![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lbssp | Structured version Visualization version GIF version |
Description: The span of a basis is the whole space. (Contributed by Mario Carneiro, 24-Jun-2014.) |
Ref | Expression |
---|---|
lbsss.v | ⊢ 𝑉 = (Base‘𝑊) |
lbsss.j | ⊢ 𝐽 = (LBasis‘𝑊) |
lbssp.n | ⊢ 𝑁 = (LSpan‘𝑊) |
Ref | Expression |
---|---|
lbssp | ⊢ (𝐵 ∈ 𝐽 → (𝑁‘𝐵) = 𝑉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elfvdm 6928 | . . . . 5 ⊢ (𝐵 ∈ (LBasis‘𝑊) → 𝑊 ∈ dom LBasis) | |
2 | lbsss.j | . . . . 5 ⊢ 𝐽 = (LBasis‘𝑊) | |
3 | 1, 2 | eleq2s 2850 | . . . 4 ⊢ (𝐵 ∈ 𝐽 → 𝑊 ∈ dom LBasis) |
4 | lbsss.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
5 | eqid 2731 | . . . . 5 ⊢ (Scalar‘𝑊) = (Scalar‘𝑊) | |
6 | eqid 2731 | . . . . 5 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
7 | eqid 2731 | . . . . 5 ⊢ (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊)) | |
8 | lbssp.n | . . . . 5 ⊢ 𝑁 = (LSpan‘𝑊) | |
9 | eqid 2731 | . . . . 5 ⊢ (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊)) | |
10 | 4, 5, 6, 7, 2, 8, 9 | islbs 20919 | . . . 4 ⊢ (𝑊 ∈ dom LBasis → (𝐵 ∈ 𝐽 ↔ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠 ‘𝑊)𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥}))))) |
11 | 3, 10 | syl 17 | . . 3 ⊢ (𝐵 ∈ 𝐽 → (𝐵 ∈ 𝐽 ↔ (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠 ‘𝑊)𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥}))))) |
12 | 11 | ibi 267 | . 2 ⊢ (𝐵 ∈ 𝐽 → (𝐵 ⊆ 𝑉 ∧ (𝑁‘𝐵) = 𝑉 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ ((Base‘(Scalar‘𝑊)) ∖ {(0g‘(Scalar‘𝑊))}) ¬ (𝑦( ·𝑠 ‘𝑊)𝑥) ∈ (𝑁‘(𝐵 ∖ {𝑥})))) |
13 | 12 | simp2d 1142 | 1 ⊢ (𝐵 ∈ 𝐽 → (𝑁‘𝐵) = 𝑉) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∀wral 3060 ∖ cdif 3945 ⊆ wss 3948 {csn 4628 dom cdm 5676 ‘cfv 6543 (class class class)co 7412 Basecbs 17151 Scalarcsca 17207 ·𝑠 cvsca 17208 0gc0g 17392 LSpanclspn 20814 LBasisclbs 20917 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7415 df-lbs 20918 |
This theorem is referenced by: islbs2 21000 islbs3 21001 frlmup3 21664 frlmup4 21665 lmimlbs 21700 lbslcic 21705 lbslsp 32932 lvecdim0i 33143 dimkerim 33165 lindsdom 36945 matunitlindflem2 36948 aacllem 48009 |
Copyright terms: Public domain | W3C validator |