MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crctcsh Structured version   Visualization version   GIF version

Theorem crctcsh 27610
Description: Cyclically shifting the indices of a circuit 𝐹, 𝑃 results in a circuit 𝐻, 𝑄. (Contributed by AV, 10-Mar-2021.) (Proof shortened by AV, 31-Oct-2021.)
Hypotheses
Ref Expression
crctcsh.v 𝑉 = (Vtx‘𝐺)
crctcsh.i 𝐼 = (iEdg‘𝐺)
crctcsh.d (𝜑𝐹(Circuits‘𝐺)𝑃)
crctcsh.n 𝑁 = (♯‘𝐹)
crctcsh.s (𝜑𝑆 ∈ (0..^𝑁))
crctcsh.h 𝐻 = (𝐹 cyclShift 𝑆)
crctcsh.q 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
Assertion
Ref Expression
crctcsh (𝜑𝐻(Circuits‘𝐺)𝑄)
Distinct variable groups:   𝑥,𝑁   𝑥,𝑃   𝑥,𝑆   𝜑,𝑥   𝑥,𝐹   𝑥,𝐼   𝑥,𝑉   𝑥,𝐻
Allowed substitution hints:   𝑄(𝑥)   𝐺(𝑥)

Proof of Theorem crctcsh
StepHypRef Expression
1 crctcsh.v . . . 4 𝑉 = (Vtx‘𝐺)
2 crctcsh.i . . . 4 𝐼 = (iEdg‘𝐺)
3 crctcsh.d . . . 4 (𝜑𝐹(Circuits‘𝐺)𝑃)
4 crctcsh.n . . . 4 𝑁 = (♯‘𝐹)
5 crctcsh.s . . . 4 (𝜑𝑆 ∈ (0..^𝑁))
6 crctcsh.h . . . 4 𝐻 = (𝐹 cyclShift 𝑆)
7 crctcsh.q . . . 4 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
81, 2, 3, 4, 5, 6, 7crctcshlem4 27606 . . 3 ((𝜑𝑆 = 0) → (𝐻 = 𝐹𝑄 = 𝑃))
9 breq12 5035 . . . . 5 ((𝐻 = 𝐹𝑄 = 𝑃) → (𝐻(Circuits‘𝐺)𝑄𝐹(Circuits‘𝐺)𝑃))
103, 9syl5ibrcom 250 . . . 4 (𝜑 → ((𝐻 = 𝐹𝑄 = 𝑃) → 𝐻(Circuits‘𝐺)𝑄))
1110adantr 484 . . 3 ((𝜑𝑆 = 0) → ((𝐻 = 𝐹𝑄 = 𝑃) → 𝐻(Circuits‘𝐺)𝑄))
128, 11mpd 15 . 2 ((𝜑𝑆 = 0) → 𝐻(Circuits‘𝐺)𝑄)
131, 2, 3, 4, 5, 6, 7crctcshtrl 27609 . . . 4 (𝜑𝐻(Trails‘𝐺)𝑄)
1413adantr 484 . . 3 ((𝜑𝑆 ≠ 0) → 𝐻(Trails‘𝐺)𝑄)
15 breq1 5033 . . . . . . 7 (𝑥 = 0 → (𝑥 ≤ (𝑁𝑆) ↔ 0 ≤ (𝑁𝑆)))
16 oveq1 7142 . . . . . . . 8 (𝑥 = 0 → (𝑥 + 𝑆) = (0 + 𝑆))
1716fveq2d 6649 . . . . . . 7 (𝑥 = 0 → (𝑃‘(𝑥 + 𝑆)) = (𝑃‘(0 + 𝑆)))
1816fvoveq1d 7157 . . . . . . 7 (𝑥 = 0 → (𝑃‘((𝑥 + 𝑆) − 𝑁)) = (𝑃‘((0 + 𝑆) − 𝑁)))
1915, 17, 18ifbieq12d 4452 . . . . . 6 (𝑥 = 0 → if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))) = if(0 ≤ (𝑁𝑆), (𝑃‘(0 + 𝑆)), (𝑃‘((0 + 𝑆) − 𝑁))))
20 elfzo0le 13076 . . . . . . . . . 10 (𝑆 ∈ (0..^𝑁) → 𝑆𝑁)
215, 20syl 17 . . . . . . . . 9 (𝜑𝑆𝑁)
221, 2, 3, 4crctcshlem1 27603 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
2322nn0red 11944 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ)
24 elfzoelz 13033 . . . . . . . . . . . 12 (𝑆 ∈ (0..^𝑁) → 𝑆 ∈ ℤ)
