MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfindsg2 Structured version   Visualization version   GIF version

Theorem tfindsg2 7285
Description: Transfinite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last three are the basis, the induction step for successors, and the induction step for limit ordinals. The basis of this version is an arbitrary ordinal suc 𝐵 instead of zero. (Unnecessary distinct variable restrictions were removed by David Abernethy, 19-Jun-2012.) (Contributed by NM, 5-Jan-2005.)
Hypotheses
Ref Expression
tfindsg2.1 (𝑥 = suc 𝐵 → (𝜑𝜓))
tfindsg2.2 (𝑥 = 𝑦 → (𝜑𝜒))
tfindsg2.3 (𝑥 = suc 𝑦 → (𝜑𝜃))
tfindsg2.4 (𝑥 = 𝐴 → (𝜑𝜏))
tfindsg2.5 (𝐵 ∈ On → 𝜓)
tfindsg2.6 ((𝑦 ∈ On ∧ 𝐵𝑦) → (𝜒𝜃))
tfindsg2.7 ((Lim 𝑥𝐵𝑥) → (∀𝑦𝑥 (𝐵𝑦𝜒) → 𝜑))
Assertion
Ref Expression
tfindsg2 ((𝐴 ∈ On ∧ 𝐵𝐴) → 𝜏)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem tfindsg2
StepHypRef Expression
1 onelon 5955 . . 3 ((𝐴 ∈ On ∧ 𝐵𝐴) → 𝐵 ∈ On)
2 sucelon 7241 . . 3 (𝐵 ∈ On ↔ suc 𝐵 ∈ On)
31, 2sylib 209 . 2 ((𝐴 ∈ On ∧ 𝐵𝐴) → suc 𝐵 ∈ On)
4 eloni 5940 . . . 4 (𝐴 ∈ On → Ord 𝐴)
5 ordsucss 7242 . . . 4 (Ord 𝐴 → (𝐵𝐴 → suc 𝐵𝐴))
64, 5syl 17 . . 3 (𝐴 ∈ On → (𝐵𝐴 → suc 𝐵𝐴))
76imp 395 . 2 ((𝐴 ∈ On ∧ 𝐵𝐴) → suc 𝐵𝐴)
8 tfindsg2.1 . . . . 5 (𝑥 = suc 𝐵 → (𝜑𝜓))
9 tfindsg2.2 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜒))
10 tfindsg2.3 . . . . 5 (𝑥 = suc 𝑦 → (𝜑𝜃))
11 tfindsg2.4 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜏))
12 tfindsg2.5 . . . . . 6 (𝐵 ∈ On → 𝜓)
132, 12sylbir 226 . . . . 5 (suc 𝐵 ∈ On → 𝜓)
14 eloni 5940 . . . . . . . . . 10 (𝑦 ∈ On → Ord 𝑦)
15 ordelsuc 7244 . . . . . . . . . 10 ((𝐵 ∈ On ∧ Ord 𝑦) → (𝐵𝑦 ↔ suc 𝐵𝑦))
1614, 15sylan2 582 . . . . . . . . 9 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵𝑦 ↔ suc 𝐵𝑦))
1716ancoms 448 . . . . . . . 8 ((𝑦 ∈ On ∧ 𝐵 ∈ On) → (𝐵𝑦 ↔ suc 𝐵𝑦))
18 tfindsg2.6 . . . . . . . . . 10 ((𝑦 ∈ On ∧ 𝐵𝑦) → (𝜒𝜃))
1918ex 399 . . . . . . . . 9 (𝑦 ∈ On → (𝐵𝑦 → (𝜒𝜃)))
2019adantr 468 . . . . . . . 8 ((𝑦 ∈ On ∧ 𝐵 ∈ On) → (𝐵𝑦 → (𝜒𝜃)))
2117, 20sylbird 251 . . . . . . 7 ((𝑦 ∈ On ∧ 𝐵 ∈ On) → (suc 𝐵𝑦 → (𝜒𝜃)))
222, 21sylan2br 584 . . . . . 6 ((𝑦 ∈ On ∧ suc 𝐵 ∈ On) → (suc 𝐵𝑦 → (𝜒𝜃)))
2322imp 395 . . . . 5 (((𝑦 ∈ On ∧ suc 𝐵 ∈ On) ∧ suc 𝐵𝑦) → (𝜒𝜃))
24 tfindsg2.7 . . . . . . . . . 10 ((Lim 𝑥𝐵𝑥) → (∀𝑦𝑥 (𝐵𝑦𝜒) → 𝜑))
2524ex 399 . . . . . . . . 9 (Lim 𝑥 → (𝐵𝑥 → (∀𝑦𝑥 (𝐵𝑦𝜒) → 𝜑)))
2625adantr 468 . . . . . . . 8 ((Lim 𝑥𝐵 ∈ On) → (𝐵𝑥 → (∀𝑦𝑥 (𝐵𝑦𝜒) → 𝜑)))
27 vex 3390 . . . . . . . . . . 11 𝑥 ∈ V
28 limelon 5995 . . . . . . . . . . 11 ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On)
2927, 28mpan 673 . . . . . . . . . 10 (Lim 𝑥𝑥 ∈ On)
30 eloni 5940 . . . . . . . . . . . 12 (𝑥 ∈ On → Ord 𝑥)
