MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem7 Structured version   Visualization version   GIF version

Theorem isf32lem7 9781
Description: Lemma for isfin3-2 9789. Different K values are disjoint. (Contributed by Stefan O'Rear, 5-Nov-2014.)
Hypotheses
Ref Expression
isf32lem.a (𝜑𝐹:ω⟶𝒫 𝐺)
isf32lem.b (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
isf32lem.c (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
isf32lem.d 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)}
isf32lem.e 𝐽 = (𝑢 ∈ ω ↦ (𝑣𝑆 (𝑣𝑆) ≈ 𝑢))
isf32lem.f 𝐾 = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)
Assertion
Ref Expression
isf32lem7 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐾𝐴) ∩ (𝐾𝐵)) = ∅)
Distinct variable groups:   𝑥,𝑤,𝐵   𝑣,𝑢,𝑤,𝑥,𝑦,𝜑   𝑤,𝐴,𝑥,𝑦   𝑤,𝐹,𝑥,𝑦   𝑢,𝑆,𝑣,𝑤,𝑥,𝑦   𝑤,𝐽,𝑥,𝑦   𝑥,𝐾,𝑦
Allowed substitution hints:   𝐴(𝑣,𝑢)   𝐵(𝑦,𝑣,𝑢)   𝐹(𝑣,𝑢)   𝐺(𝑥,𝑦,𝑤,𝑣,𝑢)   𝐽(𝑣,𝑢)   𝐾(𝑤,𝑣,𝑢)

Proof of Theorem isf32lem7
StepHypRef Expression
1 isf32lem.f . . . . 5 𝐾 = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)
21fveq1i 6671 . . . 4 (𝐾𝐴) = (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴)
3 isf32lem.d . . . . . . . . . 10 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)}
43ssrab3 4057 . . . . . . . . 9 𝑆 ⊆ ω
5 isf32lem.a . . . . . . . . . 10 (𝜑𝐹:ω⟶𝒫 𝐺)
6 isf32lem.b . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
7 isf32lem.c . . . . . . . . . 10 (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
85, 6, 7, 3isf32lem5 9779 . . . . . . . . 9 (𝜑 → ¬ 𝑆 ∈ Fin)
9 isf32lem.e . . . . . . . . . 10 𝐽 = (𝑢 ∈ ω ↦ (𝑣𝑆 (𝑣𝑆) ≈ 𝑢))
109fin23lem22 9749 . . . . . . . . 9 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → 𝐽:ω–1-1-onto𝑆)
114, 8, 10sylancr 589 . . . . . . . 8 (𝜑𝐽:ω–1-1-onto𝑆)
12 f1of 6615 . . . . . . . 8 (𝐽:ω–1-1-onto𝑆𝐽:ω⟶𝑆)
1311, 12syl 17 . . . . . . 7 (𝜑𝐽:ω⟶𝑆)
14 fvco3 6760 . . . . . . 7 ((𝐽:ω⟶𝑆𝐴 ∈ ω) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐴)))
1513, 14sylan 582 . . . . . 6 ((𝜑𝐴 ∈ ω) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐴)))
1615ad2ant2r 745 . . . . 5 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐴)))
1713adantr 483 . . . . . . 7 ((𝜑𝐴𝐵) → 𝐽:ω⟶𝑆)
18 simpl 485 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω)
19 ffvelrn 6849 . . . . . . 7 ((𝐽:ω⟶𝑆𝐴 ∈ ω) → (𝐽𝐴) ∈ 𝑆)
2017, 18, 19syl2an 597 . . . . . 6 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐽𝐴) ∈ 𝑆)
21 fveq2 6670 . . . . . . . 8 (𝑤 = (𝐽𝐴) → (𝐹𝑤) = (𝐹‘(𝐽𝐴)))
22 suceq 6256 . . . . . . . . 9 (𝑤 = (𝐽𝐴) → suc 𝑤 = suc (𝐽𝐴))
2322fveq2d 6674 . . . . . . . 8 (𝑤 = (𝐽𝐴) → (𝐹‘suc 𝑤) = (𝐹‘suc (𝐽𝐴)))
2421, 23difeq12d 4100 . . . . . . 7 (𝑤 = (𝐽𝐴) → ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
25 eqid 2821 . . . . . . 7 (𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) = (𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))
26 fvex 6683 . . . . . . . 8 (𝐹‘(𝐽𝐴)) ∈ V
2726difexi 5232 . . . . . . 7 ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))) ∈ V
2824, 25, 27fvmpt 6768 . . . . . 6 ((𝐽𝐴) ∈ 𝑆 → ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐴)) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
2920, 28syl 17 . . . . 5 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐴)) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
3016, 29eqtrd 2856 . . . 4 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
312, 30syl5eq 2868 . . 3 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐾𝐴) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
321fveq1i 6671 . . . 4 (𝐾𝐵) = (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐵)
33 fvco3 6760 . . . . . . 7 ((𝐽:ω⟶𝑆𝐵 ∈ ω) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐵) = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐵)))
