MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isf32lem7 Structured version   Visualization version   GIF version

Theorem isf32lem7 9460
Description: Lemma for isfin3-2 9468. Different K values are disjoint. (Contributed by Stefan O'Rear, 5-Nov-2014.)
Hypotheses
Ref Expression
isf32lem.a (𝜑𝐹:ω⟶𝒫 𝐺)
isf32lem.b (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
isf32lem.c (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
isf32lem.d 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)}
isf32lem.e 𝐽 = (𝑢 ∈ ω ↦ (𝑣𝑆 (𝑣𝑆) ≈ 𝑢))
isf32lem.f 𝐾 = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)
Assertion
Ref Expression
isf32lem7 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐾𝐴) ∩ (𝐾𝐵)) = ∅)
Distinct variable groups:   𝑥,𝑤,𝐵   𝑣,𝑢,𝑤,𝑥,𝑦,𝜑   𝑤,𝐴,𝑥,𝑦   𝑤,𝐹,𝑥,𝑦   𝑢,𝑆,𝑣,𝑤,𝑥,𝑦   𝑤,𝐽,𝑥,𝑦   𝑥,𝐾,𝑦
Allowed substitution hints:   𝐴(𝑣,𝑢)   𝐵(𝑦,𝑣,𝑢)   𝐹(𝑣,𝑢)   𝐺(𝑥,𝑦,𝑤,𝑣,𝑢)   𝐽(𝑣,𝑢)   𝐾(𝑤,𝑣,𝑢)

Proof of Theorem isf32lem7
StepHypRef Expression
1 isf32lem.f . . . . 5 𝐾 = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)
21fveq1i 6403 . . . 4 (𝐾𝐴) = (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴)
3 isf32lem.d . . . . . . . . . 10 𝑆 = {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)}
4 ssrab2 3878 . . . . . . . . . 10 {𝑦 ∈ ω ∣ (𝐹‘suc 𝑦) ⊊ (𝐹𝑦)} ⊆ ω
53, 4eqsstri 3826 . . . . . . . . 9 𝑆 ⊆ ω
6 isf32lem.a . . . . . . . . . 10 (𝜑𝐹:ω⟶𝒫 𝐺)
7 isf32lem.b . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ ω (𝐹‘suc 𝑥) ⊆ (𝐹𝑥))
8 isf32lem.c . . . . . . . . . 10 (𝜑 → ¬ ran 𝐹 ∈ ran 𝐹)
96, 7, 8, 3isf32lem5 9458 . . . . . . . . 9 (𝜑 → ¬ 𝑆 ∈ Fin)
10 isf32lem.e . . . . . . . . . 10 𝐽 = (𝑢 ∈ ω ↦ (𝑣𝑆 (𝑣𝑆) ≈ 𝑢))
1110fin23lem22 9428 . . . . . . . . 9 ((𝑆 ⊆ ω ∧ ¬ 𝑆 ∈ Fin) → 𝐽:ω–1-1-onto𝑆)
125, 9, 11sylancr 577 . . . . . . . 8 (𝜑𝐽:ω–1-1-onto𝑆)
13 f1of 6347 . . . . . . . 8 (𝐽:ω–1-1-onto𝑆𝐽:ω⟶𝑆)
1412, 13syl 17 . . . . . . 7 (𝜑𝐽:ω⟶𝑆)
15 fvco3 6490 . . . . . . 7 ((𝐽:ω⟶𝑆𝐴 ∈ ω) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐴)))
1614, 15sylan 571 . . . . . 6 ((𝜑𝐴 ∈ ω) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐴)))
1716ad2ant2r 744 . . . . 5 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐴)))
1814adantr 468 . . . . . . 7 ((𝜑𝐴𝐵) → 𝐽:ω⟶𝑆)
19 simpl 470 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω)
20 ffvelrn 6573 . . . . . . 7 ((𝐽:ω⟶𝑆𝐴 ∈ ω) → (𝐽𝐴) ∈ 𝑆)
2118, 19, 20syl2an 585 . . . . . 6 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐽𝐴) ∈ 𝑆)
22 fveq2 6402 . . . . . . . 8 (𝑤 = (𝐽𝐴) → (𝐹𝑤) = (𝐹‘(𝐽𝐴)))
23 suceq 5997 . . . . . . . . 9 (𝑤 = (𝐽𝐴) → suc 𝑤 = suc (𝐽𝐴))
2423fveq2d 6406 . . . . . . . 8 (𝑤 = (𝐽𝐴) → (𝐹‘suc 𝑤) = (𝐹‘suc (𝐽𝐴)))
2522, 24difeq12d 3922 . . . . . . 7 (𝑤 = (𝐽𝐴) → ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
26 eqid 2802 . . . . . . 7 (𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) = (𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))
27 fvex 6415 . . . . . . . 8 (𝐹‘(𝐽𝐴)) ∈ V
