MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbsind Structured version   Visualization version   GIF version

Theorem lbsind 20683
Description: A basis is linearly independent; that is, every element has a span which trivially intersects the span of the remainder of the basis. (Contributed by Mario Carneiro, 12-Jan-2015.)
Hypotheses
Ref Expression
lbsss.v 𝑉 = (Baseβ€˜π‘Š)
lbsss.j 𝐽 = (LBasisβ€˜π‘Š)
lbssp.n 𝑁 = (LSpanβ€˜π‘Š)
lbsind.f 𝐹 = (Scalarβ€˜π‘Š)
lbsind.s Β· = ( ·𝑠 β€˜π‘Š)
lbsind.k 𝐾 = (Baseβ€˜πΉ)
lbsind.z 0 = (0gβ€˜πΉ)
Assertion
Ref Expression
lbsind (((𝐡 ∈ 𝐽 ∧ 𝐸 ∈ 𝐡) ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 β‰  0 )) β†’ Β¬ (𝐴 Β· 𝐸) ∈ (π‘β€˜(𝐡 βˆ– {𝐸})))

Proof of Theorem lbsind
Dummy variables 𝑦 π‘₯ are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifsn 4789 . 2 (𝐴 ∈ (𝐾 βˆ– { 0 }) ↔ (𝐴 ∈ 𝐾 ∧ 𝐴 β‰  0 ))
2 elfvdm 6925 . . . . . . . 8 (𝐡 ∈ (LBasisβ€˜π‘Š) β†’ π‘Š ∈ dom LBasis)
3 lbsss.j . . . . . . . 8 𝐽 = (LBasisβ€˜π‘Š)
42, 3eleq2s 2851 . . . . . . 7 (𝐡 ∈ 𝐽 β†’ π‘Š ∈ dom LBasis)
5 lbsss.v . . . . . . . 8 𝑉 = (Baseβ€˜π‘Š)
6 lbsind.f . . . . . . . 8 𝐹 = (Scalarβ€˜π‘Š)
7 lbsind.s . . . . . . . 8 Β· = ( ·𝑠 β€˜π‘Š)
8 lbsind.k . . . . . . . 8 𝐾 = (Baseβ€˜πΉ)
9 lbssp.n . . . . . . . 8 𝑁 = (LSpanβ€˜π‘Š)
10 lbsind.z . . . . . . . 8 0 = (0gβ€˜πΉ)
115, 6, 7, 8, 3, 9, 10islbs 20679 . . . . . . 7 (π‘Š ∈ dom LBasis β†’ (𝐡 ∈ 𝐽 ↔ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ (𝐾 βˆ– { 0 }) Β¬ (𝑦 Β· π‘₯) ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))))
124, 11syl 17 . . . . . 6 (𝐡 ∈ 𝐽 β†’ (𝐡 ∈ 𝐽 ↔ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ (𝐾 βˆ– { 0 }) Β¬ (𝑦 Β· π‘₯) ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))))
1312ibi 266 . . . . 5 (𝐡 ∈ 𝐽 β†’ (𝐡 βŠ† 𝑉 ∧ (π‘β€˜π΅) = 𝑉 ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ (𝐾 βˆ– { 0 }) Β¬ (𝑦 Β· π‘₯) ∈ (π‘β€˜(𝐡 βˆ– {π‘₯}))))
1413simp3d 1144 . . . 4 (𝐡 ∈ 𝐽 β†’ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ (𝐾 βˆ– { 0 }) Β¬ (𝑦 Β· π‘₯) ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})))
15 oveq2 7413 . . . . . . 7 (π‘₯ = 𝐸 β†’ (𝑦 Β· π‘₯) = (𝑦 Β· 𝐸))
16 sneq 4637 . . . . . . . . 9 (π‘₯ = 𝐸 β†’ {π‘₯} = {𝐸})
1716difeq2d 4121 . . . . . . . 8 (π‘₯ = 𝐸 β†’ (𝐡 βˆ– {π‘₯}) = (𝐡 βˆ– {𝐸}))
1817fveq2d 6892 . . . . . . 7 (π‘₯ = 𝐸 β†’ (π‘β€˜(𝐡 βˆ– {π‘₯})) = (π‘β€˜(𝐡 βˆ– {𝐸})))
1915, 18eleq12d 2827 . . . . . 6 (π‘₯ = 𝐸 β†’ ((𝑦 Β· π‘₯) ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})) ↔ (𝑦 Β· 𝐸) ∈ (π‘β€˜(𝐡 βˆ– {𝐸}))))
2019notbid 317 . . . . 5 (π‘₯ = 𝐸 β†’ (Β¬ (𝑦 Β· π‘₯) ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})) ↔ Β¬ (𝑦 Β· 𝐸) ∈ (π‘β€˜(𝐡 βˆ– {𝐸}))))
21 oveq1 7412 . . . . . . 7 (𝑦 = 𝐴 β†’ (𝑦 Β· 𝐸) = (𝐴 Β· 𝐸))
2221eleq1d 2818 . . . . . 6 (𝑦 = 𝐴 β†’ ((𝑦 Β· 𝐸) ∈ (π‘β€˜(𝐡 βˆ– {𝐸})) ↔ (𝐴 Β· 𝐸) ∈ (π‘β€˜(𝐡 βˆ– {𝐸}))))
2322notbid 317 . . . . 5 (𝑦 = 𝐴 β†’ (Β¬ (𝑦 Β· 𝐸) ∈ (π‘β€˜(𝐡 βˆ– {𝐸})) ↔ Β¬ (𝐴 Β· 𝐸) ∈ (π‘β€˜(𝐡 βˆ– {𝐸}))))
2420, 23rspc2v 3621 . . . 4 ((𝐸 ∈ 𝐡 ∧ 𝐴 ∈ (𝐾 βˆ– { 0 })) β†’ (βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ (𝐾 βˆ– { 0 }) Β¬ (𝑦 Β· π‘₯) ∈ (π‘β€˜(𝐡 βˆ– {π‘₯})) β†’ Β¬ (𝐴 Β· 𝐸) ∈ (π‘β€˜(𝐡 βˆ– {𝐸}))))
2514, 24syl5com 31 . . 3 (𝐡 ∈ 𝐽 β†’ ((𝐸 ∈ 𝐡 ∧ 𝐴 ∈ (𝐾 βˆ– { 0 })) β†’ Β¬ (𝐴 Β· 𝐸) ∈ (π‘β€˜(𝐡 βˆ– {𝐸}))))
2625impl 456 . 2 (((𝐡 ∈ 𝐽 ∧ 𝐸 ∈ 𝐡) ∧ 𝐴 ∈ (𝐾 βˆ– { 0 })) β†’ Β¬ (𝐴 Β· 𝐸) ∈ (π‘β€˜(𝐡 βˆ– {𝐸})))
271, 26sylan2br 595 1 (((𝐡 ∈ 𝐽 ∧ 𝐸 ∈ 𝐡) ∧ (𝐴 ∈ 𝐾 ∧ 𝐴 β‰  0 )) β†’ Β¬ (𝐴 Β· 𝐸) ∈ (π‘β€˜(𝐡 βˆ– {𝐸})))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061   βˆ– cdif 3944   βŠ† wss 3947  {csn 4627  dom cdm 5675  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  Scalarcsca 17196   ·𝑠 cvsca 17197  0gc0g 17381  LSpanclspn 20574  LBasisclbs 20677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6492  df-fun 6542  df-fv 6548  df-ov 7408  df-lbs 20678
This theorem is referenced by:  lbsind2  20684
  Copyright terms: Public domain W3C validator