3413, 33sylan 582 . . . . . 6 ((𝜑𝐵 ∈ ω) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐵) = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐵)))
3534ad2ant2rl 747 . . . . 5 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐵) = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐵)))
36 simpr 487 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐵 ∈ ω)
37 ffvelrn 6849 . . . . . . 7 ((𝐽:ω⟶𝑆𝐵 ∈ ω) → (𝐽𝐵) ∈ 𝑆)
3817, 36, 37syl2an 597 . . . . . 6 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐽𝐵) ∈ 𝑆)
39 fveq2 6670 . . . . . . . 8 (𝑤 = (𝐽𝐵) → (𝐹𝑤) = (𝐹‘(𝐽𝐵)))
40 suceq 6256 . . . . . . . . 9 (𝑤 = (𝐽𝐵) → suc 𝑤 = suc (𝐽𝐵))
4140fveq2d 6674 . . . . . . . 8 (𝑤 = (𝐽𝐵) → (𝐹‘suc 𝑤) = (𝐹‘suc (𝐽𝐵)))
4239, 41difeq12d 4100 . . . . . . 7 (𝑤 = (𝐽𝐵) → ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)) = ((𝐹‘(𝐽𝐵)) ∖ (𝐹‘suc (𝐽𝐵))))
43 fvex 6683 . . . . . . . 8 (𝐹‘(𝐽𝐵)) ∈ V
4443difexi 5232 . . . . . . 7 ((𝐹‘(𝐽𝐵)) ∖ (𝐹‘suc (𝐽𝐵))) ∈ V
4542, 25, 44fvmpt 6768 . . . . . 6 ((𝐽𝐵) ∈ 𝑆 → ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐵)) = ((𝐹‘(𝐽𝐵)) ∖ (𝐹‘suc (𝐽𝐵))))
4638, 45syl 17 . . . . 5 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐵)) = ((𝐹‘(𝐽𝐵)) ∖ (𝐹‘suc (𝐽𝐵))))
4735, 46eqtrd 2856 . . . 4 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐵) = ((𝐹‘(𝐽𝐵)) ∖ (𝐹‘suc (𝐽𝐵))))
4832, 47syl5eq 2868 . . 3 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐾𝐵) = ((𝐹‘(𝐽𝐵)) ∖ (𝐹‘suc (𝐽𝐵))))
4931, 48ineq12d 4190 . 2 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐾𝐴) ∩ (𝐾𝐵)) = (((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))) ∩ ((𝐹‘(𝐽𝐵)) ∖ (𝐹‘suc (𝐽𝐵)))))
50 simpll 765 . . 3 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → 𝜑)
51 simplr 767 . . . 4 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → 𝐴𝐵)
52 f1of1 6614 . . . . . . . . 9 (𝐽:ω–1-1-onto𝑆𝐽:ω–1-1𝑆)
5311, 52syl 17 . . . . . . . 8 (𝜑𝐽:ω–1-1𝑆)
5453adantr 483 . . . . . . 7 ((𝜑𝐴𝐵) → 𝐽:ω–1-1𝑆)
55 f1fveq 7020 . . . . . . 7 ((𝐽:ω–1-1𝑆 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐽𝐴) = (𝐽𝐵) ↔ 𝐴 = 𝐵))
5654, 55sylan 582 . . . . . 6 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐽𝐴) = (𝐽𝐵) ↔ 𝐴 = 𝐵))
5756biimpd 231 . . . . 5 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐽𝐴) = (𝐽𝐵) → 𝐴 = 𝐵))
5857necon3d 3037 . . . 4 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴𝐵 → (𝐽𝐴) ≠ (𝐽𝐵)))
5951, 58mpd 15 . . 3 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐽𝐴) ≠ (𝐽𝐵))
604, 20sseldi 3965 . . 3 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐽𝐴) ∈ ω)
614, 38sseldi 3965 . . 3 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐽𝐵) ∈ ω)
625, 6, 7isf32lem4 9778 . . 3 (((𝜑 ∧ (𝐽𝐴) ≠ (𝐽𝐵)) ∧ ((𝐽𝐴) ∈ ω ∧ (𝐽𝐵) ∈ ω)) → (((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))) ∩ ((𝐹‘(𝐽𝐵)) ∖ (𝐹‘suc (𝐽𝐵)))) = ∅)
6350, 59, 60, 61, 62syl22anc 836 . 2 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))) ∩ ((𝐹‘(𝐽𝐵)) ∖ (𝐹‘suc (𝐽𝐵)))) = ∅)
6449, 63eqtrd 2856 1 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐾𝐴) ∩ (𝐾𝐵)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016  wral 3138  {crab 3142  cdif 3933  cin 3935  wss 3936  wpss 3937  c0 4291  𝒫 cpw 4539   cint 4876   class class class wbr 5066  cmpt 5146  ran crn 5556  ccom 5559  suc csuc 6193  wf 6351  1-1wf1 6352  1-1-ontowf1o 6354  cfv 6355  crio 7113  ωcom 7580  cen 8506  Fincfn 8509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-om 7581  df-wrecs 7947  df-recs 8008  df-1o 8102  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-card 9368
This theorem is referenced by:  isf32lem9  9783
  Copyright terms: Public domain W3C validator