MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbsind Structured version   Visualization version   GIF version

Theorem lbsind 21018
Description: A basis is linearly independent; that is, every element has a span which trivially intersects the span of the remainder of the basis. (Contributed by Mario Carneiro, 12-Jan-2015.)
Hypotheses
Ref Expression
lbsss.v 𝑉 = (Base‘𝑊)
lbsss.j 𝐽 = (LBasis‘𝑊)
lbssp.n 𝑁 = (LSpan‘𝑊)
lbsind.f 𝐹 = (Scalar‘𝑊)
lbsind.s · = ( ·𝑠𝑊)
lbsind.k 𝐾 = (Base‘𝐹)
lbsind.z 0 = (0g𝐹)
Assertion
Ref Expression
lbsind (((𝐵𝐽𝐸𝐵) ∧ (𝐴𝐾𝐴0 )) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸})))

Proof of Theorem lbsind
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifsn 4739 . 2 (𝐴 ∈ (𝐾 ∖ { 0 }) ↔ (𝐴𝐾𝐴0 ))
2 elfvdm 6864 . . . . . . . 8 (𝐵 ∈ (LBasis‘𝑊) → 𝑊 ∈ dom LBasis)
3 lbsss.j . . . . . . . 8 𝐽 = (LBasis‘𝑊)
42, 3eleq2s 2851 . . . . . . 7 (𝐵𝐽𝑊 ∈ dom LBasis)
5 lbsss.v . . . . . . . 8 𝑉 = (Base‘𝑊)
6 lbsind.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
7 lbsind.s . . . . . . . 8 · = ( ·𝑠𝑊)
8 lbsind.k . . . . . . . 8 𝐾 = (Base‘𝐹)
9 lbssp.n . . . . . . . 8 𝑁 = (LSpan‘𝑊)
10 lbsind.z . . . . . . . 8 0 = (0g𝐹)
115, 6, 7, 8, 3, 9, 10islbs 21014 . . . . . . 7 (𝑊 ∈ dom LBasis → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
124, 11syl 17 . . . . . 6 (𝐵𝐽 → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
1312ibi 267 . . . . 5 (𝐵𝐽 → (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥}))))
1413simp3d 1144 . . . 4 (𝐵𝐽 → ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))
15 oveq2 7362 . . . . . . 7 (𝑥 = 𝐸 → (𝑦 · 𝑥) = (𝑦 · 𝐸))
16 sneq 4587 . . . . . . . . 9 (𝑥 = 𝐸 → {𝑥} = {𝐸})
1716difeq2d 4075 . . . . . . . 8 (𝑥 = 𝐸 → (𝐵 ∖ {𝑥}) = (𝐵 ∖ {𝐸}))
1817fveq2d 6834 . . . . . . 7 (𝑥 = 𝐸 → (𝑁‘(𝐵 ∖ {𝑥})) = (𝑁‘(𝐵 ∖ {𝐸})))
1915, 18eleq12d 2827 . . . . . 6 (𝑥 = 𝐸 → ((𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})) ↔ (𝑦 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸}))))
2019notbid 318 . . . . 5 (𝑥 = 𝐸 → (¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})) ↔ ¬ (𝑦 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸}))))
21 oveq1 7361 . . . . . . 7 (𝑦 = 𝐴 → (𝑦 · 𝐸) = (𝐴 · 𝐸))
2221eleq1d 2818 . . . . . 6 (𝑦 = 𝐴 → ((𝑦 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸})) ↔ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸}))))
2322notbid 318 . . . . 5 (𝑦 = 𝐴 → (¬ (𝑦 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸})) ↔ ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸}))))
2420, 23rspc2v 3584 . . . 4 ((𝐸𝐵𝐴 ∈ (𝐾 ∖ { 0 })) → (∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸}))))
2514, 24syl5com 31 . . 3 (𝐵𝐽 → ((𝐸𝐵𝐴 ∈ (𝐾 ∖ { 0 })) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸}))))
2625impl 455 . 2 (((𝐵𝐽𝐸𝐵) ∧ 𝐴 ∈ (𝐾 ∖ { 0 })) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸})))
271, 26sylan2br 595 1 (((𝐵𝐽𝐸𝐵) ∧ (𝐴𝐾𝐴0 )) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wral 3048  cdif 3895  wss 3898  {csn 4577  dom cdm 5621  cfv 6488  (class class class)co 7354  Basecbs 17124  Scalarcsca 17168   ·𝑠 cvsca 17169  0gc0g 17347  LSpanclspn 20908  LBasisclbs 21012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-iota 6444  df-fun 6490  df-fv 6496  df-ov 7357  df-lbs 21013
This theorem is referenced by:  lbsind2  21019
  Copyright terms: Public domain W3C validator