MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrisval Structured version   Visualization version   GIF version

Theorem mrisval 17598
Description: Value of the set of independent sets of a Moore system. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mrisval.1 𝑁 = (mrCls‘𝐴)
mrisval.2 𝐼 = (mrInd‘𝐴)
Assertion
Ref Expression
mrisval (𝐴 ∈ (Moore‘𝑋) → 𝐼 = {𝑠 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))})
Distinct variable groups:   𝐴,𝑠,𝑥   𝑋,𝑠
Allowed substitution hints:   𝐼(𝑥,𝑠)   𝑁(𝑥,𝑠)   𝑋(𝑥)

Proof of Theorem mrisval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 mrisval.2 . . 3 𝐼 = (mrInd‘𝐴)
2 fvssunirn 6894 . . . . 5 (Moore‘𝑋) ⊆ ran Moore
32sseli 3945 . . . 4 (𝐴 ∈ (Moore‘𝑋) → 𝐴 ran Moore)
4 unieq 4885 . . . . . . 7 (𝑐 = 𝐴 𝑐 = 𝐴)
54pweqd 4583 . . . . . 6 (𝑐 = 𝐴 → 𝒫 𝑐 = 𝒫 𝐴)
6 fveq2 6861 . . . . . . . . . . 11 (𝑐 = 𝐴 → (mrCls‘𝑐) = (mrCls‘𝐴))
7 mrisval.1 . . . . . . . . . . 11 𝑁 = (mrCls‘𝐴)
86, 7eqtr4di 2783 . . . . . . . . . 10 (𝑐 = 𝐴 → (mrCls‘𝑐) = 𝑁)
98fveq1d 6863 . . . . . . . . 9 (𝑐 = 𝐴 → ((mrCls‘𝑐)‘(𝑠 ∖ {𝑥})) = (𝑁‘(𝑠 ∖ {𝑥})))
109eleq2d 2815 . . . . . . . 8 (𝑐 = 𝐴 → (𝑥 ∈ ((mrCls‘𝑐)‘(𝑠 ∖ {𝑥})) ↔ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))))
1110notbid 318 . . . . . . 7 (𝑐 = 𝐴 → (¬ 𝑥 ∈ ((mrCls‘𝑐)‘(𝑠 ∖ {𝑥})) ↔ ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))))
1211ralbidv 3157 . . . . . 6 (𝑐 = 𝐴 → (∀𝑥𝑠 ¬ 𝑥 ∈ ((mrCls‘𝑐)‘(𝑠 ∖ {𝑥})) ↔ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))))
135, 12rabeqbidv 3427 . . . . 5 (𝑐 = 𝐴 → {𝑠 ∈ 𝒫 𝑐 ∣ ∀𝑥𝑠 ¬ 𝑥 ∈ ((mrCls‘𝑐)‘(𝑠 ∖ {𝑥}))} = {𝑠 ∈ 𝒫 𝐴 ∣ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))})
14 df-mri 17556 . . . . 5 mrInd = (𝑐 ran Moore ↦ {𝑠 ∈ 𝒫 𝑐 ∣ ∀𝑥𝑠 ¬ 𝑥 ∈ ((mrCls‘𝑐)‘(𝑠 ∖ {𝑥}))})
15 vuniex 7718 . . . . . . 7 𝑐 ∈ V
1615pwex 5338 . . . . . 6 𝒫 𝑐 ∈ V
1716rabex 5297 . . . . 5 {𝑠 ∈ 𝒫 𝑐 ∣ ∀𝑥𝑠 ¬ 𝑥 ∈ ((mrCls‘𝑐)‘(𝑠 ∖ {𝑥}))} ∈ V
1813, 14, 17fvmpt3i 6976 . . . 4 (𝐴 ran Moore → (mrInd‘𝐴) = {𝑠 ∈ 𝒫 𝐴 ∣ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))})
193, 18syl 17 . . 3 (𝐴 ∈ (Moore‘𝑋) → (mrInd‘𝐴) = {𝑠 ∈ 𝒫 𝐴 ∣ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))})
201, 19eqtrid 2777 . 2 (𝐴 ∈ (Moore‘𝑋) → 𝐼 = {𝑠 ∈ 𝒫 𝐴 ∣ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))})
21 mreuni 17568 . . . 4 (𝐴 ∈ (Moore‘𝑋) → 𝐴 = 𝑋)
2221pweqd 4583 . . 3 (𝐴 ∈ (Moore‘𝑋) → 𝒫 𝐴 = 𝒫 𝑋)
2322rabeqdv 3424 . 2 (𝐴 ∈ (Moore‘𝑋) → {𝑠 ∈ 𝒫 𝐴 ∣ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))} = {𝑠 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))})
2420, 23eqtrd 2765 1 (𝐴 ∈ (Moore‘𝑋) → 𝐼 = {𝑠 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  wral 3045  {crab 3408  cdif 3914  𝒫 cpw 4566  {csn 4592   cuni 4874  ran crn 5642  cfv 6514  Moorecmre 17550  mrClscmrc 17551  mrIndcmri 17552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fv 6522  df-mre 17554  df-mri 17556
This theorem is referenced by:  ismri  17599
  Copyright terms: Public domain W3C validator