Step | Hyp | Ref
| Expression |
1 | | crctcsh.v |
. . . 4
β’ π = (VtxβπΊ) |
2 | | crctcsh.i |
. . . 4
β’ πΌ = (iEdgβπΊ) |
3 | | crctcsh.d |
. . . 4
β’ (π β πΉ(CircuitsβπΊ)π) |
4 | | crctcsh.n |
. . . 4
β’ π = (β―βπΉ) |
5 | | crctcsh.s |
. . . 4
β’ (π β π β (0..^π)) |
6 | | crctcsh.h |
. . . 4
β’ π» = (πΉ cyclShift π) |
7 | | crctcsh.q |
. . . 4
β’ π = (π₯ β (0...π) β¦ if(π₯ β€ (π β π), (πβ(π₯ + π)), (πβ((π₯ + π) β π)))) |
8 | 1, 2, 3, 4, 5, 6, 7 | crctcshlem4 29071 |
. . 3
β’ ((π β§ π = 0) β (π» = πΉ β§ π = π)) |
9 | | breq12 5153 |
. . . . 5
β’ ((π» = πΉ β§ π = π) β (π»(CircuitsβπΊ)π β πΉ(CircuitsβπΊ)π)) |
10 | 3, 9 | syl5ibrcom 246 |
. . . 4
β’ (π β ((π» = πΉ β§ π = π) β π»(CircuitsβπΊ)π)) |
11 | 10 | adantr 481 |
. . 3
β’ ((π β§ π = 0) β ((π» = πΉ β§ π = π) β π»(CircuitsβπΊ)π)) |
12 | 8, 11 | mpd 15 |
. 2
β’ ((π β§ π = 0) β π»(CircuitsβπΊ)π) |
13 | 1, 2, 3, 4, 5, 6, 7 | crctcshtrl 29074 |
. . . 4
β’ (π β π»(TrailsβπΊ)π) |
14 | 13 | adantr 481 |
. . 3
β’ ((π β§ π β 0) β π»(TrailsβπΊ)π) |
15 | | breq1 5151 |
. . . . . . 7
β’ (π₯ = 0 β (π₯ β€ (π β π) β 0 β€ (π β π))) |
16 | | oveq1 7415 |
. . . . . . . 8
β’ (π₯ = 0 β (π₯ + π) = (0 + π)) |
17 | 16 | fveq2d 6895 |
. . . . . . 7
β’ (π₯ = 0 β (πβ(π₯ + π)) = (πβ(0 + π))) |
18 | 16 | fvoveq1d 7430 |
. . . . . . 7
β’ (π₯ = 0 β (πβ((π₯ + π) β π)) = (πβ((0 + π) β π))) |
19 | 15, 17, 18 | ifbieq12d 4556 |
. . . . . 6
β’ (π₯ = 0 β if(π₯ β€ (π β π), (πβ(π₯ + π)), (πβ((π₯ + π) β π))) = if(0 β€ (π β π), (πβ(0 + π)), (πβ((0 + π) β π)))) |
20 | | elfzo0le 13675 |
. . . . . . . . . 10
β’ (π β (0..^π) β π β€ π) |
21 | 5, 20 | syl 17 |
. . . . . . . . 9
β’ (π β π β€ π) |
22 | 1, 2, 3, 4 | crctcshlem1 29068 |
. . . . . . . . . . 11
β’ (π β π β
β0) |
23 | 22 | nn0red 12532 |
. . . . . . . . . 10
β’ (π β π β β) |
24 | | elfzoelz 13631 |
. . . . . . . . . . . 12
β’ (π β (0..^π) β π β β€) |
25 | 5, 24 | syl 17 |
. . . . . . . . . . 11
β’ (π β π β β€) |
26 | 25 | zred 12665 |
. . . . . . . . . 10
β’ (π β π β β) |
27 | 23, 26 | subge0d 11803 |
. . . . . . . . 9
β’ (π β (0 β€ (π β π) β π β€ π)) |
28 | 21, 27 | mpbird 256 |
. . . . . . . 8
β’ (π β 0 β€ (π β π)) |
29 | 28 | adantr 481 |
. . . . . . 7
