Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  islnr3 Structured version   Visualization version   GIF version

Theorem islnr3 43272
Description: Relate left-Noetherian rings to Noetherian-type closure property of the left ideal system. (Contributed by Stefan O'Rear, 4-Apr-2015.)
Hypotheses
Ref Expression
islnr3.b 𝐵 = (Base‘𝑅)
islnr3.u 𝑈 = (LIdeal‘𝑅)
Assertion
Ref Expression
islnr3 (𝑅 ∈ LNoeR ↔ (𝑅 ∈ Ring ∧ 𝑈 ∈ (NoeACS‘𝐵)))

Proof of Theorem islnr3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 islnr3.b . . 3 𝐵 = (Base‘𝑅)
2 islnr3.u . . 3 𝑈 = (LIdeal‘𝑅)
3 eqid 2733 . . 3 (RSpan‘𝑅) = (RSpan‘𝑅)
41, 2, 3islnr2 43271 . 2 (𝑅 ∈ LNoeR ↔ (𝑅 ∈ Ring ∧ ∀𝑥𝑈𝑦 ∈ (𝒫 𝐵 ∩ Fin)𝑥 = ((RSpan‘𝑅)‘𝑦)))
5 eqid 2733 . . . . . . . . . 10 (mrCls‘𝑈) = (mrCls‘𝑈)
62, 3, 5mrcrsp 21187 . . . . . . . . 9 (𝑅 ∈ Ring → (RSpan‘𝑅) = (mrCls‘𝑈))
76fveq1d 6833 . . . . . . . 8 (𝑅 ∈ Ring → ((RSpan‘𝑅)‘𝑦) = ((mrCls‘𝑈)‘𝑦))
87eqeq2d 2744 . . . . . . 7 (𝑅 ∈ Ring → (𝑥 = ((RSpan‘𝑅)‘𝑦) ↔ 𝑥 = ((mrCls‘𝑈)‘𝑦)))
98rexbidv 3157 . . . . . 6 (𝑅 ∈ Ring → (∃𝑦 ∈ (𝒫 𝐵 ∩ Fin)𝑥 = ((RSpan‘𝑅)‘𝑦) ↔ ∃𝑦 ∈ (𝒫 𝐵 ∩ Fin)𝑥 = ((mrCls‘𝑈)‘𝑦)))
109ralbidv 3156 . . . . 5 (𝑅 ∈ Ring → (∀𝑥𝑈𝑦 ∈ (𝒫 𝐵 ∩ Fin)𝑥 = ((RSpan‘𝑅)‘𝑦) ↔ ∀𝑥𝑈𝑦 ∈ (𝒫 𝐵 ∩ Fin)𝑥 = ((mrCls‘𝑈)‘𝑦)))
111, 2lidlacs 21180 . . . . . 6 (𝑅 ∈ Ring → 𝑈 ∈ (ACS‘𝐵))
1211biantrurd 532 . . . . 5 (𝑅 ∈ Ring → (∀𝑥𝑈𝑦 ∈ (𝒫 𝐵 ∩ Fin)𝑥 = ((mrCls‘𝑈)‘𝑦) ↔ (𝑈 ∈ (ACS‘𝐵) ∧ ∀𝑥𝑈𝑦 ∈ (𝒫 𝐵 ∩ Fin)𝑥 = ((mrCls‘𝑈)‘𝑦))))
1310, 12bitrd 279 . . . 4 (𝑅 ∈ Ring → (∀𝑥𝑈𝑦 ∈ (𝒫 𝐵 ∩ Fin)𝑥 = ((RSpan‘𝑅)‘𝑦) ↔ (𝑈 ∈ (ACS‘𝐵) ∧ ∀𝑥𝑈𝑦 ∈ (𝒫 𝐵 ∩ Fin)𝑥 = ((mrCls‘𝑈)‘𝑦))))
145isnacs 42861 . . . 4 (𝑈 ∈ (NoeACS‘𝐵) ↔ (𝑈 ∈ (ACS‘𝐵) ∧ ∀𝑥𝑈𝑦 ∈ (𝒫 𝐵 ∩ Fin)𝑥 = ((mrCls‘𝑈)‘𝑦)))
1513, 14bitr4di 289 . . 3 (𝑅 ∈ Ring → (∀𝑥𝑈𝑦 ∈ (𝒫 𝐵 ∩ Fin)𝑥 = ((RSpan‘𝑅)‘𝑦) ↔ 𝑈 ∈ (NoeACS‘𝐵)))
1615pm5.32i 574 . 2 ((𝑅 ∈ Ring ∧ ∀𝑥𝑈𝑦 ∈ (𝒫 𝐵 ∩ Fin)𝑥 = ((RSpan‘𝑅)‘𝑦)) ↔ (𝑅 ∈ Ring ∧ 𝑈 ∈ (NoeACS‘𝐵)))
174, 16bitri 275 1 (𝑅 ∈ LNoeR ↔ (𝑅 ∈ Ring ∧ 𝑈 ∈ (NoeACS‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2113  wral 3048  wrex 3057  cin 3897  𝒫 cpw 4551  cfv 6489  Fincfn 8879  Basecbs 17127  mrClscmrc 17493  ACScacs 17495  Ringcrg 20159  LIdealclidl 21152  RSpancrsp 21153  NoeACScnacs 42859  LNoeRclnr 43266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-iin 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-3 12200  df-4 12201  df-5 12202  df-6 12203  df-7 12204  df-8 12205  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-mulr 17182  df-sca 17184  df-vsca 17185  df-ip 17186  df-0g 17352  df-mre 17496  df-mrc 17497  df-acs 17499  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-submnd 18700  df-grp 18857  df-minusg 18858  df-sbg 18859  df-subg 19044  df-mgp 20067  df-ur 20108  df-ring 20161  df-subrg 20494  df-lmod 20804  df-lss 20874  df-lsp 20914  df-sra 21116  df-rgmod 21117  df-lidl 21154  df-rsp 21155  df-nacs 42860  df-lfig 43225  df-lnm 43233  df-lnr 43267
This theorem is referenced by:  hbt  43287
  Copyright terms: Public domain W3C validator