ↔ (𝐻(Trails‘𝐺)𝑄 ∧ (𝑄‘0) = (𝑄‘(♯‘𝐻))))
9814, 96, 97sylanbrc 583 . 2 ((𝜑𝑆 ≠ 0) → 𝐻(Circuits‘𝐺)𝑄)
9912, 98pm2.61dane 3012 1 (𝜑𝐻(Circuits‘𝐺)𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3438  ifcif 4478   class class class wbr 5095  cmpt 5176  cfv 6486  (class class class)co 7353  cr 11027  0cc0 11028   + caddc 11031   < clt 11168  cle 11169  cmin 11365  cn 12146  0cn0 12402  cz 12489  ...cfz 13428  ..^cfzo 13575  chash 14255   cyclShift ccsh 14712  Vtxcvtx 28959  iEdgciedg 28960  Trailsctrls 29652  Circuitsccrcts 29747
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-hash 14256  df-word 14439  df-concat 14496  df-substr 14566  df-pfx 14596  df-csh 14713  df-wlks 29563  df-trls 29654  df-crcts 29749
This theorem is referenced by:  eucrctshift  30205
  Copyright terms: Public domain W3C validator