MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crctcsh Structured version   Visualization version   GIF version

Theorem crctcsh 28090
Description: Cyclically shifting the indices of a circuit 𝐹, 𝑃 results in a circuit 𝐻, 𝑄. (Contributed by AV, 10-Mar-2021.) (Proof shortened by AV, 31-Oct-2021.)
Hypotheses
Ref Expression
crctcsh.v 𝑉 = (Vtx‘𝐺)
crctcsh.i 𝐼 = (iEdg‘𝐺)
crctcsh.d (𝜑𝐹(Circuits‘𝐺)𝑃)
crctcsh.n 𝑁 = (♯‘𝐹)
crctcsh.s (𝜑𝑆 ∈ (0..^𝑁))
crctcsh.h 𝐻 = (𝐹 cyclShift 𝑆)
crctcsh.q 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
Assertion
Ref Expression
crctcsh (𝜑𝐻(Circuits‘𝐺)𝑄)
Distinct variable groups:   𝑥,𝑁   𝑥,𝑃   𝑥,𝑆   𝜑,𝑥   𝑥,𝐹   𝑥,𝐼   𝑥,𝑉   𝑥,𝐻
Allowed substitution hints:   𝑄(𝑥)   𝐺(𝑥)

Proof of Theorem crctcsh
StepHypRef Expression
1 crctcsh.v . . . 4 𝑉 = (Vtx‘𝐺)
2 crctcsh.i . . . 4 𝐼 = (iEdg‘𝐺)
3 crctcsh.d . . . 4 (𝜑𝐹(Circuits‘𝐺)𝑃)
4 crctcsh.n . . . 4 𝑁 = (♯‘𝐹)
5 crctcsh.s . . . 4 (𝜑𝑆 ∈ (0..^𝑁))
6 crctcsh.h . . . 4 𝐻 = (𝐹 cyclShift 𝑆)
7 crctcsh.q . . . 4 𝑄 = (𝑥 ∈ (0...𝑁) ↦ if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))))
81, 2, 3, 4, 5, 6, 7crctcshlem4 28086 . . 3 ((𝜑𝑆 = 0) → (𝐻 = 𝐹𝑄 = 𝑃))
9 breq12 5075 . . . . 5 ((𝐻 = 𝐹𝑄 = 𝑃) → (𝐻(Circuits‘𝐺)𝑄𝐹(Circuits‘𝐺)𝑃))
103, 9syl5ibrcom 246 . . . 4 (𝜑 → ((𝐻 = 𝐹𝑄 = 𝑃) → 𝐻(Circuits‘𝐺)𝑄))
1110adantr 480 . . 3 ((𝜑𝑆 = 0) → ((𝐻 = 𝐹𝑄 = 𝑃) → 𝐻(Circuits‘𝐺)𝑄))
128, 11mpd 15 . 2 ((𝜑𝑆 = 0) → 𝐻(Circuits‘𝐺)𝑄)
131, 2, 3, 4, 5, 6, 7crctcshtrl 28089 . . . 4 (𝜑𝐻(Trails‘𝐺)𝑄)
1413adantr 480 . . 3 ((𝜑𝑆 ≠ 0) → 𝐻(Trails‘𝐺)𝑄)
15 breq1 5073 . . . . . . 7 (𝑥 = 0 → (𝑥 ≤ (𝑁𝑆) ↔ 0 ≤ (𝑁𝑆)))
16 oveq1 7262 . . . . . . . 8 (𝑥 = 0 → (𝑥 + 𝑆) = (0 + 𝑆))
1716fveq2d 6760 . . . . . . 7 (𝑥 = 0 → (𝑃‘(𝑥 + 𝑆)) = (𝑃‘(0 + 𝑆)))
1816fvoveq1d 7277 . . . . . . 7 (𝑥 = 0 → (𝑃‘((𝑥 + 𝑆) − 𝑁)) = (𝑃‘((0 + 𝑆) − 𝑁)))
1915, 17, 18ifbieq12d 4484 . . . . . 6 (𝑥 = 0 → if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))) = if(0 ≤ (𝑁𝑆), (𝑃‘(0 + 𝑆)), (𝑃‘((0 + 𝑆) − 𝑁))))
20 elfzo0le 13359 . . . . . . . . . 10 (𝑆 ∈ (0..^𝑁) → 𝑆𝑁)
215, 20syl 17 . . . . . . . . 9 (𝜑𝑆𝑁)
221, 2, 3, 4crctcshlem1 28083 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ0)
2322nn0red 12224 . . . . . . . . . 10 (𝜑𝑁 ∈ ℝ)
24 elfzoelz 13316 . . . . . . . . . . . 12 (𝑆 ∈ (0..^𝑁) → 𝑆 ∈ ℤ)
