MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lbssp Structured version   Visualization version   GIF version

Theorem lbssp 20922
Description: The span of a basis is the whole space. (Contributed by Mario Carneiro, 24-Jun-2014.)
Hypotheses
Ref Expression
lbsss.v 𝑉 = (Base‘𝑊)
lbsss.j 𝐽 = (LBasis‘𝑊)
lbssp.n 𝑁 = (LSpan‘𝑊)
Assertion
Ref Expression
lbssp (𝐵𝐽 → (𝑁𝐵) = 𝑉)

Proof of Theorem lbssp
Dummy variables 𝑦 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elfvdm 6928 . . . . 5 (𝐵 ∈ (LBasis‘𝑊) → 𝑊 ∈ dom LBasis)
2 lbsss.j . . . . 5 𝐽 = (LBasis‘𝑊)
31, 2eleq2s 2850 . . . 4 (𝐵𝐽𝑊 ∈ dom LBasis)
4 lbsss.v . . . . 5 𝑉 = (Base‘𝑊)
5 eqid 2731 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
6 eqid 2731 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝑊)
7 eqid 2731 . . . . 5 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
8 lbssp.n . . . . 5 𝑁 = (LSpan‘𝑊)
9 eqid 2731 . . . . 5 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
104, 5, 6, 7, 2, 8, 9islbs 20919 . . . 4 (𝑊 ∈ dom LBasis → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠𝑊)𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
113, 10syl 17 . . 3 (𝐵𝐽 → (𝐵𝐽 ↔ (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠𝑊)𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))))
1211ibi 267 . 2 (𝐵𝐽 → (𝐵𝑉 ∧ (𝑁𝐵) = 𝑉 ∧ ∀𝑥𝐵𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠𝑊)𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥}))))
1312simp2d 1142 1 (𝐵𝐽 → (𝑁𝐵) = 𝑉)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  w3a 1086   = wceq 1540  wcel 2105  wral 3060  cdif 3945  wss 3948  {csn 4628  dom cdm 5676  cfv 6543  (class class class)co 7412  Basecbs 17151  Scalarcsca 17207   ·𝑠 cvsca 17208  0gc0g 17392  LSpanclspn 20814  LBasisclbs 20917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7415  df-lbs 20918
This theorem is referenced by:  islbs2  21000  islbs3  21001  frlmup3  21664  frlmup4  21665  lmimlbs  21700  lbslcic  21705  lbslsp  32932  lvecdim0i  33143  dimkerim  33165  lindsdom  36945  matunitlindflem2  36948  aacllem  48009
  Copyright terms: Public domain W3C validator