β’ ((π β§ π β 0) β 0 β€ (π β π)) |
30 | 29 | iftrued 4536 |
. . . . . 6
β’ ((π β§ π β 0) β if(0 β€ (π β π), (πβ(0 + π)), (πβ((0 + π) β π))) = (πβ(0 + π))) |
31 | 19, 30 | sylan9eqr 2794 |
. . . . 5
β’ (((π β§ π β 0) β§ π₯ = 0) β if(π₯ β€ (π β π), (πβ(π₯ + π)), (πβ((π₯ + π) β π))) = (πβ(0 + π))) |
32 | 3 | adantr 481 |
. . . . . . 7
β’ ((π β§ π β 0) β πΉ(CircuitsβπΊ)π) |
33 | 1, 2, 32, 4 | crctcshlem1 29068 |
. . . . . 6
β’ ((π β§ π β 0) β π β
β0) |
34 | | 0elfz 13597 |
. . . . . 6
β’ (π β β0
β 0 β (0...π)) |
35 | 33, 34 | syl 17 |
. . . . 5
β’ ((π β§ π β 0) β 0 β (0...π)) |
36 | | fvexd 6906 |
. . . . 5
β’ ((π β§ π β 0) β (πβ(0 + π)) β V) |
37 | 7, 31, 35, 36 | fvmptd2 7006 |
. . . 4
β’ ((π β§ π β 0) β (πβ0) = (πβ(0 + π))) |
38 | | breq1 5151 |
. . . . . . . 8
β’ (π₯ = (β―βπ») β (π₯ β€ (π β π) β (β―βπ») β€ (π β π))) |
39 | | oveq1 7415 |
. . . . . . . . 9
β’ (π₯ = (β―βπ») β (π₯ + π) = ((β―βπ») + π)) |
40 | 39 | fveq2d 6895 |
. . . . . . . 8
β’ (π₯ = (β―βπ») β (πβ(π₯ + π)) = (πβ((β―βπ») + π))) |
41 | 39 | fvoveq1d 7430 |
. . . . . . . 8
β’ (π₯ = (β―βπ») β (πβ((π₯ + π) β π)) = (πβ(((β―βπ») + π) β π))) |
42 | 38, 40, 41 | ifbieq12d 4556 |
. . . . . . 7
β’ (π₯ = (β―βπ») β if(π₯ β€ (π β π), (πβ(π₯ + π)), (πβ((π₯ + π) β π))) = if((β―βπ») β€ (π β π), (πβ((β―βπ») + π)), (πβ(((β―βπ») + π) β π)))) |
43 | | elfzoel2 13630 |
. . . . . . . . . . . 12
β’ (π β (0..^π) β π β β€) |
44 | | elfzonn0 13676 |
. . . . . . . . . . . 12
β’ (π β (0..^π) β π β
β0) |
45 | | simpr 485 |
. . . . . . . . . . . . . . . . 17
β’ ((π β β€ β§ π β β0)
β π β
β0) |
46 | 45 | anim1i 615 |
. . . . . . . . . . . . . . . 16
β’ (((π β β€ β§ π β β0)
β§ π β 0) β
(π β
β0 β§ π
β 0)) |
47 | | elnnne0 12485 |
. . . . . . . . . . . . . . . 16
β’ (π β β β (π β β0
β§ π β
0)) |
48 | 46, 47 | sylibr 233 |
. . . . . . . . . . . . . . 15
β’ (((π β β€ β§ π β β0)
β§ π β 0) β
π β
β) |
49 | 48 | nngt0d 12260 |
. . . . . . . . . . . . . 14
β’ (((π β β€ β§ π β β0)
β§ π β 0) β 0
< π) |
50 | | zre 12561 |
. . . . . . . . . . . . . . . . 17
β’ (π β β€ β π β
β) |
51 | | nn0re 12480 |
. . . . . . . . . . . . . . . . 17
β’ (π β β0
β π β
β) |
52 | 50, 51 | anim12ci 614 |
. . . . . . . . . . . . . . . 16
β’ ((π β β€ β§ π β β0)
