MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbsind Structured version   Visualization version   GIF version

Theorem lbsind 19854
Description: A basis is linearly independent; that is, every element has a span which trivially intersects the span of the remainder of the basis. (Contributed by Mario Carneiro, 12-Jan-2015.)
Hypotheses
Ref Expression
lbsss.v 𝑉 = (Base‘𝑊)
lbsss.j 𝐽 = (LBasis‘𝑊)
lbssp.n 𝑁 = (LSpan‘𝑊)
lbsind.f 𝐹 = (Scalar‘𝑊)
lbsind.s · = ( ·𝑠𝑊)
lbsind.k 𝐾 = (Base‘𝐹)
lbsind.z 0 = (0g𝐹)
Assertion
Ref Expression
lbsind (((𝐵𝐽𝐸𝐵) ∧ (𝐴𝐾𝐴0 )) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸})))

Proof of Theorem lbsind
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifsn 4721 . 2 (𝐴 ∈ (𝐾 ∖ { 0 }) ↔ (𝐴𝐾𝐴0 ))
2 elfvdm 6704 . . . . . . . 8 (𝐵 ∈ (LBasis‘𝑊) → 𝑊 ∈ dom LBasis)
3 lbsss.j . . . . . . . 8 𝐽 = (LBasis‘𝑊)
42, 3eleq2s 2933 . . . . . . 7 (𝐵𝐽𝑊 ∈ dom LBasis)
5 lbsss.v . . . . . . . 8 𝑉 = (Base‘𝑊)
6 lbsind.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
7 lbsind.s . . . . . . . 8 · = ( ·𝑠𝑊)
8 lbsind.k . . . . . . . 8 𝐾 = (Base‘𝐹)
9 lbssp.n . . . . . . . 8 𝑁 = (LSpan‘𝑊)
10 lbsind.z . . . . . . . 8 0 = (0g𝐹)
115, 6, 7, 8, 3, 9, 10islbs 19850 . . . . . . 7 (𝑊 ∈ dom LBasis → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
124, 11syl 17 . . . . . 6 (𝐵𝐽 → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
1312ibi 269 . . . . 5 (𝐵𝐽 → (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥}))))
1413simp3d 1140 . . . 4 (𝐵𝐽 → ∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))
15 oveq2 7166 . . . . . . 7 (𝑥 = 𝐸 → (𝑦 · 𝑥) = (𝑦 · 𝐸))
16 sneq 4579 . . . . . . . . 9 (𝑥 = 𝐸 → {𝑥} = {𝐸})
1716difeq2d 4101 . . . . . . . 8 (𝑥 = 𝐸 → (𝐵 ∖ {𝑥}) = (𝐵 ∖ {𝐸}))
1817fveq2d 6676 . . . . . . 7 (𝑥 = 𝐸 → (𝑁‘(𝐵 ∖ {𝑥})) = (𝑁‘(𝐵 ∖ {𝐸})))
1915, 18eleq12d 2909 . . . . . 6 (𝑥 = 𝐸 → ((𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})) ↔ (𝑦 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸}))))
2019notbid 320 . . . . 5 (𝑥 = 𝐸 → (¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})) ↔ ¬ (𝑦 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸}))))
21 oveq1 7165 . . . . . . 7 (𝑦 = 𝐴 → (𝑦 · 𝐸) = (𝐴 · 𝐸))
2221eleq1d 2899 . . . . . 6 (𝑦 = 𝐴 → ((𝑦 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸})) ↔ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸}))))
2322notbid 320 . . . . 5 (𝑦 = 𝐴 → (¬ (𝑦 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸})) ↔ ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸}))))
2420, 23rspc2v 3635 . . . 4 ((𝐸𝐵𝐴 ∈ (𝐾 ∖ { 0 })) → (∀𝑥𝐵𝑦 ∈ (𝐾 ∖ { 0 }) ¬ (𝑦 · 𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸}))))
2514, 24syl5com 31 . . 3 (𝐵𝐽 → ((𝐸𝐵𝐴 ∈ (𝐾 ∖ { 0 })) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸}))))
2625impl 458 . 2 (((𝐵𝐽𝐸𝐵) ∧ 𝐴 ∈ (𝐾 ∖ { 0 })) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸})))
271, 26sylan2br 596 1 (((𝐵𝐽𝐸𝐵) ∧ (𝐴𝐾𝐴0 )) → ¬ (𝐴 · 𝐸) ∈ (𝑁‘(𝐵 ∖ {𝐸})))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wral 3140  cdif 3935  wss 3938  {csn 4569  dom cdm 5557  cfv 6357  (class class class)co 7158  Basecbs 16485  Scalarcsca 16570   ·𝑠 cvsca 16571  0gc0g 16715  LSpanclspn 19745  LBasisclbs 19848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-iota 6316  df-fun 6359  df-fv 6365  df-ov 7161  df-lbs 19849
This theorem is referenced by:  lbsind2  19855
  Copyright terms: Public domain W3C validator