255, 24syl 17 . . . . . . . . . . 11 (𝜑𝑆 ∈ ℤ)
2625zred 12075 . . . . . . . . . 10 (𝜑𝑆 ∈ ℝ)
2723, 26subge0d 11219 . . . . . . . . 9 (𝜑 → (0 ≤ (𝑁𝑆) ↔ 𝑆𝑁))
2821, 27mpbird 260 . . . . . . . 8 (𝜑 → 0 ≤ (𝑁𝑆))
2928adantr 484 . . . . . . 7 ((𝜑𝑆 ≠ 0) → 0 ≤ (𝑁𝑆))
3029iftrued 4433 . . . . . 6 ((𝜑𝑆 ≠ 0) → if(0 ≤ (𝑁𝑆), (𝑃‘(0 + 𝑆)), (𝑃‘((0 + 𝑆) − 𝑁))) = (𝑃‘(0 + 𝑆)))
3119, 30sylan9eqr 2855 . . . . 5 (((𝜑𝑆 ≠ 0) ∧ 𝑥 = 0) → if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))) = (𝑃‘(0 + 𝑆)))
323adantr 484 . . . . . . 7 ((𝜑𝑆 ≠ 0) → 𝐹(Circuits‘𝐺)𝑃)
331, 2, 32, 4crctcshlem1 27603 . . . . . 6 ((𝜑𝑆 ≠ 0) → 𝑁 ∈ ℕ0)
34 0elfz 12999 . . . . . 6 (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))
3533, 34syl 17 . . . . 5 ((𝜑𝑆 ≠ 0) → 0 ∈ (0...𝑁))
36 fvexd 6660 . . . . 5 ((𝜑𝑆 ≠ 0) → (𝑃‘(0 + 𝑆)) ∈ V)
377, 31, 35, 36fvmptd2 6753 . . . 4 ((𝜑𝑆 ≠ 0) → (𝑄‘0) = (𝑃‘(0 + 𝑆)))
38 breq1 5033 . . . . . . . 8 (𝑥 = (♯‘𝐻) → (𝑥 ≤ (𝑁𝑆) ↔ (♯‘𝐻) ≤ (𝑁𝑆)))
39 oveq1 7142 . . . . . . . . 9 (𝑥 = (♯‘𝐻) → (𝑥 + 𝑆) = ((♯‘𝐻) + 𝑆))
4039fveq2d 6649 . . . . . . . 8 (𝑥 = (♯‘𝐻) → (𝑃‘(𝑥 + 𝑆)) = (𝑃‘((♯‘𝐻) + 𝑆)))
4139fvoveq1d 7157 . . . . . . . 8 (𝑥 = (♯‘𝐻) → (𝑃‘((𝑥 + 𝑆) − 𝑁)) = (𝑃‘(((♯‘𝐻) + 𝑆) − 𝑁)))
4238, 40, 41ifbieq12d 4452 . . . . . . 7 (𝑥 = (♯‘𝐻) → if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))) = if((♯‘𝐻) ≤ (𝑁𝑆), (𝑃‘((♯‘𝐻) + 𝑆)), (𝑃‘(((♯‘𝐻) + 𝑆) − 𝑁))))
43 elfzoel2 13032 . . . . . . . . . . . 12 (𝑆 ∈ (0..^𝑁) → 𝑁 ∈ ℤ)
44 elfzonn0 13077 . . . . . . . . . . . 12 (𝑆 ∈ (0..^𝑁) → 𝑆 ∈ ℕ0)
45 simpr 488 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0) → 𝑆 ∈ ℕ0)
4645anim1i 617 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0) ∧ 𝑆 ≠ 0) → (𝑆 ∈ ℕ0𝑆 ≠ 0))
47 elnnne0 11899 . . . . . . . . . . . . . . . 16 (𝑆 ∈ ℕ ↔ (𝑆 ∈ ℕ0𝑆 ≠ 0))
4846, 47sylibr 237 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0) ∧ 𝑆 ≠ 0) → 𝑆 ∈ ℕ)
4948nngt0d 11674 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0) ∧ 𝑆 ≠ 0) → 0 < 𝑆)
50 zre 11973 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
51 nn0re 11894 . . . . . . . . . . . . . . . . 17 (𝑆 ∈ ℕ0𝑆 ∈ ℝ)
5250, 51anim12ci 616 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0) → (𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ))