28 difexg 4997 . . . . . . . 8 ((𝐹‘(𝐽𝐴)) ∈ V → ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))) ∈ V)
2927, 28ax-mp 5 . . . . . . 7 ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))) ∈ V
3025, 26, 29fvmpt 6497 . . . . . 6 ((𝐽𝐴) ∈ 𝑆 → ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐴)) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
3121, 30syl 17 . . . . 5 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐴)) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
3217, 31eqtrd 2836 . . . 4 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐴) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
332, 32syl5eq 2848 . . 3 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐾𝐴) = ((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))))
341fveq1i 6403 . . . 4 (𝐾𝐵) = (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐵)
35 fvco3 6490 . . . . . . 7 ((𝐽:ω⟶𝑆𝐵 ∈ ω) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐵) = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐵)))
3614, 35sylan 571 . . . . . 6 ((𝜑𝐵 ∈ ω) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐵) = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐵)))
3736ad2ant2rl 746 . . . . 5 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐵) = ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐵)))
38 simpr 473 . . . . . . 7 ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐵 ∈ ω)
39 ffvelrn 6573 . . . . . . 7 ((𝐽:ω⟶𝑆𝐵 ∈ ω) → (𝐽𝐵) ∈ 𝑆)
4018, 38, 39syl2an 585 . . . . . 6 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐽𝐵) ∈ 𝑆)
41 fveq2 6402 . . . . . . . 8 (𝑤 = (𝐽𝐵) → (𝐹𝑤) = (𝐹‘(𝐽𝐵)))
42 suceq 5997 . . . . . . . . 9 (𝑤 = (𝐽𝐵) → suc 𝑤 = suc (𝐽𝐵))
4342fveq2d 6406 . . . . . . . 8 (𝑤 = (𝐽𝐵) → (𝐹‘suc 𝑤) = (𝐹‘suc (𝐽𝐵)))
4441, 43difeq12d 3922 . . . . . . 7 (𝑤 = (𝐽𝐵) → ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)) = ((𝐹‘(𝐽𝐵)) ∖ (𝐹‘suc (𝐽𝐵))))
45 fvex 6415 . . . . . . . 8 (𝐹‘(𝐽𝐵)) ∈ V
46 difexg 4997 . . . . . . . 8 ((𝐹‘(𝐽𝐵)) ∈ V → ((𝐹‘(𝐽𝐵)) ∖ (𝐹‘suc (𝐽𝐵))) ∈ V)
4745, 46ax-mp 5 . . . . . . 7 ((𝐹‘(𝐽𝐵)) ∖ (𝐹‘suc (𝐽𝐵))) ∈ V
4844, 26, 47fvmpt 6497 . . . . . 6 ((𝐽𝐵) ∈ 𝑆 → ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐵)) = ((𝐹‘(𝐽𝐵)) ∖ (𝐹‘suc (𝐽𝐵))))
4940, 48syl 17 . . . . 5 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤)))‘(𝐽𝐵)) = ((𝐹‘(𝐽𝐵)) ∖ (𝐹‘suc (𝐽𝐵))))
5037, 49eqtrd 2836 . . . 4 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (((𝑤𝑆 ↦ ((𝐹𝑤) ∖ (𝐹‘suc 𝑤))) ∘ 𝐽)‘𝐵) = ((𝐹‘(𝐽𝐵)) ∖ (𝐹‘suc (𝐽𝐵))))
5134, 50syl5eq 2848 . . 3 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐾𝐵) = ((𝐹‘(𝐽𝐵)) ∖ (𝐹‘suc (𝐽𝐵))))
5233, 51ineq12d 4008 . 2 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐾𝐴) ∩ (𝐾𝐵)) = (((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))) ∩ ((𝐹‘(𝐽𝐵)) ∖ (𝐹‘suc (𝐽𝐵)))))
53 simpll 774 . . 3 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → 𝜑)
54 simplr 776 . . . 4 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → 𝐴𝐵)