255, 24syl 17 . . . . . . . . . . 11 (𝜑𝑆 ∈ ℤ)
2625zred 12355 . . . . . . . . . 10 (𝜑𝑆 ∈ ℝ)
2723, 26subge0d 11495 . . . . . . . . 9 (𝜑 → (0 ≤ (𝑁𝑆) ↔ 𝑆𝑁))
2821, 27mpbird 256 . . . . . . . 8 (𝜑 → 0 ≤ (𝑁𝑆))
2928adantr 480 . . . . . . 7 ((𝜑𝑆 ≠ 0) → 0 ≤ (𝑁𝑆))
3029iftrued 4464 . . . . . 6 ((𝜑𝑆 ≠ 0) → if(0 ≤ (𝑁𝑆), (𝑃‘(0 + 𝑆)), (𝑃‘((0 + 𝑆) − 𝑁))) = (𝑃‘(0 + 𝑆)))
3119, 30sylan9eqr 2801 . . . . 5 (((𝜑𝑆 ≠ 0) ∧ 𝑥 = 0) → if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))) = (𝑃‘(0 + 𝑆)))
323adantr 480 . . . . . . 7 ((𝜑𝑆 ≠ 0) → 𝐹(Circuits‘𝐺)𝑃)
331, 2, 32, 4crctcshlem1 28083 . . . . . 6 ((𝜑𝑆 ≠ 0) → 𝑁 ∈ ℕ0)
34 0elfz 13282 . . . . . 6 (𝑁 ∈ ℕ0 → 0 ∈ (0...𝑁))
3533, 34syl 17 . . . . 5 ((𝜑𝑆 ≠ 0) → 0 ∈ (0...𝑁))
36 fvexd 6771 . . . . 5 ((𝜑𝑆 ≠ 0) → (𝑃‘(0 + 𝑆)) ∈ V)
377, 31, 35, 36fvmptd2 6865 . . . 4 ((𝜑𝑆 ≠ 0) → (𝑄‘0) = (𝑃‘(0 + 𝑆)))
38 breq1 5073 . . . . . . . 8 (𝑥 = (♯‘𝐻) → (𝑥 ≤ (𝑁𝑆) ↔ (♯‘𝐻) ≤ (𝑁𝑆)))
39 oveq1 7262 . . . . . . . . 9 (𝑥 = (♯‘𝐻) → (𝑥 + 𝑆) = ((♯‘𝐻) + 𝑆))
4039fveq2d 6760 . . . . . . . 8 (𝑥 = (♯‘𝐻) → (𝑃‘(𝑥 + 𝑆)) = (𝑃‘((♯‘𝐻) + 𝑆)))
4139fvoveq1d 7277 . . . . . . . 8 (𝑥 = (♯‘𝐻) → (𝑃‘((𝑥 + 𝑆) − 𝑁)) = (𝑃‘(((♯‘𝐻) + 𝑆) − 𝑁)))
4238, 40, 41ifbieq12d 4484 . . . . . . 7 (𝑥 = (♯‘𝐻) → if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))) = if((♯‘𝐻) ≤ (𝑁𝑆), (𝑃‘((♯‘𝐻) + 𝑆)), (𝑃‘(((♯‘𝐻) + 𝑆) − 𝑁))))
43 elfzoel2 13315 . . . . . . . . . . . 12 (𝑆 ∈ (0..^𝑁) → 𝑁 ∈ ℤ)
44 elfzonn0 13360 . . . . . . . . . . . 12 (𝑆 ∈ (0..^𝑁) → 𝑆 ∈ ℕ0)
45 simpr 484 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0) → 𝑆 ∈ ℕ0)
4645anim1i 614 . . . . . . . . . . . . . . . 16 (((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0) ∧ 𝑆 ≠ 0) → (𝑆 ∈ ℕ0𝑆 ≠ 0))
47 elnnne0 12177 . . . . . . . . . . . . . . . 16 (𝑆 ∈ ℕ ↔ (𝑆 ∈ ℕ0𝑆 ≠ 0))
4846, 47sylibr 233 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0) ∧ 𝑆 ≠ 0) → 𝑆 ∈ ℕ)
4948nngt0d 11952 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0) ∧ 𝑆 ≠ 0) → 0 < 𝑆)
50 zre 12253 . . . . . . . . . . . . . . . . 17 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
51 nn0re 12172 . . . . . . . . . . . . . . . . 17 (𝑆 ∈ ℕ0𝑆 ∈ ℝ)
5250, 51anim12ci 613 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0) → (𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ))
