| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lbssp | Structured version Visualization version GIF version | ||
| Description: The span of a basis is the whole space. (Contributed by Mario Carneiro, 24-Jun-2014.) |
| Ref | Expression |
|---|---|
| lbsss.v | ⊢ 𝑉 = (Base‘𝑊) |
| lbsss.j | ⊢ 𝐽 = (LBasis‘𝑊) |
| lbssp.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| Ref | Expression |
|---|---|
| lbssp | ⊢ (𝐵 ∈ 𝐽 → (𝑁‘𝐵) = 𝑉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvdm 6898 | . . . . 5 ⊢ (𝐵 ∈ (LBasis‘𝑊) → 𝑊 ∈ dom LBasis) | |
| 2 | lbsss.j | . . . . 5 ⊢ 𝐽 = (LBasis‘𝑊) | |
| 3 | 1, 2 | eleq2s 2847 | . . . 4 ⊢ (𝐵 ∈ 𝐽 → 𝑊 ∈ dom LBasis) |
| 4 | lbsss.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 5 | eqid 2730 | . . . . 5 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
| 6 | eqid 2730 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 7 | eqid 2730 | . . . . 5 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
| 8 | lbssp.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 9 | eqid 2730 | . . . . 5 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
| 10 | 4, 5, 6, 7, 2, 8, 9 | islbs 20990 | . . . 4 ⊢ (𝑊 ∈ dom LBasis → (𝐵 ∈ 𝐽 ↔ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠 ‘𝑊)𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥}))))) |
| 11 | 3, 10 | syl 17 | . . 3 ⊢ (𝐵 ∈ 𝐽 → (𝐵 ∈ 𝐽 ↔ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠 ‘𝑊)𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥}))))) |
| 12 | 11 | ibi 267 | . 2 ⊢ (𝐵 ∈ 𝐽 → (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠 ‘𝑊)𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))) |
| 13 | 12 | simp2d 1143 | 1 ⊢ (𝐵 ∈ 𝐽 → (𝑁‘𝐵) = 𝑉) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∖ cdif 3914 ⊆ wss 3917 {csn 4592 dom cdm 5641 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 Scalarcsca 17230 ·𝑠 cvsca 17231 0gc0g 17409 LSpanclspn 20884 LBasisclbs 20988 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-lbs 20989 |
| This theorem is referenced by: islbs2 21071 islbs3 21072 frlmup3 21716 frlmup4 21717 lmimlbs 21752 lbslcic 21757 lbslsp 33355 lvecdim0i 33608 dimkerim 33630 dimlssid 33635 fldextrspunlsplem 33675 lindsdom 37615 matunitlindflem2 37618 aacllem 49794 |
| Copyright terms: Public domain | W3C validator |