| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isfin3-2 | Structured version Visualization version GIF version | ||
| Description: Weakly Dedekind-infinite sets are exactly those which can be mapped onto ω. (Contributed by Stefan O'Rear, 6-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.) |
| Ref | Expression |
|---|---|
| isfin3-2 | ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ FinIII ↔ ¬ ω ≼* 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfin32i 10256 | . 2 ⊢ (𝐴 ∈ FinIII → ¬ ω ≼* 𝐴) | |
| 2 | isf33lem 10257 | . . 3 ⊢ FinIII = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran 𝑎 ∈ ran 𝑎)} | |
| 3 | 2 | isf32lem12 10255 | . 2 ⊢ (𝐴 ∈ 𝑉 → (¬ ω ≼* 𝐴 → 𝐴 ∈ FinIII)) |
| 4 | 1, 3 | impbid2 226 | 1 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ FinIII ↔ ¬ ω ≼* 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∈ wcel 2111 class class class wbr 5089 ωcom 7796 ≼* cwdom 9450 FinIIIcfin3 10172 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-seqom 8367 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-wdom 9451 df-card 9832 df-fin4 10178 df-fin3 10179 |
| This theorem is referenced by: fin1a2lem7 10297 |
| Copyright terms: Public domain | W3C validator |