MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgss3 Structured version   Visualization version   GIF version

Theorem tgss3 22906
Description: A criterion for determining whether one topology is finer than another. Lemma 2.2 of [Munkres] p. 80 using abbreviations. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
tgss3 ((𝐵𝑉𝐶𝑊) → ((topGen‘𝐵) ⊆ (topGen‘𝐶) ↔ 𝐵 ⊆ (topGen‘𝐶)))

Proof of Theorem tgss3
StepHypRef Expression
1 bastg 22886 . . . 4 (𝐵𝑉𝐵 ⊆ (topGen‘𝐵))
21adantr 480 . . 3 ((𝐵𝑉𝐶𝑊) → 𝐵 ⊆ (topGen‘𝐵))
3 sstr2 3950 . . 3 (𝐵 ⊆ (topGen‘𝐵) → ((topGen‘𝐵) ⊆ (topGen‘𝐶) → 𝐵 ⊆ (topGen‘𝐶)))
42, 3syl 17 . 2 ((𝐵𝑉𝐶𝑊) → ((topGen‘𝐵) ⊆ (topGen‘𝐶) → 𝐵 ⊆ (topGen‘𝐶)))
5 fvex 6853 . . . 4 (topGen‘𝐶) ∈ V
6 tgss 22888 . . . 4 (((topGen‘𝐶) ∈ V ∧ 𝐵 ⊆ (topGen‘𝐶)) → (topGen‘𝐵) ⊆ (topGen‘(topGen‘𝐶)))
75, 6mpan 690 . . 3 (𝐵 ⊆ (topGen‘𝐶) → (topGen‘𝐵) ⊆ (topGen‘(topGen‘𝐶)))
8 tgidm 22900 . . . . 5 (𝐶𝑊 → (topGen‘(topGen‘𝐶)) = (topGen‘𝐶))
98adantl 481 . . . 4 ((𝐵𝑉𝐶𝑊) → (topGen‘(topGen‘𝐶)) = (topGen‘𝐶))
109sseq2d 3976 . . 3 ((𝐵𝑉𝐶𝑊) → ((topGen‘𝐵) ⊆ (topGen‘(topGen‘𝐶)) ↔ (topGen‘𝐵) ⊆ (topGen‘𝐶)))
117, 10imbitrid 244 . 2 ((𝐵𝑉𝐶𝑊) → (𝐵 ⊆ (topGen‘𝐶) → (topGen‘𝐵) ⊆ (topGen‘𝐶)))
124, 11impbid 212 1 ((𝐵𝑉𝐶𝑊) → ((topGen‘𝐵) ⊆ (topGen‘𝐶) ↔ 𝐵 ⊆ (topGen‘𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  wss 3911  cfv 6499  topGenctg 17376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-topgen 17382
This theorem is referenced by:  tgss2  22907  2basgen  22910  isfne4b  36322
  Copyright terms: Public domain W3C validator