31 ordelsuc 7244 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ Ord 𝑥) → (𝐵𝑥 ↔ suc 𝐵𝑥))
3230, 31sylan2 582 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → (𝐵𝑥 ↔ suc 𝐵𝑥))
33 onelon 5955 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
3433, 14syl 17 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ 𝑦𝑥) → Ord 𝑦)
3534, 15sylan2 582 . . . . . . . . . . . . . . 15 ((𝐵 ∈ On ∧ (𝑥 ∈ On ∧ 𝑦𝑥)) → (𝐵𝑦 ↔ suc 𝐵𝑦))
3635anassrs 455 . . . . . . . . . . . . . 14 (((𝐵 ∈ On ∧ 𝑥 ∈ On) ∧ 𝑦𝑥) → (𝐵𝑦 ↔ suc 𝐵𝑦))
3736imbi1d 332 . . . . . . . . . . . . 13 (((𝐵 ∈ On ∧ 𝑥 ∈ On) ∧ 𝑦𝑥) → ((𝐵𝑦𝜒) ↔ (suc 𝐵𝑦𝜒)))
3837ralbidva 3169 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → (∀𝑦𝑥 (𝐵𝑦𝜒) ↔ ∀𝑦𝑥 (suc 𝐵𝑦𝜒)))
3938imbi1d 332 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → ((∀𝑦𝑥 (𝐵𝑦𝜒) → 𝜑) ↔ (∀𝑦𝑥 (suc 𝐵𝑦𝜒) → 𝜑)))
4032, 39imbi12d 335 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → ((𝐵𝑥 → (∀𝑦𝑥 (𝐵𝑦𝜒) → 𝜑)) ↔ (suc 𝐵𝑥 → (∀𝑦𝑥 (suc 𝐵𝑦𝜒) → 𝜑))))
4129, 40sylan2 582 . . . . . . . . 9 ((𝐵 ∈ On ∧ Lim 𝑥) → ((𝐵𝑥 → (∀𝑦𝑥 (𝐵𝑦𝜒) → 𝜑)) ↔ (suc 𝐵𝑥 → (∀𝑦𝑥 (suc 𝐵𝑦𝜒) → 𝜑))))
4241ancoms 448 . . . . . . . 8 ((Lim 𝑥𝐵 ∈ On) → ((𝐵𝑥 → (∀𝑦𝑥 (𝐵𝑦𝜒) → 𝜑)) ↔ (suc 𝐵𝑥 → (∀𝑦𝑥 (suc 𝐵𝑦𝜒) → 𝜑))))
4326, 42mpbid 223 . . . . . . 7 ((Lim 𝑥𝐵 ∈ On) → (suc 𝐵𝑥 → (∀𝑦𝑥 (suc 𝐵𝑦𝜒) → 𝜑)))
442, 43sylan2br 584 . . . . . 6 ((Lim 𝑥 ∧ suc 𝐵 ∈ On) → (suc 𝐵𝑥 → (∀𝑦𝑥 (suc 𝐵𝑦𝜒) → 𝜑)))
4544imp 395 . . . . 5 (((Lim 𝑥 ∧ suc 𝐵 ∈ On) ∧ suc 𝐵𝑥) → (∀𝑦𝑥 (suc 𝐵𝑦𝜒) → 𝜑))
468, 9, 10, 11, 13, 23, 45tfindsg 7284 . . . 4 (((𝐴 ∈ On ∧ suc 𝐵 ∈ On) ∧ suc 𝐵𝐴) → 𝜏)
4746expl 447 . . 3 (𝐴 ∈ On → ((suc 𝐵 ∈ On ∧ suc 𝐵𝐴) → 𝜏))
4847adantr 468 . 2 ((𝐴 ∈ On ∧ 𝐵𝐴) → ((suc 𝐵 ∈ On ∧ suc 𝐵𝐴) → 𝜏))
493, 7, 48mp2and 682 1 ((𝐴 ∈ On ∧ 𝐵𝐴) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384   = wceq 1637  wcel 2155  wral 3092  Vcvv 3387  wss 3763  Ord word 5929  Oncon0 5930  Lim wlim 5931  suc csuc 5932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2067  ax-7 2103  ax-8 2157  ax-9 2164  ax-10 2184  ax-11 2200  ax-12 2213  ax-13 2419  ax-ext 2781  ax-sep 4968  ax-nul 4977  ax-pr 5090  ax-un 7173
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2060  df-eu 2633  df-mo 2634  df-clab 2789  df-cleq 2795  df-clel 2798  df-nfc 2933  df-ne 2975  df-ral 3097  df-rex 3098  df-rab 3101  df-v 3389  df-sbc 3628  df-dif 3766  df-un 3768  df-in 3770  df-ss 3777  df-pss 3779  df-nul 4111  df-if 4274  df-pw 4347  df-sn 4365  df-pr 4367  df-tp 4369  df-op 4371  df-uni 4624  df-br 4838  df-opab 4900  df-tr 4940  df-eprel 5218  df-po 5226  df-so 5227  df-fr 5264  df-we 5266  df-ord 5933  df-on 5934  df-lim 5935  df-suc 5936
This theorem is referenced by:  oeordi  7898
  Copyright terms: Public domain W3C validator