MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crctcsh Structured version   Visualization version   GIF version

Theorem crctcsh 28189
Description: Cyclically shifting the indices of a circuit 𝐹, 𝑃 results in a circuit 𝐻, 𝑄. (Contributed by AV, 10-Mar-2021.) (Proof shortened by AV, 31-Oct-2021.)
Hypotheses
Ref Expression
crctcsh.v 𝑉 = (Vtx‘𝐺)
crctcsh.i 𝐼 = (iEdg‘𝐺)
crctcsh.d (𝜑𝐹(Circuits‘𝐺)𝑃)
crctcsh.n 𝑁 = (♯‘𝐹)
crctcsh.s (𝜑𝑆 ∈ (0..^𝑁))
crctcsh.h 𝐻 = (𝐹 cyclShift 𝑆)
crctcsh.q 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
Assertion
Ref Expression
crctcsh (𝜑𝐻(Circuits‘𝐺)𝑄)
Distinct variable groups:   𝑥,𝑁   𝑥,𝑃   𝑥,𝑆   𝜑,𝑥   𝑥,𝐹   𝑥,𝐼   𝑥,𝑉   𝑥,𝐻
Allowed substitution hints:   𝑄(𝑥)   𝐺(𝑥)

Proof of Theorem crctcsh
StepHypRef Expression
1 crctcsh.v . . . 4 𝑉 = (Vtx‘𝐺)
2 crctcsh.i . . . 4 𝐼 = (iEdg‘𝐺)
3 crctcsh.d . . . 4 (𝜑𝐹(Circuits‘𝐺)𝑃)
4 crctcsh.n . . . 4 𝑁 = (♯‘𝐹)
5 crctcsh.s . . . 4 (𝜑𝑆 ∈ (0..^𝑁))
6 crctcsh.h . . . 4 𝐻 = (𝐹 cyclShift 𝑆)
7 crctcsh.q . . . 4 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
81, 2, 3, 4, 5, 6, 7crctcshlem4 28185 . . 3 ((𝜑𝑆 = 0) → (𝐻 = 𝐹𝑄 = 𝑃))
9 breq12 5079 . . . . 5 ((𝐻 = 𝐹𝑄 = 𝑃) → (𝐻(Circuits‘𝐺)𝑄𝐹(Circuits‘𝐺)𝑃))
103, 9syl5ibrcom 246 . . . 4 (𝜑 → ((𝐻 = 𝐹𝑄 = 𝑃) → 𝐻(Circuits‘𝐺)𝑄))
1110adantr 481 . . 3 ((𝜑𝑆 = 0) → ((𝐻 = 𝐹𝑄 = 𝑃) → 𝐻(Circuits‘𝐺)𝑄))
128, 11mpd 15 . 2 ((𝜑𝑆 = 0) → 𝐻(Circuits‘𝐺)𝑄)
131, 2, 3, 4, 5, 6, 7crctcshtrl 28188 . . . 4 (𝜑𝐻(Trails‘𝐺)𝑄)
1413adantr 481 . . 3 ((𝜑𝑆 ≠ 0) → 𝐻(Trails‘𝐺)𝑄)
15 breq1 5077 . . . . . . 7 (𝑥 = 0 → (𝑥 ≤ (𝑁𝑆) ↔ 0 ≤ (𝑁𝑆)))
16 oveq1 7282 . . . . . . . 8 (𝑥 = 0 → (𝑥 + 𝑆) = (0 + 𝑆))
1716fveq2d 6778 . . . . . . 7 (𝑥 = 0 → (𝑃‘(𝑥 + 𝑆)) = (𝑃‘(0 + 𝑆)))
1816fvoveq1d 7297 . . . . . . 7 (𝑥 = 0 → (𝑃‘((𝑥 + 𝑆) − 𝑁)) = (𝑃‘((0 + 𝑆) − 𝑁)))
1915, 17, 18ifbieq12d 4487 . . . . . 6 (𝑥 = 0 → if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))) = if(0 ≤ (𝑁𝑆), (𝑃‘(0 + 𝑆)), (𝑃‘((0 + 𝑆) − 𝑁))))
20 elfzo0le 13431 . . . . . . . . . 10 (𝑆 ∈ (0..^𝑁) → 𝑆𝑁)
215, 20syl 17 . . . . . . . . 9 (𝜑𝑆𝑁)
221, 2, 3, 4crctcshlem1 28182 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
2322nn0red 12294 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ)
24 elfzoelz 13387 . . . . . . . . . . . 12 (𝑆 ∈ (0..^𝑁) → 𝑆 ∈ ℤ)