β (π β β
β§ π β
β)) |
53 | 52 | adantr 481 |
. . . . . . . . . . . . . . 15
β’ (((π β β€ β§ π β β0)
β§ π β 0) β
(π β β β§
π β
β)) |
54 | | ltsubpos 11705 |
. . . . . . . . . . . . . . . 16
β’ ((π β β β§ π β β) β (0 <
π β (π β π) < π)) |
55 | 54 | bicomd 222 |
. . . . . . . . . . . . . . 15
β’ ((π β β β§ π β β) β ((π β π) < π β 0 < π)) |
56 | 53, 55 | syl 17 |
. . . . . . . . . . . . . 14
β’ (((π β β€ β§ π β β0)
β§ π β 0) β
((π β π) < π β 0 < π)) |
57 | 49, 56 | mpbird 256 |
. . . . . . . . . . . . 13
β’ (((π β β€ β§ π β β0)
β§ π β 0) β
(π β π) < π) |
58 | 57 | ex 413 |
. . . . . . . . . . . 12
β’ ((π β β€ β§ π β β0)
β (π β 0 β
(π β π) < π)) |
59 | 43, 44, 58 | syl2anc 584 |
. . . . . . . . . . 11
β’ (π β (0..^π) β (π β 0 β (π β π) < π)) |
60 | 5, 59 | syl 17 |
. . . . . . . . . 10
β’ (π β (π β 0 β (π β π) < π)) |
61 | 60 | imp 407 |
. . . . . . . . 9
β’ ((π β§ π β 0) β (π β π) < π) |
62 | 5 | adantr 481 |
. . . . . . . . . . . . 13
β’ ((π β§ π β 0) β π β (0..^π)) |
63 | 1, 2, 32, 4, 62, 6 | crctcshlem2 29069 |
. . . . . . . . . . . 12
β’ ((π β§ π β 0) β (β―βπ») = π) |
64 | 63 | breq1d 5158 |
. . . . . . . . . . 11
β’ ((π β§ π β 0) β ((β―βπ») β€ (π β π) β π β€ (π β π))) |
65 | 64 | notbid 317 |
. . . . . . . . . 10
β’ ((π β§ π β 0) β (Β¬ (β―βπ») β€ (π β π) β Β¬ π β€ (π β π))) |
66 | 23, 26 | resubcld 11641 |
. . . . . . . . . . . . 13
β’ (π β (π β π) β β) |
67 | 66, 23 | jca 512 |
. . . . . . . . . . . 12
β’ (π β ((π β π) β β β§ π β β)) |
68 | 67 | adantr 481 |
. . . . . . . . . . 11
β’ ((π β§ π β 0) β ((π β π) β β β§ π β β)) |
69 | | ltnle 11292 |
. . . . . . . . . . 11
β’ (((π β π) β β β§ π β β) β ((π β π) < π β Β¬ π β€ (π β π))) |
70 | 68, 69 | syl 17 |
. . . . . . . . . 10
β’ ((π β§ π β 0) β ((π β π) < π β Β¬ π β€ (π β π))) |
71 | 65, 70 | bitr4d 281 |
. . . . . . . . 9
β’ ((π β§ π β 0) β (Β¬ (β―βπ») β€ (π β π) β (π β π) < π)) |
72 | 61, 71 | mpbird 256 |
. . . . . . . 8
β’ ((π β§ π β 0) β Β¬ (β―βπ») β€ (π β π)) |
73 | 72 | iffalsed 4539 |
. . . . . . 7
β’ ((π β§ π β 0) β if((β―βπ») β€ (π β π), (πβ((β―βπ») + π)), (πβ(((β―βπ») + π) β π))) = (πβ(((β―βπ») + π) β π))) |
74 | 42, 73 | sylan9eqr 2794 |
. . . . . 6
