MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem7 Structured version   Visualization version   GIF version

Theorem isf32lem7 10399
Description: Lemma for isfin3-2 10407. Different K values are disjoint. (Contributed by Stefan O'Rear, 5-Nov-2014.)
Hypotheses
Ref Expression
isf32lem.a (𝜑𝐹:ω⟶𝒫 𝐺)
isf32lem.b (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
isf32lem.c (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
isf32lem.d 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)}
isf32lem.e 𝐽 = (𝑢 ∈ ω ↦ (𝑣𝑆 (𝑣𝑆) ≈ 𝑢))
isf32lem.f 𝐾 = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)
Assertion
Ref Expression
isf32lem7 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐾𝐴) ∩ (𝐾𝐵)) = ∅)
Distinct variable groups:   𝑥,𝑤,𝐵   𝑣,𝑢,𝑤,𝑥,𝑦,𝜑   𝑤,𝐴,𝑥,𝑦   𝑤,𝐹,𝑥,𝑦   𝑢,𝑆,𝑣,𝑤,𝑥,𝑦   𝑤,𝐽,𝑥,𝑦   𝑥,𝐾,𝑦
Allowed substitution hints:   𝐴(𝑣,𝑢)   𝐵(𝑦,𝑣,𝑢)   𝐹(𝑣,𝑢)   𝐺(𝑥,𝑦,𝑤,𝑣,𝑢)   𝐽(𝑣,𝑢)   𝐾(𝑤,𝑣,𝑢)

Proof of Theorem isf32lem7
StepHypRef Expression
1 isf32lem.f . . . . 5 𝐾 = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)
21fveq1i 6907 . . . 4 (𝐾𝐴) = (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴)
3 isf32lem.d . . . . . . . . . 10 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)}
43ssrab3 4082 . . . . . . . . 9 𝑆 ⊆ ω
5 isf32lem.a . . . . . . . . . 10 (𝜑𝐹:ω⟶𝒫 𝐺)
6 isf32lem.b . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
7 isf32lem.c . . . . . . . . . 10 (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
85, 6, 7, 3isf32lem5 10397 . . . . . . . . 9 (𝜑 → ¬ 𝑆 ∈ Fin)
9 isf32lem.e . . . . . . . . . 10 𝐽 = (𝑢 ∈ ω ↦ (𝑣𝑆 (𝑣𝑆) ≈ 𝑢))
109fin23lem22 10367 . . . . . . . . 9 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → 𝐽:ω–1-1-onto𝑆)
114, 8, 10sylancr 587 . . . . . . . 8 (𝜑𝐽:ω–1-1-onto𝑆)
12 f1of 6848 . . . . . . . 8 (𝐽:ω–1-1-onto𝑆𝐽:ω⟶𝑆)
1311, 12syl 17 . . . . . . 7 (𝜑𝐽:ω⟶𝑆)
14 fvco3 7008 . . . . . . 7 ((𝐽:ω⟶𝑆𝐴 ∈ ω) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐴)))
1513, 14sylan 580 . . . . . 6 ((𝜑𝐴 ∈ ω) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐴)))
1615ad2ant2r 747 . . . . 5 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐴)))
1713adantr 480 . . . . . . 7 ((𝜑𝐴𝐵) → 𝐽:ω⟶𝑆)
18 simpl 482 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω)
19 ffvelcdm 7101 . . . . . . 7 ((𝐽:ω⟶𝑆𝐴 ∈ ω) → (𝐽𝐴) ∈ 𝑆)
2017, 18, 19syl2an 596 . . . . . 6 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐽𝐴) ∈ 𝑆)
21 fveq2 6906 . . . . . . . 8 (𝑤 = (𝐽𝐴) → (𝐹𝑤) = (𝐹‘(𝐽𝐴)))
22 suceq 6450 . . . . . . . . 9 (𝑤 = (𝐽𝐴) → suc 𝑤 = suc (𝐽𝐴))
2322fveq2d 6910 . . . . . . . 8 (𝑤 = (𝐽𝐴) → (𝐹‘suc 𝑤) = (𝐹‘suc (𝐽𝐴)))
2421, 23difeq12d 4127 . . . . . . 7 (𝑤 = (𝐽𝐴) → ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
25 eqid 2737 . . . . . . 7 (𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) = (𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))
26 fvex 6919 . . . . . . . 8 (𝐹‘(𝐽𝐴)) ∈ V
2726difexi 5330 . . . . . . 7 ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))) ∈ V
2824, 25, 27fvmpt 7016 . . . . . 6 ((𝐽𝐴) ∈ 𝑆 → ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐴)) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
2920, 28syl 17 . . . . 5 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐴)) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
3016, 29eqtrd 2777 . . . 4 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
312, 30eqtrid 2789 . . 3 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐾𝐴) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
321fveq1i 6907 . . . 4 (𝐾𝐵) = (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐵)
