| Step | Hyp | Ref
| Expression |
| 1 | | eldifsn 4767 |
. 2
⊢ (𝐴 ∈ (𝐾 ∖ { 0 }) ↔ (𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 )) |
| 2 | | elfvdm 6918 |
. . . . . . . 8
⊢ (𝐵 ∈ (LBasis‘𝑊) → 𝑊 ∈ dom LBasis) |
| 3 | | lbsss.j |
. . . . . . . 8
⊢ 𝐽 = (LBasis‘𝑊) |
| 4 | 2, 3 | eleq2s 2853 |
. . . . . . 7
⊢ (𝐵 ∈ 𝐽 → 𝑊 ∈ dom LBasis) |
| 5 | | lbsss.v |
. . . . . . . 8
⊢ 𝑉 = (Base‘𝑊) |
| 6 | | lbsind.f |
. . . . . . . 8
⊢ 𝐹 = (Scalar‘𝑊) |
| 7 | | lbsind.s |
. . . . . . . 8
⊢ · = (
·𝑠 ‘𝑊) |
| 8 | | lbsind.k |
. . . . . . . 8
⊢ 𝐾 = (Base‘𝐹) |
| 9 | | lbssp.n |
. . . . . . . 8
⊢ 𝑁 = (LSpan‘𝑊) |
| 10 | | lbsind.z |
. . . . . . . 8
⊢ 0 =
(0g‘𝐹) |
| 11 | 5, 6, 7, 8, 3, 9, 10 | islbs 21039 |
. . . . . . 7
⊢ (𝑊 ∈ dom LBasis → (𝐵 ∈ 𝐽 ↔ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥}))))) |
| 12 | 4, 11 | syl 17 |
. . . . . 6
⊢ (𝐵 ∈ 𝐽 → (𝐵 ∈ 𝐽 ↔ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥}))))) |
| 13 | 12 | ibi 267 |
. . . . 5
⊢ (𝐵 ∈ 𝐽 → (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))) |
| 14 | 13 | simp3d 1144 |
. . . 4
⊢ (𝐵 ∈ 𝐽 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥}))) |
| 15 | | oveq2 7418 |
. . . . . . 7
⊢ (𝑥 = 𝐸 → (𝑦 · 𝑥) = (𝑦 · 𝐸)) |
| 16 | | sneq 4616 |
. . . . . . . . 9
⊢ (𝑥 = 𝐸 → {𝑥} = {𝐸}) |
| 17 | 16 | difeq2d 4106 |
. . . . . . . 8
⊢ (𝑥 = 𝐸 → (𝐵 ∖ {𝑥}) = (𝐵 ∖ {𝐸})) |
| 18 | 17 | fveq2d 6885 |
. . . . . . 7
⊢ (𝑥 = 𝐸 → (𝑁‘(𝐵 ∖ {𝑥})) = (𝑁‘(𝐵 ∖ {𝐸}))) |
| 19 | 15, 18 | eleq12d 2829 |
. . . . . 6
⊢ (𝑥 = 𝐸 → ((𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})) ↔ (𝑦 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸})))) |
| 20 | 19 | notbid 318 |
. . . . 5
⊢ (𝑥 = 𝐸 → (¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})) ↔ ¬ (𝑦 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸})))) |
| 21 | | oveq1 7417 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → (𝑦 · 𝐸) = (𝐴 · 𝐸)) |
| 22 | 21 | eleq1d 2820 |
. . . . . 6
⊢ (𝑦 = 𝐴 → ((𝑦 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸})) ↔ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸})))) |
| 23 | 22 | notbid 318 |
. . . . 5
⊢ (𝑦 = 𝐴 → (¬ (𝑦 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸})) ↔ ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸})))) |
| 24 | 20, 23 | rspc2v 3617 |
. . . 4
⊢ ((𝐸 ∈ 𝐵 ∧ 𝐴 ∈ (𝐾 ∖ { 0 })) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸})))) |
| 25 | 14, 24 | syl5com 31 |
. . 3
⊢ (𝐵 ∈ 𝐽 → ((𝐸 ∈ 𝐵 ∧ 𝐴 ∈ (𝐾 ∖ { 0 })) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸})))) |
| 26 | 25 | impl 455 |
. 2
⊢ (((𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵) ∧ 𝐴 ∈ (𝐾 ∖ { 0 })) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸}))) |
| 27 | 1, 26 | sylan2br 595 |
1
⊢ (((𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵) ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 )) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸}))) |