MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mrisval Structured version   Visualization version   GIF version

Theorem mrisval 17087
Description: Value of the set of independent sets of a Moore system. (Contributed by David Moews, 1-May-2017.)
Hypotheses
Ref Expression
mrisval.1 𝑁 = (mrCls‘𝐴)
mrisval.2 𝐼 = (mrInd‘𝐴)
Assertion
Ref Expression
mrisval (𝐴 ∈ (Moore‘𝑋) → 𝐼 = {𝑠 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))})
Distinct variable groups:   𝐴,𝑠,𝑥   𝑋,𝑠
Allowed substitution hints:   𝐼(𝑥,𝑠)   𝑁(𝑥,𝑠)   𝑋(𝑥)

Proof of Theorem mrisval
Dummy variable 𝑐 is distinct from all other variables.
StepHypRef Expression
1 mrisval.2 . . 3 𝐼 = (mrInd‘𝐴)
2 fvssunirn 6724 . . . . 5 (Moore‘𝑋) ⊆ ran Moore
32sseli 3883 . . . 4 (𝐴 ∈ (Moore‘𝑋) → 𝐴 ran Moore)
4 unieq 4816 . . . . . . 7 (𝑐 = 𝐴 𝑐 = 𝐴)
54pweqd 4518 . . . . . 6 (𝑐 = 𝐴 → 𝒫 𝑐 = 𝒫 𝐴)
6 fveq2 6695 . . . . . . . . . . 11 (𝑐 = 𝐴 → (mrCls‘𝑐) = (mrCls‘𝐴))
7 mrisval.1 . . . . . . . . . . 11 𝑁 = (mrCls‘𝐴)
86, 7eqtr4di 2789 . . . . . . . . . 10 (𝑐 = 𝐴 → (mrCls‘𝑐) = 𝑁)
98fveq1d 6697 . . . . . . . . 9 (𝑐 = 𝐴 → ((mrCls‘𝑐)‘(𝑠 ∖ {𝑥})) = (𝑁‘(𝑠 ∖ {𝑥})))
109eleq2d 2816 . . . . . . . 8 (𝑐 = 𝐴 → (𝑥 ∈ ((mrCls‘𝑐)‘(𝑠 ∖ {𝑥})) ↔ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))))
1110notbid 321 . . . . . . 7 (𝑐 = 𝐴 → (¬ 𝑥 ∈ ((mrCls‘𝑐)‘(𝑠 ∖ {𝑥})) ↔ ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))))
1211ralbidv 3108 . . . . . 6 (𝑐 = 𝐴 → (∀𝑥𝑠 ¬ 𝑥 ∈ ((mrCls‘𝑐)‘(𝑠 ∖ {𝑥})) ↔ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))))
135, 12rabeqbidv 3386 . . . . 5 (𝑐 = 𝐴 → {𝑠 ∈ 𝒫 𝑐 ∣ ∀𝑥𝑠 ¬ 𝑥 ∈ ((mrCls‘𝑐)‘(𝑠 ∖ {𝑥}))} = {𝑠 ∈ 𝒫 𝐴 ∣ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))})
14 df-mri 17045 . . . . 5 mrInd = (𝑐 ran Moore ↦ {𝑠 ∈ 𝒫 𝑐 ∣ ∀𝑥𝑠 ¬ 𝑥 ∈ ((mrCls‘𝑐)‘(𝑠 ∖ {𝑥}))})
15 vuniex 7505 . . . . . . 7 𝑐 ∈ V
1615pwex 5258 . . . . . 6 𝒫 𝑐 ∈ V
1716rabex 5210 . . . . 5 {𝑠 ∈ 𝒫 𝑐 ∣ ∀𝑥𝑠 ¬ 𝑥 ∈ ((mrCls‘𝑐)‘(𝑠 ∖ {𝑥}))} ∈ V
1813, 14, 17fvmpt3i 6801 . . . 4 (𝐴 ran Moore → (mrInd‘𝐴) = {𝑠 ∈ 𝒫 𝐴 ∣ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))})
193, 18syl 17 . . 3 (𝐴 ∈ (Moore‘𝑋) → (mrInd‘𝐴) = {𝑠 ∈ 𝒫 𝐴 ∣ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))})
201, 19syl5eq 2783 . 2 (𝐴 ∈ (Moore‘𝑋) → 𝐼 = {𝑠 ∈ 𝒫 𝐴 ∣ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))})
21 mreuni 17057 . . . 4 (𝐴 ∈ (Moore‘𝑋) → 𝐴 = 𝑋)
2221pweqd 4518 . . 3 (𝐴 ∈ (Moore‘𝑋) → 𝒫 𝐴 = 𝒫 𝑋)
2322rabeqdv 3385 . 2 (𝐴 ∈ (Moore‘𝑋) → {𝑠 ∈ 𝒫 𝐴 ∣ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))} = {𝑠 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))})
2420, 23eqtrd 2771 1 (𝐴 ∈ (Moore‘𝑋) → 𝐼 = {𝑠 ∈ 𝒫 𝑋 ∣ ∀𝑥𝑠 ¬ 𝑥 ∈ (𝑁‘(𝑠 ∖ {𝑥}))})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1543  wcel 2112  wral 3051  {crab 3055  cdif 3850  𝒫 cpw 4499  {csn 4527   cuni 4805  ran crn 5537  cfv 6358  Moorecmre 17039  mrClscmrc 17040  mrIndcmri 17041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3400  df-sbc 3684  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-iota 6316  df-fun 6360  df-fv 6366  df-mre 17043  df-mri 17045
This theorem is referenced by:  ismri  17088
  Copyright terms: Public domain W3C validator