5352adantr 480 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0) ∧ 𝑆 ≠ 0) → (𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ))
54 ltsubpos 11397 . . . . . . . . . . . . . . . 16 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (0 < 𝑆 ↔ (𝑁𝑆) < 𝑁))
5554bicomd 222 . . . . . . . . . . . . . . 15 ((𝑆 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑁𝑆) < 𝑁 ↔ 0 < 𝑆))
5653, 55syl 17 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0) ∧ 𝑆 ≠ 0) → ((𝑁𝑆) < 𝑁 ↔ 0 < 𝑆))
5749, 56mpbird 256 . . . . . . . . . . . . 13 (((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0) ∧ 𝑆 ≠ 0) → (𝑁𝑆) < 𝑁)
5857ex 412 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝑆 ∈ ℕ0) → (𝑆 ≠ 0 → (𝑁𝑆) < 𝑁))
5943, 44, 58syl2anc 583 . . . . . . . . . . 11 (𝑆 ∈ (0..^𝑁) → (𝑆 ≠ 0 → (𝑁𝑆) < 𝑁))
605, 59syl 17 . . . . . . . . . 10 (𝜑 → (𝑆 ≠ 0 → (𝑁𝑆) < 𝑁))
6160imp 406 . . . . . . . . 9 ((𝜑𝑆 ≠ 0) → (𝑁𝑆) < 𝑁)
625adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑆 ≠ 0) → 𝑆 ∈ (0..^𝑁))
631, 2, 32, 4, 62, 6crctcshlem2 28084 . . . . . . . . . . . 12 ((𝜑𝑆 ≠ 0) → (♯‘𝐻) = 𝑁)
6463breq1d 5080 . . . . . . . . . . 11 ((𝜑𝑆 ≠ 0) → ((♯‘𝐻) ≤ (𝑁𝑆) ↔ 𝑁 ≤ (𝑁𝑆)))
6564notbid 317 . . . . . . . . . 10 ((𝜑𝑆 ≠ 0) → (¬ (♯‘𝐻) ≤ (𝑁𝑆) ↔ ¬ 𝑁 ≤ (𝑁𝑆)))
6623, 26resubcld 11333 . . . . . . . . . . . . 13 (𝜑 → (𝑁𝑆) ∈ ℝ)
6766, 23jca 511 . . . . . . . . . . . 12 (𝜑 → ((𝑁𝑆) ∈ ℝ ∧ 𝑁 ∈ ℝ))
6867adantr 480 . . . . . . . . . . 11 ((𝜑𝑆 ≠ 0) → ((𝑁𝑆) ∈ ℝ ∧ 𝑁 ∈ ℝ))
69 ltnle 10985 . . . . . . . . . . 11 (((𝑁𝑆) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝑁𝑆) < 𝑁 ↔ ¬ 𝑁 ≤ (𝑁𝑆)))
7068, 69syl 17 . . . . . . . . . 10 ((𝜑𝑆 ≠ 0) → ((𝑁𝑆) < 𝑁 ↔ ¬ 𝑁 ≤ (𝑁𝑆)))
7165, 70bitr4d 281 . . . . . . . . 9 ((𝜑𝑆 ≠ 0) → (¬ (♯‘𝐻) ≤ (𝑁𝑆) ↔ (𝑁𝑆) < 𝑁))
7261, 71mpbird 256 . . . . . . . 8 ((𝜑𝑆 ≠ 0) → ¬ (♯‘𝐻) ≤ (𝑁𝑆))
7372iffalsed 4467 . . . . . . 7 ((𝜑𝑆 ≠ 0) → if((♯‘𝐻) ≤ (𝑁𝑆), (𝑃‘((♯‘𝐻) + 𝑆)), (𝑃‘(((♯‘𝐻) + 𝑆) − 𝑁))) = (𝑃‘(((♯‘𝐻) + 𝑆) − 𝑁)))
7442, 73sylan9eqr 2801 . . . . . 6 (((𝜑𝑆 ≠ 0) ∧ 𝑥 = (♯‘𝐻)) → if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))) = (𝑃‘(((♯‘𝐻) + 𝑆) − 𝑁)))
751, 2, 3, 4, 5, 6crctcshlem2 28084 . . . . . . . . . . . . 13 (𝜑 → (♯‘𝐻) = 𝑁)
7675, 22eqeltrd 2839 . . . . . . . . . . . 12 (𝜑 → (♯‘𝐻) ∈ ℕ0)
