MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin3-2 Structured version   Visualization version   GIF version

Theorem isfin3-2 10364
Description: Weakly Dedekind-infinite sets are exactly those which can be mapped onto ω. (Contributed by Stefan O'Rear, 6-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
isfin3-2 (𝐴𝑉 → (𝐴 ∈ FinIII ↔ ¬ ω ≼* 𝐴))

Proof of Theorem isfin3-2
Dummy variables 𝑎 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfin32i 10362 . 2 (𝐴 ∈ FinIII → ¬ ω ≼* 𝐴)
2 isf33lem 10363 . . 3 FinIII = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
32isf32lem12 10361 . 2 (𝐴𝑉 → (¬ ω ≼* 𝐴𝐴 ∈ FinIII))
41, 3impbid2 225 1 (𝐴𝑉 → (𝐴 ∈ FinIII ↔ ¬ ω ≼* 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wcel 2104   class class class wbr 5147  ωcom 7857  * cwdom 9561  FinIIIcfin3 10278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-seqom 8450  df-1o 8468  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-wdom 9562  df-card 9936  df-fin4 10284  df-fin3 10285
This theorem is referenced by:  fin1a2lem7  10403
  Copyright terms: Public domain W3C validator