MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbssp Structured version   Visualization version   GIF version

Theorem lbssp 19771
Description: The span of a basis is the whole space. (Contributed by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
lbsss.v 𝑉 = (Base‘𝑊)
lbsss.j 𝐽 = (LBasis‘𝑊)
lbssp.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lbssp (𝐵𝐽 → (𝑁𝐵) = 𝑉)

Proof of Theorem lbssp
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6699 . . . . 5 (𝐵 ∈ (LBasis‘𝑊) → 𝑊 ∈ dom LBasis)
2 lbsss.j . . . . 5 𝐽 = (LBasis‘𝑊)
31, 2eleq2s 2936 . . . 4 (𝐵𝐽𝑊 ∈ dom LBasis)
4 lbsss.v . . . . 5 𝑉 = (Base‘𝑊)
5 eqid 2826 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
6 eqid 2826 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝑊)
7 eqid 2826 . . . . 5 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
8 lbssp.n . . . . 5 𝑁 = (LSpan‘𝑊)
9 eqid 2826 . . . . 5 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
104, 5, 6, 7, 2, 8, 9islbs 19768 . . . 4 (𝑊 ∈ dom LBasis → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠𝑊)𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
113, 10syl 17 . . 3 (𝐵𝐽 → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠𝑊)𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
1211ibi 268 . 2 (𝐵𝐽 → (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠𝑊)𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥}))))
1312simp2d 1137 1 (𝐵𝐽 → (𝑁𝐵) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  w3a 1081   = wceq 1530  wcel 2107  wral 3143  cdif 3937  wss 3940  {csn 4564  dom cdm 5554  cfv 6352  (class class class)co 7148  Basecbs 16473  Scalarcsca 16558   ·𝑠 cvsca 16559  0gc0g 16703  LSpanclspn 19663  LBasisclbs 19766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ral 3148  df-rex 3149  df-rab 3152  df-v 3502  df-sbc 3777  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-iota 6312  df-fun 6354  df-fv 6360  df-ov 7151  df-lbs 19767
This theorem is referenced by:  islbs2  19846  islbs3  19847  frlmup3  20860  frlmup4  20861  lmimlbs  20896  lbslcic  20901  lbslsp  30852  lvecdim0i  30890  dimkerim  30909  lindsdom  34753  matunitlindflem2  34756  aacllem  44734
  Copyright terms: Public domain W3C validator