5352adantr 484 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0) ∧ 𝑆 ≠ 0) → (𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ))
54 ltsubpos 11121 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < 𝑆 ↔ (𝑁𝑆) < 𝑁))
5554bicomd 226 . . . . . . . . . . . . . . 15 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑁𝑆) < 𝑁 ↔ 0 < 𝑆))
5653, 55syl 17 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0) ∧ 𝑆 ≠ 0) → ((𝑁𝑆) < 𝑁 ↔ 0 < 𝑆))
5749, 56mpbird 260 . . . . . . . . . . . . 13 (((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0) ∧ 𝑆 ≠ 0) → (𝑁𝑆) < 𝑁)
5857ex 416 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0) → (𝑆 ≠ 0 → (𝑁𝑆) < 𝑁))
5943, 44, 58syl2anc 587 . . . . . . . . . . 11 (𝑆 ∈ (0..^𝑁) → (𝑆 ≠ 0 → (𝑁𝑆) < 𝑁))
605, 59syl 17 . . . . . . . . . 10 (𝜑 → (𝑆 ≠ 0 → (𝑁𝑆) < 𝑁))
6160imp 410 . . . . . . . . 9 ((𝜑𝑆 ≠ 0) → (𝑁𝑆) < 𝑁)
625adantr 484 . . . . . . . . . . . . 13 ((𝜑𝑆 ≠ 0) → 𝑆 ∈ (0..^𝑁))
631, 2, 32, 4, 62, 6crctcshlem2 27604 . . . . . . . . . . . 12 ((𝜑𝑆 ≠ 0) → (♯‘𝐻) = 𝑁)
6463breq1d 5040 . . . . . . . . . . 11 ((𝜑𝑆 ≠ 0) → ((♯‘𝐻) ≤ (𝑁𝑆) ↔ 𝑁 ≤ (𝑁𝑆)))
6564notbid 321 . . . . . . . . . 10 ((𝜑𝑆 ≠ 0) → (¬ (♯‘𝐻) ≤ (𝑁𝑆) ↔ ¬ 𝑁 ≤ (𝑁𝑆)))
6623, 26resubcld 11057 . . . . . . . . . . . . 13 (𝜑 → (𝑁𝑆) ∈ ℝ)
6766, 23jca 515 . . . . . . . . . . . 12 (𝜑 → ((𝑁𝑆) ∈ ℝ ∧ 𝑁 ∈ ℝ))
6867adantr 484 . . . . . . . . . . 11 ((𝜑𝑆 ≠ 0) → ((𝑁𝑆) ∈ ℝ ∧ 𝑁 ∈ ℝ))
69 ltnle 10709 . . . . . . . . . . 11 (((𝑁𝑆) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑁𝑆) < 𝑁 ↔ ¬ 𝑁 ≤ (𝑁𝑆)))
7068, 69syl 17 . . . . . . . . . 10 ((𝜑𝑆 ≠ 0) → ((𝑁𝑆) < 𝑁 ↔ ¬ 𝑁 ≤ (𝑁𝑆)))
7165, 70bitr4d 285 . . . . . . . . 9 ((𝜑𝑆 ≠ 0) → (¬ (♯‘𝐻) ≤ (𝑁𝑆) ↔ (𝑁𝑆) < 𝑁))
7261, 71mpbird 260 . . . . . . . 8 ((𝜑𝑆 ≠ 0) → ¬ (♯‘𝐻) ≤ (𝑁𝑆))
7372iffalsed 4436 . . . . . . 7 ((𝜑𝑆 ≠ 0) → if((♯‘𝐻) ≤ (𝑁𝑆), (𝑃‘((♯‘𝐻) + 𝑆)), (𝑃‘(((♯‘𝐻) + 𝑆) − 𝑁))) = (𝑃‘(((♯‘𝐻) + 𝑆) − 𝑁)))
7442, 73sylan9eqr 2855 . . . . . 6 (((𝜑𝑆 ≠ 0) ∧ 𝑥 = (♯‘𝐻)) → if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))) = (𝑃‘(((♯‘𝐻) + 𝑆) − 𝑁)))
751, 2, 3, 4, 5, 6crctcshlem2 27604 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝐻) = 𝑁)
7675, 22eqeltrd 2890 . . . . . . . . . . . 12 (𝜑 → (♯‘𝐻) ∈ ℕ0)
7776nn0cnd 11945 . . . . . . . . . . 11 (𝜑 → (♯‘𝐻) ∈ ℂ)
7825zcnd 12076 . . . . . . . . . . 11 (𝜑𝑆 ∈ ℂ)