55 f1of1 6346 . . . . . . . . 9 (𝐽:ω–1-1-onto𝑆𝐽:ω–1-1𝑆)
5612, 55syl 17 . . . . . . . 8 (𝜑𝐽:ω–1-1𝑆)
5756adantr 468 . . . . . . 7 ((𝜑𝐴𝐵) → 𝐽:ω–1-1𝑆)
58 f1fveq 6737 . . . . . . 7 ((𝐽:ω–1-1𝑆 ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐽𝐴) = (𝐽𝐵) ↔ 𝐴 = 𝐵))
5957, 58sylan 571 . . . . . 6 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐽𝐴) = (𝐽𝐵) ↔ 𝐴 = 𝐵))
6059biimpd 220 . . . . 5 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐽𝐴) = (𝐽𝐵) → 𝐴 = 𝐵))
6160necon3d 2995 . . . 4 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐴𝐵 → (𝐽𝐴) ≠ (𝐽𝐵)))
6254, 61mpd 15 . . 3 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐽𝐴) ≠ (𝐽𝐵))
635, 21sseldi 3790 . . 3 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐽𝐴) ∈ ω)
645, 40sseldi 3790 . . 3 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (𝐽𝐵) ∈ ω)
656, 7, 8isf32lem4 9457 . . 3 (((𝜑 ∧ (𝐽𝐴) ≠ (𝐽𝐵)) ∧ ((𝐽𝐴) ∈ ω ∧ (𝐽𝐵) ∈ ω)) → (((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))) ∩ ((𝐹‘(𝐽𝐵)) ∖ (𝐹‘suc (𝐽𝐵)))) = ∅)
6653, 62, 63, 64, 65syl22anc 858 . 2 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → (((𝐹‘(𝐽𝐴)) ∖ (𝐹‘suc (𝐽𝐴))) ∩ ((𝐹‘(𝐽𝐵)) ∖ (𝐹‘suc (𝐽𝐵)))) = ∅)
6752, 66eqtrd 2836 1 (((𝜑𝐴𝐵) ∧ (𝐴 ∈ ω ∧ 𝐵 ∈ ω)) → ((𝐾𝐴) ∩ (𝐾𝐵)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384   = wceq 1637  wcel 2155  wne 2974  wral 3092  {crab 3096  Vcvv 3387  cdif 3760  cin 3762  wss 3763  wpss 3764  c0 4110  𝒫 cpw 4345   cint 4662   class class class wbr 4837  cmpt 4916  ran crn 5306  ccom 5309  suc csuc 5932  wf 6091  1-1wf1 6092  1-1-ontowf1o 6094  cfv 6095  crio 6828  ωcom 7289  cen 8183  Fincfn 8186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2067  ax-7 2103  ax-8 2157  ax-9 2164  ax-10 2184  ax-11 2200  ax-12 2213  ax-13 2419  ax-ext 2781  ax-rep 4957  ax-sep 4968  ax-nul 4977  ax-pow 5029  ax-pr 5090  ax-un 7173
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2060  df-eu 2633  df-mo 2634  df-clab 2789  df-cleq 2795  df-clel 2798  df-nfc 2933  df-ne 2975  df-ral 3097  df-rex 3098  df-reu 3099  df-rmo 3100  df-rab 3101  df-v 3389  df-sbc 3628  df-csb 3723  df-dif 3766  df-un 3768  df-in 3770  df-ss 3777  df-pss 3779  df-nul 4111  df-if 4274  df-pw 4347  df-sn 4365  df-pr 4367  df-tp 4369  df-op 4371  df-uni 4624  df-int 4663  df-iun 4707  df-br 4838  df-opab 4900  df-mpt 4917  df-tr 4940  df-id 5213  df-eprel 5218  df-po 5226  df-so 5227  df-fr 5264  df-se 5265  df-we 5266  df-xp 5311  df-rel 5312  df-cnv 5313  df-co 5314  df-dm 5315  df-rn 5316  df-res 5317  df-ima 5318  df-pred 5887  df-ord 5933  df-on 5934  df-lim 5935  df-suc 5936  df-iota 6058  df-fun 6097  df-fn 6098  df-f 6099  df-f1 6100  df-fo 6101  df-f1o 6102  df-fv 6103  df-isom 6104  df-riota 6829  df-om 7290  df-wrecs 7636  df-recs 7698  df-1o 7790  df-er 7973  df-en 8187  df-dom 8188  df-sdom 8189  df-fin 8190  df-card 9042
This theorem is referenced by:  isf32lem9  9462
  Copyright terms: Public domain W3C validator