Step | Hyp | Ref
| Expression |
1 | | eldifsn 4720 |
. 2
⊢ (𝐴 ∈ (𝐾 ∖ { 0 }) ↔ (𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 )) |
2 | | elfvdm 6806 |
. . . . . . . 8
⊢ (𝐵 ∈ (LBasis‘𝑊) → 𝑊 ∈ dom LBasis) |
3 | | lbsss.j |
. . . . . . . 8
⊢ 𝐽 = (LBasis‘𝑊) |
4 | 2, 3 | eleq2s 2857 |
. . . . . . 7
⊢ (𝐵 ∈ 𝐽 → 𝑊 ∈ dom LBasis) |
5 | | lbsss.v |
. . . . . . . 8
⊢ 𝑉 = (Base‘𝑊) |
6 | | lbsind.f |
. . . . . . . 8
⊢ 𝐹 = (Scalar‘𝑊) |
7 | | lbsind.s |
. . . . . . . 8
⊢ · = (
·𝑠 ‘𝑊) |
8 | | lbsind.k |
. . . . . . . 8
⊢ 𝐾 = (Base‘𝐹) |
9 | | lbssp.n |
. . . . . . . 8
⊢ 𝑁 = (LSpan‘𝑊) |
10 | | lbsind.z |
. . . . . . . 8
⊢ 0 =
(0g‘𝐹) |
11 | 5, 6, 7, 8, 3, 9, 10 | islbs 20338 |
. . . . . . 7
⊢ (𝑊 ∈ dom LBasis → (𝐵 ∈ 𝐽 ↔ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥}))))) |
12 | 4, 11 | syl 17 |
. . . . . 6
⊢ (𝐵 ∈ 𝐽 → (𝐵 ∈ 𝐽 ↔ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥}))))) |
13 | 12 | ibi 266 |
. . . . 5
⊢ (𝐵 ∈ 𝐽 → (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))) |
14 | 13 | simp3d 1143 |
. . . 4
⊢ (𝐵 ∈ 𝐽 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥}))) |
15 | | oveq2 7283 |
. . . . . . 7
⊢ (𝑥 = 𝐸 → (𝑦 · 𝑥) = (𝑦 · 𝐸)) |
16 | | sneq 4571 |
. . . . . . . . 9
⊢ (𝑥 = 𝐸 → {𝑥} = {𝐸}) |
17 | 16 | difeq2d 4057 |
. . . . . . . 8
⊢ (𝑥 = 𝐸 → (𝐵 ∖ {𝑥}) = (𝐵 ∖ {𝐸})) |
18 | 17 | fveq2d 6778 |
. . . . . . 7
⊢ (𝑥 = 𝐸 → (𝑁‘(𝐵 ∖ {𝑥})) = (𝑁‘(𝐵 ∖ {𝐸}))) |
19 | 15, 18 | eleq12d 2833 |
. . . . . 6
⊢ (𝑥 = 𝐸 → ((𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})) ↔ (𝑦 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸})))) |
20 | 19 | notbid 318 |
. . . . 5
⊢ (𝑥 = 𝐸 → (¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})) ↔ ¬ (𝑦 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸})))) |
21 | | oveq1 7282 |
. . . . . . 7
⊢ (𝑦 = 𝐴 → (𝑦 · 𝐸) = (𝐴 · 𝐸)) |
22 | 21 | eleq1d 2823 |
. . . . . 6
⊢ (𝑦 = 𝐴 → ((𝑦 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸})) ↔ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸})))) |
23 | 22 | notbid 318 |
. . . . 5
⊢ (𝑦 = 𝐴 → (¬ (𝑦 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸})) ↔ ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸})))) |
24 | 20, 23 | rspc2v 3570 |
. . . 4
⊢ ((𝐸 ∈ 𝐵 ∧ 𝐴 ∈ (𝐾 ∖ { 0 })) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸})))) |
25 | 14, 24 | syl5com 31 |
. . 3
⊢ (𝐵 ∈ 𝐽 → ((𝐸 ∈ 𝐵 ∧ 𝐴 ∈ (𝐾 ∖ { 0 })) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸})))) |
26 | 25 | impl 456 |
. 2
⊢ (((𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵) ∧ 𝐴 ∈ (𝐾 ∖ { 0 })) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸}))) |
27 | 1, 26 | sylan2br 595 |
1
⊢ (((𝐵 ∈ 𝐽 ∧ 𝐸 ∈ 𝐵) ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 ≠ 0 )) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸}))) |