7776nn0cnd 12225 . . . . . . . . . . 11 (𝜑 → (♯‘𝐻) ∈ ℂ)
7825zcnd 12356 . . . . . . . . . . 11 (𝜑𝑆 ∈ ℂ)
7922nn0cnd 12225 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℂ)
8077, 78, 79addsubd 11283 . . . . . . . . . 10 (𝜑 → (((♯‘𝐻) + 𝑆) − 𝑁) = (((♯‘𝐻) − 𝑁) + 𝑆))
8175oveq1d 7270 . . . . . . . . . . . 12 (𝜑 → ((♯‘𝐻) − 𝑁) = (𝑁𝑁))
8279subidd 11250 . . . . . . . . . . . 12 (𝜑 → (𝑁𝑁) = 0)
8381, 82eqtrd 2778 . . . . . . . . . . 11 (𝜑 → ((♯‘𝐻) − 𝑁) = 0)
8483oveq1d 7270 . . . . . . . . . 10 (𝜑 → (((♯‘𝐻) − 𝑁) + 𝑆) = (0 + 𝑆))
8580, 84eqtrd 2778 . . . . . . . . 9 (𝜑 → (((♯‘𝐻) + 𝑆) − 𝑁) = (0 + 𝑆))
8685fveq2d 6760 . . . . . . . 8 (𝜑 → (𝑃‘(((♯‘𝐻) + 𝑆) − 𝑁)) = (𝑃‘(0 + 𝑆)))
8786adantr 480 . . . . . . 7 ((𝜑𝑆 ≠ 0) → (𝑃‘(((♯‘𝐻) + 𝑆) − 𝑁)) = (𝑃‘(0 + 𝑆)))
8887adantr 480 . . . . . 6 (((𝜑𝑆 ≠ 0) ∧ 𝑥 = (♯‘𝐻)) → (𝑃‘(((♯‘𝐻) + 𝑆) − 𝑁)) = (𝑃‘(0 + 𝑆)))
8974, 88eqtrd 2778 . . . . 5 (((𝜑𝑆 ≠ 0) ∧ 𝑥 = (♯‘𝐻)) → if(𝑥 ≤ (𝑁𝑆), (𝑃‘(𝑥 + 𝑆)), (𝑃‘((𝑥 + 𝑆) − 𝑁))) = (𝑃‘(0 + 𝑆)))
9075adantr 480 . . . . . 6 ((𝜑𝑆 ≠ 0) → (♯‘𝐻) = 𝑁)
91 nn0fz0 13283 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ (0...𝑁))
9222, 91sylib 217 . . . . . . 7 (𝜑𝑁 ∈ (0...𝑁))
9392adantr 480 . . . . . 6 ((𝜑𝑆 ≠ 0) → 𝑁 ∈ (0...𝑁))
9490, 93eqeltrd 2839 . . . . 5 ((𝜑𝑆 ≠ 0) → (♯‘𝐻) ∈ (0...𝑁))
957, 89, 94, 36fvmptd2 6865 . . . 4 ((𝜑𝑆 ≠ 0) → (𝑄‘(♯‘𝐻)) = (𝑃‘(0 + 𝑆)))
9637, 95eqtr4d 2781 . . 3 ((𝜑𝑆 ≠ 0) → (𝑄‘0) = (𝑄‘(♯‘𝐻)))
97 iscrct 28059 . . 3 (𝐻(Circuits‘𝐺)𝑄 ↔ (𝐻(Trails‘𝐺)𝑄 ∧ (𝑄‘0) = (𝑄‘(♯‘𝐻))))
9814, 96, 97sylanbrc 582 . 2 ((𝜑𝑆 ≠ 0) → 𝐻(Circuits‘𝐺)𝑄)
9912, 98pm2.61dane 3031 1 (𝜑𝐻(Circuits‘𝐺)𝑄)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  Vcvv 3422  ifcif 4456   class class class wbr 5070  cmpt 5153  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802   + caddc 10805   < clt 10940  cle 10941  cmin 11135  cn 11903  0cn0 12163  cz 12249  ...cfz 13168  ..^cfzo 13311  chash 13972   cyclShift ccsh 14429  Vtxcvtx 27269  iEdgciedg 27270  Trailsctrls 27960  Circuitsccrcts 28053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-hash 13973  df-word 14146  df-concat 14202  df-substr 14282  df-pfx 14312  df-csh 14430  df-wlks 27869  df-trls 27962  df-crcts 28055
This theorem is referenced by:  eucrctshift  28508
  Copyright terms: Public domain W3C validator