MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbsind Structured version   Visualization version   GIF version

Theorem lbsind 20541
Description: A basis is linearly independent; that is, every element has a span which trivially intersects the span of the remainder of the basis. (Contributed by Mario Carneiro, 12-Jan-2015.)
Hypotheses
Ref Expression
lbsss.v 𝑉 = (Base‘𝑊)
lbsss.j 𝐽 = (LBasis‘𝑊)
lbssp.n 𝑁 = (LSpan‘𝑊)
lbsind.f 𝐹 = (Scalar‘𝑊)
lbsind.s · = ( ·𝑠𝑊)
lbsind.k 𝐾 = (Base‘𝐹)
lbsind.z 0 = (0g𝐹)
Assertion
Ref Expression
lbsind (((𝐵𝐽𝐸𝐵) ∧ (𝐴𝐾𝐴0 )) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸})))

Proof of Theorem lbsind
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifsn 4747 . 2 (𝐴 ∈ (𝐾 ∖ { 0 }) ↔ (𝐴𝐾𝐴0 ))
2 elfvdm 6879 . . . . . . . 8 (𝐵 ∈ (LBasis‘𝑊) → 𝑊 ∈ dom LBasis)
3 lbsss.j . . . . . . . 8 𝐽 = (LBasis‘𝑊)
42, 3eleq2s 2856 . . . . . . 7 (𝐵𝐽𝑊 ∈ dom LBasis)
5 lbsss.v . . . . . . . 8 𝑉 = (Base‘𝑊)
6 lbsind.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
7 lbsind.s . . . . . . . 8 · = ( ·𝑠𝑊)
8 lbsind.k . . . . . . . 8 𝐾 = (Base‘𝐹)
9 lbssp.n . . . . . . . 8 𝑁 = (LSpan‘𝑊)
10 lbsind.z . . . . . . . 8 0 = (0g𝐹)
115, 6, 7, 8, 3, 9, 10islbs 20537 . . . . . . 7 (𝑊 ∈ dom LBasis → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
124, 11syl 17 . . . . . 6 (𝐵𝐽 → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
1312ibi 266 . . . . 5 (𝐵𝐽 → (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥}))))
1413simp3d 1144 . . . 4 (𝐵𝐽 → ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))
15 oveq2 7365 . . . . . . 7 (𝑥 = 𝐸 → (𝑦 · 𝑥) = (𝑦 · 𝐸))
16 sneq 4596 . . . . . . . . 9 (𝑥 = 𝐸 → {𝑥} = {𝐸})
1716difeq2d 4082 . . . . . . . 8 (𝑥 = 𝐸 → (𝐵 ∖ {𝑥}) = (𝐵 ∖ {𝐸}))
1817fveq2d 6846 . . . . . . 7 (𝑥 = 𝐸 → (𝑁‘(𝐵 ∖ {𝑥})) = (𝑁‘(𝐵 ∖ {𝐸})))
1915, 18eleq12d 2832 . . . . . 6 (𝑥 = 𝐸 → ((𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})) ↔ (𝑦 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸}))))
2019notbid 317 . . . . 5 (𝑥 = 𝐸 → (¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})) ↔ ¬ (𝑦 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸}))))
21 oveq1 7364 . . . . . . 7 (𝑦 = 𝐴 → (𝑦 · 𝐸) = (𝐴 · 𝐸))
2221eleq1d 2822 . . . . . 6 (𝑦 = 𝐴 → ((𝑦 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸})) ↔ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸}))))
2322notbid 317 . . . . 5 (𝑦 = 𝐴 → (¬ (𝑦 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸})) ↔ ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸}))))
2420, 23rspc2v 3590 . . . 4 ((𝐸𝐵𝐴 ∈ (𝐾 ∖ { 0 })) → (∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸}))))
2514, 24syl5com 31 . . 3 (𝐵𝐽 → ((𝐸𝐵𝐴 ∈ (𝐾 ∖ { 0 })) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸}))))
2625impl 456 . 2 (((𝐵𝐽𝐸𝐵) ∧ 𝐴 ∈ (𝐾 ∖ { 0 })) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸})))
271, 26sylan2br 595 1 (((𝐵𝐽𝐸𝐵) ∧ (𝐴𝐾𝐴0 )) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  cdif 3907  wss 3910  {csn 4586  dom cdm 5633  cfv 6496  (class class class)co 7357  Basecbs 17083  Scalarcsca 17136   ·𝑠 cvsca 17137  0gc0g 17321  LSpanclspn 20432  LBasisclbs 20535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rab 3408  df-v 3447  df-sbc 3740  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-iota 6448  df-fun 6498  df-fv 6504  df-ov 7360  df-lbs 20536
This theorem is referenced by:  lbsind2  20542
  Copyright terms: Public domain W3C validator