β’ (((π β§ π β 0) β§ π₯ = (β―βπ»)) β if(π₯ β€ (π β π), (πβ(π₯ + π)), (πβ((π₯ + π) β π))) = (πβ(((β―βπ») + π) β π))) |
75 | 1, 2, 3, 4, 5, 6 | crctcshlem2 29069 |
. . . . . . . . . . . . 13
β’ (π β (β―βπ») = π) |
76 | 75, 22 | eqeltrd 2833 |
. . . . . . . . . . . 12
β’ (π β (β―βπ») β
β0) |
77 | 76 | nn0cnd 12533 |
. . . . . . . . . . 11
β’ (π β (β―βπ») β
β) |
78 | 25 | zcnd 12666 |
. . . . . . . . . . 11
β’ (π β π β β) |
79 | 22 | nn0cnd 12533 |
. . . . . . . . . . 11
β’ (π β π β β) |
80 | 77, 78, 79 | addsubd 11591 |
. . . . . . . . . 10
β’ (π β (((β―βπ») + π) β π) = (((β―βπ») β π) + π)) |
81 | 75 | oveq1d 7423 |
. . . . . . . . . . . 12
β’ (π β ((β―βπ») β π) = (π β π)) |
82 | 79 | subidd 11558 |
. . . . . . . . . . . 12
β’ (π β (π β π) = 0) |
83 | 81, 82 | eqtrd 2772 |
. . . . . . . . . . 11
β’ (π β ((β―βπ») β π) = 0) |
84 | 83 | oveq1d 7423 |
. . . . . . . . . 10
β’ (π β (((β―βπ») β π) + π) = (0 + π)) |
85 | 80, 84 | eqtrd 2772 |
. . . . . . . . 9
β’ (π β (((β―βπ») + π) β π) = (0 + π)) |
86 | 85 | fveq2d 6895 |
. . . . . . . 8
β’ (π β (πβ(((β―βπ») + π) β π)) = (πβ(0 + π))) |
87 | 86 | adantr 481 |
. . . . . . 7
β’ ((π β§ π β 0) β (πβ(((β―βπ») + π) β π)) = (πβ(0 + π))) |
88 | 87 | adantr 481 |
. . . . . 6
β’ (((π β§ π β 0) β§ π₯ = (β―βπ»)) β (πβ(((β―βπ») + π) β π)) = (πβ(0 + π))) |
89 | 74, 88 | eqtrd 2772 |
. . . . 5
β’ (((π β§ π β 0) β§ π₯ = (β―βπ»)) β if(π₯ β€ (π β π), (πβ(π₯ + π)), (πβ((π₯ + π) β π))) = (πβ(0 + π))) |
90 | 75 | adantr 481 |
. . . . . 6
β’ ((π β§ π β 0) β (β―βπ») = π) |
91 | | nn0fz0 13598 |
. . . . . . . 8
β’ (π β β0
β π β (0...π)) |
92 | 22, 91 | sylib 217 |
. . . . . . 7
β’ (π β π β (0...π)) |
93 | 92 | adantr 481 |
. . . . . 6
β’ ((π β§ π β 0) β π β (0...π)) |
94 | 90, 93 | eqeltrd 2833 |
. . . . 5
β’ ((π β§ π β 0) β (β―βπ») β (0...π)) |
95 | 7, 89, 94, 36 | fvmptd2 7006 |
. . . 4
β’ ((π β§ π β 0) β (πβ(β―βπ»)) = (πβ(0 + π))) |
96 | 37, 95 | eqtr4d 2775 |
. . 3
β’ ((π β§ π β 0) β (πβ0) = (πβ(β―βπ»))) |
97 | | iscrct 29044 |
. . 3
β’ (π»(CircuitsβπΊ)π β (π»(TrailsβπΊ)π β§ (πβ0) = (πβ(β―βπ»)))) |
98 | 14, 96, 97 | sylanbrc 583 |
. 2
β’ ((π β§ π β 0) β π»(CircuitsβπΊ)π) |
99 | 12, 98 | pm2.61dane 3029 |
1
β’ (π β π»(CircuitsβπΊ)π) |