255, 24syl 17 . . . . . . . . . . 11 (𝜑𝑆 ∈ ℤ)
2625zred 12426 . . . . . . . . . 10 (𝜑𝑆 ∈ ℝ)
2723, 26subge0d 11565 . . . . . . . . 9 (𝜑 → (0 ≤ (𝑁𝑆) ↔ 𝑆𝑁))
2821, 27mpbird 256 . . . . . . . 8 (𝜑 → 0 ≤ (𝑁𝑆))
2928adantr 481 . . . . . . 7 ((𝜑𝑆 ≠ 0) → 0 ≤ (𝑁𝑆))
3029iftrued 4467 . . . . . 6 ((𝜑𝑆 ≠ 0) → if(0 ≤ (𝑁𝑆), (𝑃‘(0 + 𝑆)), (𝑃‘((0 + 𝑆) − 𝑁))) = (𝑃‘(0 + 𝑆)))
3119, 30sylan9eqr 2800 . . . . 5 (((𝜑𝑆 ≠ 0) ∧ 𝑥 = 0) → if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))) = (𝑃‘(0 + 𝑆)))
323adantr 481 . . . . . . 7 ((𝜑𝑆 ≠ 0) → 𝐹(Circuits‘𝐺)𝑃)
331, 2, 32, 4crctcshlem1 28182 . . . . . 6 ((𝜑𝑆 ≠ 0) → 𝑁 ∈ ℕ0)
34 0elfz 13353 . . . . . 6 (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))
3533, 34syl 17 . . . . 5 ((𝜑𝑆 ≠ 0) → 0 ∈ (0...𝑁))
36 fvexd 6789 . . . . 5 ((𝜑𝑆 ≠ 0) → (𝑃‘(0 + 𝑆)) ∈ V)
377, 31, 35, 36fvmptd2 6883 . . . 4 ((𝜑𝑆 ≠ 0) → (𝑄‘0) = (𝑃‘(0 + 𝑆)))
38 breq1 5077 . . . . . . . 8 (𝑥 = (♯‘𝐻) → (𝑥 ≤ (𝑁𝑆) ↔ (♯‘𝐻) ≤ (𝑁𝑆)))
39 oveq1 7282 . . . . . . . . 9 (𝑥 = (♯‘𝐻) → (𝑥 + 𝑆) = ((♯‘𝐻) + 𝑆))
4039fveq2d 6778 . . . . . . . 8 (𝑥 = (♯‘𝐻) → (𝑃‘(𝑥 + 𝑆)) = (𝑃‘((♯‘𝐻) + 𝑆)))
4139fvoveq1d 7297 . . . . . . . 8 (𝑥 = (♯‘𝐻) → (𝑃‘((𝑥 + 𝑆) − 𝑁)) = (𝑃‘(((♯‘𝐻) + 𝑆) − 𝑁)))
4238, 40, 41ifbieq12d 4487 . . . . . . 7 (𝑥 = (♯‘𝐻) → if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))) = if((♯‘𝐻) ≤ (𝑁𝑆), (𝑃‘((♯‘𝐻) + 𝑆)), (𝑃‘(((♯‘𝐻) + 𝑆) − 𝑁))))
43 elfzoel2 13386 . . . . . . . . . . . 12 (𝑆 ∈ (0..^𝑁) → 𝑁 ∈ ℤ)
44 elfzonn0 13432 . . . . . . . . . . . 12 (𝑆 ∈ (0..^𝑁) → 𝑆 ∈ ℕ0)
45 simpr 485 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0) → 𝑆 ∈ ℕ0)
4645anim1i 615 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0) ∧ 𝑆 ≠ 0) → (𝑆 ∈ ℕ0𝑆 ≠ 0))
47 elnnne0 12247 . . . . . . . . . . . . . . . 16 (𝑆 ∈ ℕ ↔ (𝑆 ∈ ℕ0𝑆 ≠ 0))
4846, 47sylibr 233 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0) ∧ 𝑆 ≠ 0) → 𝑆 ∈ ℕ)
4948nngt0d 12022 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0) ∧ 𝑆 ≠ 0) → 0 < 𝑆)
50 zre 12323 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
51 nn0re 12242 . . . . . . . . . . . . . . . . 17 (𝑆 ∈ ℕ0𝑆 ∈ ℝ)
5250, 51anim12ci 614 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0) → (𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ))