7922nn0cnd 11945 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
8077, 78, 79addsubd 11007 . . . . . . . . . 10 (𝜑 → (((♯‘𝐻) + 𝑆) − 𝑁) = (((♯‘𝐻) − 𝑁) + 𝑆))
8175oveq1d 7150 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝐻) − 𝑁) = (𝑁𝑁))
8279subidd 10974 . . . . . . . . . . . 12 (𝜑 → (𝑁𝑁) = 0)
8381, 82eqtrd 2833 . . . . . . . . . . 11 (𝜑 → ((♯‘𝐻) − 𝑁) = 0)
8483oveq1d 7150 . . . . . . . . . 10 (𝜑 → (((♯‘𝐻) − 𝑁) + 𝑆) = (0 + 𝑆))
8580, 84eqtrd 2833 . . . . . . . . 9 (𝜑 → (((♯‘𝐻) + 𝑆) − 𝑁) = (0 + 𝑆))
8685fveq2d 6649 . . . . . . . 8 (𝜑 → (𝑃‘(((♯‘𝐻) + 𝑆) − 𝑁)) = (𝑃‘(0 + 𝑆)))
8786adantr 484 . . . . . . 7 ((𝜑𝑆 ≠ 0) → (𝑃‘(((♯‘𝐻) + 𝑆) − 𝑁)) = (𝑃‘(0 + 𝑆)))
8887adantr 484 . . . . . 6 (((𝜑𝑆 ≠ 0) ∧ 𝑥 = (♯‘𝐻)) → (𝑃‘(((♯‘𝐻) + 𝑆) − 𝑁)) = (𝑃‘(0 + 𝑆)))
8974, 88eqtrd 2833 . . . . 5 (((𝜑𝑆 ≠ 0) ∧ 𝑥 = (♯‘𝐻)) → if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))) = (𝑃‘(0 + 𝑆)))
9075adantr 484 . . . . . 6 ((𝜑𝑆 ≠ 0) → (♯‘𝐻) = 𝑁)
91 nn0fz0 13000 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ (0...𝑁))
9222, 91sylib 221 . . . . . . 7 (𝜑𝑁 ∈ (0...𝑁))
9392adantr 484 . . . . . 6 ((𝜑𝑆 ≠ 0) → 𝑁 ∈ (0...𝑁))
9490, 93eqeltrd 2890 . . . . 5 ((𝜑𝑆 ≠ 0) → (♯‘𝐻) ∈ (0...𝑁))
957, 89, 94, 36fvmptd2 6753 . . . 4 ((𝜑𝑆 ≠ 0) → (𝑄‘(♯‘𝐻)) = (𝑃‘(0 + 𝑆)))
9637, 95eqtr4d 2836 . . 3 ((𝜑𝑆 ≠ 0) → (𝑄‘0) = (𝑄‘(♯‘𝐻)))
97 iscrct 27579 . . 3 (𝐻(Circuits‘𝐺)𝑄 ↔ (𝐻(Trails‘𝐺)𝑄 ∧ (𝑄‘0) = (𝑄‘(♯‘𝐻))))
9814, 96, 97sylanbrc 586 . 2 ((𝜑𝑆 ≠ 0) → 𝐻(Circuits‘𝐺)𝑄)
9912, 98pm2.61dane 3074 1 (𝜑𝐻(Circuits‘𝐺)𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wne 2987  Vcvv 3441  ifcif 4425   class class class wbr 5030  cmpt 5110  cfv 6324  (class class class)co 7135  cr 10525  0cc0 10526   + caddc 10529   < clt 10664  cle 10665  cmin 10859  cn 11625  0cn0 11885  cz 11969  ...cfz 12885  ..^cfzo 13028  chash 13686   cyclShift ccsh 14141  Vtxcvtx 26789  iEdgciedg 26790  Trailsctrls 27480  Circuitsccrcts 27573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-inf 8891  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-hash 13687  df-word 13858  df-concat 13914  df-substr 13994  df-pfx 14024  df-csh 14142  df-wlks 27389  df-trls 27482  df-crcts 27575
This theorem is referenced by:  eucrctshift  28028
  Copyright terms: Public domain W3C validator