![]() |
Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > islnr3 | Structured version Visualization version GIF version |
Description: Relate left-Noetherian rings to Noetherian-type closure property of the left ideal system. (Contributed by Stefan O'Rear, 4-Apr-2015.) |
Ref | Expression |
---|---|
islnr3.b | ⊢ 𝐵 = (Base‘𝑅) |
islnr3.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
Ref | Expression |
---|---|
islnr3 | ⊢ (𝑅 ∈ LNoeR ↔ (𝑅 ∈ Ring ∧ 𝑈 ∈ (NoeACS‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islnr3.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
2 | islnr3.u | . . 3 ⊢ 𝑈 = (LIdeal‘𝑅) | |
3 | eqid 2740 | . . 3 ⊢ (RSpan‘𝑅) = (RSpan‘𝑅) | |
4 | 1, 2, 3 | islnr2 43071 | . 2 ⊢ (𝑅 ∈ LNoeR ↔ (𝑅 ∈ Ring ∧ ∀𝑥 ∈ 𝑈 ∃𝑦 ∈ (𝒫 𝐵 ∩ Fin)𝑥 = ((RSpan‘𝑅)‘𝑦))) |
5 | eqid 2740 | . . . . . . . . . 10 ⊢ (mrCls‘𝑈) = (mrCls‘𝑈) | |
6 | 2, 3, 5 | mrcrsp 21274 | . . . . . . . . 9 ⊢ (𝑅 ∈ Ring → (RSpan‘𝑅) = (mrCls‘𝑈)) |
7 | 6 | fveq1d 6922 | . . . . . . . 8 ⊢ (𝑅 ∈ Ring → ((RSpan‘𝑅)‘𝑦) = ((mrCls‘𝑈)‘𝑦)) |
8 | 7 | eqeq2d 2751 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → (𝑥 = ((RSpan‘𝑅)‘𝑦) ↔ 𝑥 = ((mrCls‘𝑈)‘𝑦))) |
9 | 8 | rexbidv 3185 | . . . . . 6 ⊢ (𝑅 ∈ Ring → (∃𝑦 ∈ (𝒫 𝐵 ∩ Fin)𝑥 = ((RSpan‘𝑅)‘𝑦) ↔ ∃𝑦 ∈ (𝒫 𝐵 ∩ Fin)𝑥 = ((mrCls‘𝑈)‘𝑦))) |
10 | 9 | ralbidv 3184 | . . . . 5 ⊢ (𝑅 ∈ Ring → (∀𝑥 ∈ 𝑈 ∃𝑦 ∈ (𝒫 𝐵 ∩ Fin)𝑥 = ((RSpan‘𝑅)‘𝑦) ↔ ∀𝑥 ∈ 𝑈 ∃𝑦 ∈ (𝒫 𝐵 ∩ Fin)𝑥 = ((mrCls‘𝑈)‘𝑦))) |
11 | 1, 2 | lidlacs 21267 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑈 ∈ (ACS‘𝐵)) |
12 | 11 | biantrurd 532 | . . . . 5 ⊢ (𝑅 ∈ Ring → (∀𝑥 ∈ 𝑈 ∃𝑦 ∈ (𝒫 𝐵 ∩ Fin)𝑥 = ((mrCls‘𝑈)‘𝑦) ↔ (𝑈 ∈ (ACS‘𝐵) ∧ ∀𝑥 ∈ 𝑈 ∃𝑦 ∈ (𝒫 𝐵 ∩ Fin)𝑥 = ((mrCls‘𝑈)‘𝑦)))) |
13 | 10, 12 | bitrd 279 | . . . 4 ⊢ (𝑅 ∈ Ring → (∀𝑥 ∈ 𝑈 ∃𝑦 ∈ (𝒫 𝐵 ∩ Fin)𝑥 = ((RSpan‘𝑅)‘𝑦) ↔ (𝑈 ∈ (ACS‘𝐵) ∧ ∀𝑥 ∈ 𝑈 ∃𝑦 ∈ (𝒫 𝐵 ∩ Fin)𝑥 = ((mrCls‘𝑈)‘𝑦)))) |
14 | 5 | isnacs 42660 | . . . 4 ⊢ (𝑈 ∈ (NoeACS‘𝐵) ↔ (𝑈 ∈ (ACS‘𝐵) ∧ ∀𝑥 ∈ 𝑈 ∃𝑦 ∈ (𝒫 𝐵 ∩ Fin)𝑥 = ((mrCls‘𝑈)‘𝑦))) |
15 | 13, 14 | bitr4di 289 | . . 3 ⊢ (𝑅 ∈ Ring → (∀𝑥 ∈ 𝑈 ∃𝑦 ∈ (𝒫 𝐵 ∩ Fin)𝑥 = ((RSpan‘𝑅)‘𝑦) ↔ 𝑈 ∈ (NoeACS‘𝐵))) |
16 | 15 | pm5.32i 574 | . 2 ⊢ ((𝑅 ∈ Ring ∧ ∀𝑥 ∈ 𝑈 ∃𝑦 ∈ (𝒫 𝐵 ∩ Fin)𝑥 = ((RSpan‘𝑅)‘𝑦)) ↔ (𝑅 ∈ Ring ∧ 𝑈 ∈ (NoeACS‘𝐵))) |
17 | 4, 16 | bitri 275 | 1 ⊢ (𝑅 ∈ LNoeR ↔ (𝑅 ∈ Ring ∧ 𝑈 ∈ (NoeACS‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 ∩ cin 3975 𝒫 cpw 4622 ‘cfv 6573 Fincfn 9003 Basecbs 17258 mrClscmrc 17641 ACScacs 17643 Ringcrg 20260 LIdealclidl 21239 RSpancrsp 21240 NoeACScnacs 42658 LNoeRclnr 43066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-ip 17329 df-0g 17501 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-mgp 20162 df-ur 20209 df-ring 20262 df-subrg 20597 df-lmod 20882 df-lss 20953 df-lsp 20993 df-sra 21195 df-rgmod 21196 df-lidl 21241 df-rsp 21242 df-nacs 42659 df-lfig 43025 df-lnm 43033 df-lnr 43067 |
This theorem is referenced by: hbt 43087 |
Copyright terms: Public domain | W3C validator |