5352adantr 481 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0) ∧ 𝑆 ≠ 0) → (𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ))
54 ltsubpos 11467 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < 𝑆 ↔ (𝑁𝑆) < 𝑁))
5554bicomd 222 . . . . . . . . . . . . . . 15 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑁𝑆) < 𝑁 ↔ 0 < 𝑆))
5653, 55syl 17 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0) ∧ 𝑆 ≠ 0) → ((𝑁𝑆) < 𝑁 ↔ 0 < 𝑆))
5749, 56mpbird 256 . . . . . . . . . . . . 13 (((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0) ∧ 𝑆 ≠ 0) → (𝑁𝑆) < 𝑁)
5857ex 413 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0) → (𝑆 ≠ 0 → (𝑁𝑆) < 𝑁))
5943, 44, 58syl2anc 584 . . . . . . . . . . 11 (𝑆 ∈ (0..^𝑁) → (𝑆 ≠ 0 → (𝑁𝑆) < 𝑁))
605, 59syl 17 . . . . . . . . . 10 (𝜑 → (𝑆 ≠ 0 → (𝑁𝑆) < 𝑁))
6160imp 407 . . . . . . . . 9 ((𝜑𝑆 ≠ 0) → (𝑁𝑆) < 𝑁)
625adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑆 ≠ 0) → 𝑆 ∈ (0..^𝑁))
631, 2, 32, 4, 62, 6crctcshlem2 28183 . . . . . . . . . . . 12 ((𝜑𝑆 ≠ 0) → (♯‘𝐻) = 𝑁)
6463breq1d 5084 . . . . . . . . . . 11 ((𝜑𝑆 ≠ 0) → ((♯‘𝐻) ≤ (𝑁𝑆) ↔ 𝑁 ≤ (𝑁𝑆)))
6564notbid 318 . . . . . . . . . 10 ((𝜑𝑆 ≠ 0) → (¬ (♯‘𝐻) ≤ (𝑁𝑆) ↔ ¬ 𝑁 ≤ (𝑁𝑆)))
6623, 26resubcld 11403 . . . . . . . . . . . . 13 (𝜑 → (𝑁𝑆) ∈ ℝ)
6766, 23jca 512 . . . . . . . . . . . 12 (𝜑 → ((𝑁𝑆) ∈ ℝ ∧ 𝑁 ∈ ℝ))
6867adantr 481 . . . . . . . . . . 11 ((𝜑𝑆 ≠ 0) → ((𝑁𝑆) ∈ ℝ ∧ 𝑁 ∈ ℝ))
69 ltnle 11054 . . . . . . . . . . 11 (((𝑁𝑆) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑁𝑆) < 𝑁 ↔ ¬ 𝑁 ≤ (𝑁𝑆)))
7068, 69syl 17 . . . . . . . . . 10 ((𝜑𝑆 ≠ 0) → ((𝑁𝑆) < 𝑁 ↔ ¬ 𝑁 ≤ (𝑁𝑆)))
7165, 70bitr4d 281 . . . . . . . . 9 ((𝜑𝑆 ≠ 0) → (¬ (♯‘𝐻) ≤ (𝑁𝑆) ↔ (𝑁𝑆) < 𝑁))
7261, 71mpbird 256 . . . . . . . 8 ((𝜑𝑆 ≠ 0) → ¬ (♯‘𝐻) ≤ (𝑁𝑆))
7372iffalsed 4470 . . . . . . 7 ((𝜑𝑆 ≠ 0) → if((♯‘𝐻) ≤ (𝑁𝑆), (𝑃‘((♯‘𝐻) + 𝑆)), (𝑃‘(((♯‘𝐻) + 𝑆) − 𝑁))) = (𝑃‘(((♯‘𝐻) + 𝑆) − 𝑁)))
7442, 73sylan9eqr 2800 . . . . . 6 (((𝜑𝑆 ≠ 0) ∧ 𝑥 = (♯‘𝐻)) → if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))) = (𝑃‘(((♯‘𝐻) + 𝑆) − 𝑁)))
751, 2, 3, 4, 5, 6crctcshlem2 28183 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝐻) = 𝑁)
7675, 22eqeltrd 2839 . . . . . . . . . . . 12 (𝜑 → (♯‘𝐻) ∈ ℕ0)
7776nn0cnd 12295 . . . . . . . . . . 11 (𝜑 → (♯‘𝐻) ∈ ℂ)