33 fvco3 7008 . . . . . . 7 ((𝐽:ω⟶𝑆𝐵 ∈ ω) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐵) = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐵)))
3413, 33sylan 580 . . . . . 6 ((𝜑𝐵 ∈ ω) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐵) = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐵)))
3534ad2ant2rl 749 . . . . 5 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐵) = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐵)))
36 simpr 484 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐵 ∈ ω)
37 ffvelcdm 7101 . . . . . . 7 ((𝐽:ω⟶𝑆𝐵 ∈ ω) → (𝐽𝐵) ∈ 𝑆)
3817, 36, 37syl2an 596 . . . . . 6 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐽𝐵) ∈ 𝑆)
39 fveq2 6906 . . . . . . . 8 (𝑤 = (𝐽𝐵) → (𝐹𝑤) = (𝐹‘(𝐽𝐵)))
40 suceq 6450 . . . . . . . . 9 (𝑤 = (𝐽𝐵) → suc 𝑤 = suc (𝐽𝐵))
4140fveq2d 6910 . . . . . . . 8 (𝑤 = (𝐽𝐵) → (𝐹‘suc 𝑤) = (𝐹‘suc (𝐽𝐵)))
4239, 41difeq12d 4127 . . . . . . 7 (𝑤 = (𝐽𝐵) → ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)) = ((𝐹‘(𝐽𝐵)) ∖ (𝐹‘suc (𝐽𝐵))))
43 fvex 6919 . . . . . . . 8 (𝐹‘(𝐽𝐵)) ∈ V
4443difexi 5330 . . . . . . 7 ((𝐹‘(𝐽𝐵)) ∖ (𝐹‘suc (𝐽𝐵))) ∈ V
4542, 25, 44fvmpt 7016 . . . . . 6 ((𝐽𝐵) ∈ 𝑆 → ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐵)) = ((𝐹‘(𝐽𝐵)) ∖ (𝐹‘suc (𝐽𝐵))))
4638, 45syl 17 . . . . 5 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐵)) = ((𝐹‘(𝐽𝐵)) ∖ (𝐹‘suc (𝐽𝐵))))
4735, 46eqtrd 2777 . . . 4 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐵) = ((𝐹‘(𝐽𝐵)) ∖ (𝐹‘suc (𝐽𝐵))))
4832, 47eqtrid 2789 . . 3 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐾𝐵) = ((𝐹‘(𝐽𝐵)) ∖ (𝐹‘suc (𝐽𝐵))))
4931, 48ineq12d 4221 . 2 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐾𝐴) ∩ (𝐾𝐵)) = (((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))) ∩ ((𝐹‘(𝐽𝐵)) ∖ (𝐹‘suc (𝐽𝐵)))))
50 simpll 767 . . 3 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → 𝜑)
51 simplr 769 . . . 4 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → 𝐴𝐵)
52 f1of1 6847 . . . . . . . . 9 (𝐽:ω–1-1-onto𝑆𝐽:ω–1-1𝑆)
5311, 52syl 17 . . . . . . . 8 (𝜑𝐽:ω–1-1𝑆)
5453adantr 480 . . . . . . 7 ((𝜑𝐴𝐵) → 𝐽:ω–1-1𝑆)
55 f1fveq 7282 . . . . . . 7 ((𝐽:ω–1-1𝑆 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐽𝐴) = (𝐽𝐵) ↔ 𝐴 = 𝐵))
5654, 55sylan 580 . . . . . 6 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐽𝐴) = (𝐽𝐵) ↔ 𝐴 = 𝐵))
5756biimpd 229 . . . . 5 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐽𝐴) = (𝐽𝐵) → 𝐴 = 𝐵))
5857necon3d 2961 . . . 4 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴𝐵 → (𝐽𝐴) ≠ (𝐽𝐵)))
5951, 58mpd 15 . . 3 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐽𝐴) ≠ (𝐽𝐵))
604, 20sselid 3981 . . 3 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐽𝐴) ∈ ω)
614, 38sselid 3981 . . 3 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐽𝐵) ∈ ω)
625, 6, 7isf32lem4 10396 . . 3 (((𝜑 ∧ (𝐽𝐴) ≠ (𝐽𝐵)) ∧ ((𝐽𝐴) ∈ ω ∧ (𝐽𝐵) ∈ ω)) → (((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))) ∩ ((𝐹‘(𝐽𝐵)) ∖ (𝐹‘suc (𝐽𝐵)))) = ∅)
6350, 59, 60, 61, 62syl22anc 839 . 2 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))) ∩ ((𝐹‘(𝐽𝐵)) ∖ (𝐹‘suc (𝐽𝐵)))) = ∅)
6449, 63eqtrd 2777 1 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐾𝐴) ∩ (𝐾𝐵)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061  {crab 3436  cdif 3948  cin 3950  wss 3951  wpss 3952  c0 4333  𝒫 cpw 4600   cint 4946   class class class wbr 5143  cmpt 5225  ran crn 5686  ccom 5689  suc csuc 6386  wf 6557  1-1wf1 6558  1-1-ontowf1o 6560  cfv 6561  crio 7387  ωcom 7887  cen 8982  Fincfn 8985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-1o 8506  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979
This theorem is referenced by:  isf32lem9  10401
  Copyright terms: Public domain W3C validator