| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tgss3 | Structured version Visualization version GIF version | ||
| Description: A criterion for determining whether one topology is finer than another. Lemma 2.2 of [Munkres] p. 80 using abbreviations. (Contributed by NM, 20-Jul-2006.) (Proof shortened by Mario Carneiro, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| tgss3 | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((topGen‘𝐵) ⊆ (topGen‘𝐶) ↔ 𝐵 ⊆ (topGen‘𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bastg 22853 | . . . 4 ⊢ (𝐵 ∈ 𝑉 → 𝐵 ⊆ (topGen‘𝐵)) | |
| 2 | 1 | adantr 480 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → 𝐵 ⊆ (topGen‘𝐵)) |
| 3 | sstr2 3953 | . . 3 ⊢ (𝐵 ⊆ (topGen‘𝐵) → ((topGen‘𝐵) ⊆ (topGen‘𝐶) → 𝐵 ⊆ (topGen‘𝐶))) | |
| 4 | 2, 3 | syl 17 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((topGen‘𝐵) ⊆ (topGen‘𝐶) → 𝐵 ⊆ (topGen‘𝐶))) |
| 5 | fvex 6871 | . . . 4 ⊢ (topGen‘𝐶) ∈ V | |
| 6 | tgss 22855 | . . . 4 ⊢ (((topGen‘𝐶) ∈ V ∧ 𝐵 ⊆ (topGen‘𝐶)) → (topGen‘𝐵) ⊆ (topGen‘(topGen‘𝐶))) | |
| 7 | 5, 6 | mpan 690 | . . 3 ⊢ (𝐵 ⊆ (topGen‘𝐶) → (topGen‘𝐵) ⊆ (topGen‘(topGen‘𝐶))) |
| 8 | tgidm 22867 | . . . . 5 ⊢ (𝐶 ∈ 𝑊 → (topGen‘(topGen‘𝐶)) = (topGen‘𝐶)) | |
| 9 | 8 | adantl 481 | . . . 4 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (topGen‘(topGen‘𝐶)) = (topGen‘𝐶)) |
| 10 | 9 | sseq2d 3979 | . . 3 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((topGen‘𝐵) ⊆ (topGen‘(topGen‘𝐶)) ↔ (topGen‘𝐵) ⊆ (topGen‘𝐶))) |
| 11 | 7, 10 | imbitrid 244 | . 2 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵 ⊆ (topGen‘𝐶) → (topGen‘𝐵) ⊆ (topGen‘𝐶))) |
| 12 | 4, 11 | impbid 212 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → ((topGen‘𝐵) ⊆ (topGen‘𝐶) ↔ 𝐵 ⊆ (topGen‘𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 ‘cfv 6511 topGenctg 17400 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-topgen 17406 |
| This theorem is referenced by: tgss2 22874 2basgen 22877 isfne4b 36329 |
| Copyright terms: Public domain | W3C validator |