7825zcnd 12427 . . . . . . . . . . 11 (𝜑𝑆 ∈ ℂ)
7922nn0cnd 12295 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
8077, 78, 79addsubd 11353 . . . . . . . . . 10 (𝜑 → (((♯‘𝐻) + 𝑆) − 𝑁) = (((♯‘𝐻) − 𝑁) + 𝑆))
8175oveq1d 7290 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝐻) − 𝑁) = (𝑁𝑁))
8279subidd 11320 . . . . . . . . . . . 12 (𝜑 → (𝑁𝑁) = 0)
8381, 82eqtrd 2778 . . . . . . . . . . 11 (𝜑 → ((♯‘𝐻) − 𝑁) = 0)
8483oveq1d 7290 . . . . . . . . . 10 (𝜑 → (((♯‘𝐻) − 𝑁) + 𝑆) = (0 + 𝑆))
8580, 84eqtrd 2778 . . . . . . . . 9 (𝜑 → (((♯‘𝐻) + 𝑆) − 𝑁) = (0 + 𝑆))
8685fveq2d 6778 . . . . . . . 8 (𝜑 → (𝑃‘(((♯‘𝐻) + 𝑆) − 𝑁)) = (𝑃‘(0 + 𝑆)))
8786adantr 481 . . . . . . 7 ((𝜑𝑆 ≠ 0) → (𝑃‘(((♯‘𝐻) + 𝑆) − 𝑁)) = (𝑃‘(0 + 𝑆)))
8887adantr 481 . . . . . 6 (((𝜑𝑆 ≠ 0) ∧ 𝑥 = (♯‘𝐻)) → (𝑃‘(((♯‘𝐻) + 𝑆) − 𝑁)) = (𝑃‘(0 + 𝑆)))
8974, 88eqtrd 2778 . . . . 5 (((𝜑𝑆 ≠ 0) ∧ 𝑥 = (♯‘𝐻)) → if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))) = (𝑃‘(0 + 𝑆)))
9075adantr 481 . . . . . 6 ((𝜑𝑆 ≠ 0) → (♯‘𝐻) = 𝑁)
91 nn0fz0 13354 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ (0...𝑁))
9222, 91sylib 217 . . . . . . 7 (𝜑𝑁 ∈ (0...𝑁))
9392adantr 481 . . . . . 6 ((𝜑𝑆 ≠ 0) → 𝑁 ∈ (0...𝑁))
9490, 93eqeltrd 2839 . . . . 5 ((𝜑𝑆 ≠ 0) → (♯‘𝐻) ∈ (0...𝑁))
957, 89, 94, 36fvmptd2 6883 . . . 4 ((𝜑𝑆 ≠ 0) → (𝑄‘(♯‘𝐻)) = (𝑃‘(0 + 𝑆)))
9637, 95eqtr4d 2781 . . 3 ((𝜑𝑆 ≠ 0) → (𝑄‘0) = (𝑄‘(♯‘𝐻)))
97 iscrct 28158 . . 3 (𝐻(Circuits‘𝐺)𝑄 ↔ (𝐻(Trails‘𝐺)𝑄 ∧ (𝑄‘0) = (𝑄‘(♯‘𝐻))))
9814, 96, 97sylanbrc 583 . 2 ((𝜑𝑆 ≠ 0) → 𝐻(Circuits‘𝐺)𝑄)
9912, 98pm2.61dane 3032 1 (𝜑𝐻(Circuits‘𝐺)𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  Vcvv 3432  ifcif 4459   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  cr 10870  0cc0 10871   + caddc 10874   < clt 11009  cle 11010  cmin 11205  cn 11973  0cn0 12233  cz 12319  ...cfz 13239  ..^cfzo 13382  chash 14044   cyclShift ccsh 14501  Vtxcvtx 27366  iEdgciedg 27367  Trailsctrls 28058  Circuitsccrcts 28152
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-hash 14045  df-word 14218  df-concat 14274  df-substr 14354  df-pfx 14384  df-csh 14502  df-wlks 27966  df-trls 28060  df-crcts 28154
This theorem is referenced by:  eucrctshift  28607
  Copyright terms: Public domain W3C validator