MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfindsg2 Structured version   Visualization version   GIF version

Theorem tfindsg2 7803
Description: Transfinite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last three are the basis, the induction step for successors, and the induction step for limit ordinals. The basis of this version is an arbitrary ordinal suc 𝐵 instead of zero. (Contributed by NM, 5-Jan-2005.) Remove unnecessary distinct variable conditions. (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
tfindsg2.1 (𝑥 = suc 𝐵 → (𝜑𝜓))
tfindsg2.2 (𝑥 = 𝑦 → (𝜑𝜒))
tfindsg2.3 (𝑥 = suc 𝑦 → (𝜑𝜃))
tfindsg2.4 (𝑥 = 𝐴 → (𝜑𝜏))
tfindsg2.5 (𝐵 ∈ On → 𝜓)
tfindsg2.6 ((𝑦 ∈ On ∧ 𝐵𝑦) → (𝜒𝜃))
tfindsg2.7 ((Lim 𝑥𝐵𝑥) → (∀𝑦𝑥 (𝐵𝑦𝜒) → 𝜑))
Assertion
Ref Expression
tfindsg2 ((𝐴 ∈ On ∧ 𝐵𝐴) → 𝜏)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem tfindsg2
StepHypRef Expression
1 onelon 6347 . . 3 ((𝐴 ∈ On ∧ 𝐵𝐴) → 𝐵 ∈ On)
2 onsucb 7757 . . 3 (𝐵 ∈ On ↔ suc 𝐵 ∈ On)
31, 2sylib 217 . 2 ((𝐴 ∈ On ∧ 𝐵𝐴) → suc 𝐵 ∈ On)
4 eloni 6332 . . . 4 (𝐴 ∈ On → Ord 𝐴)
5 ordsucss 7758 . . . 4 (Ord 𝐴 → (𝐵𝐴 → suc 𝐵𝐴))
64, 5syl 17 . . 3 (𝐴 ∈ On → (𝐵𝐴 → suc 𝐵𝐴))
76imp 408 . 2 ((𝐴 ∈ On ∧ 𝐵𝐴) → suc 𝐵𝐴)
8 tfindsg2.1 . . . . 5 (𝑥 = suc 𝐵 → (𝜑𝜓))
9 tfindsg2.2 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜒))
10 tfindsg2.3 . . . . 5 (𝑥 = suc 𝑦 → (𝜑𝜃))
11 tfindsg2.4 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜏))
12 tfindsg2.5 . . . . . 6 (𝐵 ∈ On → 𝜓)
132, 12sylbir 234 . . . . 5 (suc 𝐵 ∈ On → 𝜓)
14 eloni 6332 . . . . . . . . . 10 (𝑦 ∈ On → Ord 𝑦)
15 ordelsuc 7760 . . . . . . . . . 10 ((𝐵 ∈ On ∧ Ord 𝑦) → (𝐵𝑦 ↔ suc 𝐵𝑦))
1614, 15sylan2 594 . . . . . . . . 9 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵𝑦 ↔ suc 𝐵𝑦))
1716ancoms 460 . . . . . . . 8 ((𝑦 ∈ On ∧ 𝐵 ∈ On) → (𝐵𝑦 ↔ suc 𝐵𝑦))
18 tfindsg2.6 . . . . . . . . . 10 ((𝑦 ∈ On ∧ 𝐵𝑦) → (𝜒𝜃))
1918ex 414 . . . . . . . . 9 (𝑦 ∈ On → (𝐵𝑦 → (𝜒𝜃)))
2019adantr 482 . . . . . . . 8 ((𝑦 ∈ On ∧ 𝐵 ∈ On) → (𝐵𝑦 → (𝜒𝜃)))
2117, 20sylbird 260 . . . . . . 7 ((𝑦 ∈ On ∧ 𝐵 ∈ On) → (suc 𝐵𝑦 → (𝜒𝜃)))
222, 21sylan2br 596 . . . . . 6 ((𝑦 ∈ On ∧ suc 𝐵 ∈ On) → (suc 𝐵𝑦 → (𝜒𝜃)))
2322imp 408 . . . . 5 (((𝑦 ∈ On ∧ suc 𝐵 ∈ On) ∧ suc 𝐵𝑦) → (𝜒𝜃))
24 tfindsg2.7 . . . . . . . . . 10 ((Lim 𝑥𝐵𝑥) → (∀𝑦𝑥 (𝐵𝑦𝜒) → 𝜑))
2524ex 414 . . . . . . . . 9 (Lim 𝑥 → (𝐵𝑥 → (∀𝑦𝑥 (𝐵𝑦𝜒) → 𝜑)))
2625adantr 482 . . . . . . . 8 ((Lim 𝑥𝐵 ∈ On) → (𝐵𝑥 → (∀𝑦𝑥 (𝐵𝑦𝜒) → 𝜑)))
27 vex 3452 . . . . . . . . . . 11 𝑥 ∈ V
28 limelon 6386 . . . . . . . . . . 11 ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On)
2927, 28mpan 689 . . . . . . . . . 10 (Lim 𝑥𝑥 ∈ On)
30 eloni 6332 . . . . . . . . . . . 12 (𝑥 ∈ On → Ord 𝑥)
31 ordelsuc 7760 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ Ord 𝑥) → (𝐵𝑥 ↔ suc 𝐵𝑥))
3230, 31sylan2 594 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → (𝐵𝑥 ↔ suc 𝐵𝑥))
33 onelon 6347 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
3433, 14syl 17 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ 𝑦𝑥) → Ord 𝑦)
3534, 15sylan2 594 . . . . . . . . . . . . . . 15 ((𝐵 ∈ On ∧ (𝑥 ∈ On ∧ 𝑦𝑥)) → (𝐵𝑦 ↔ suc 𝐵𝑦))
3635anassrs 469 . . . . . . . . . . . . . 14 (((𝐵 ∈ On ∧ 𝑥 ∈ On) ∧ 𝑦𝑥) → (𝐵𝑦 ↔ suc 𝐵𝑦))
3736imbi1d 342 . . . . . . . . . . . . 13 (((𝐵 ∈ On ∧ 𝑥 ∈ On) ∧ 𝑦𝑥) → ((𝐵𝑦𝜒) ↔ (suc 𝐵𝑦𝜒)))
3837ralbidva 3173 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → (∀𝑦𝑥 (𝐵𝑦𝜒) ↔ ∀𝑦𝑥 (suc 𝐵𝑦𝜒)))
3938imbi1d 342 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → ((∀𝑦𝑥 (𝐵𝑦𝜒) → 𝜑) ↔ (∀𝑦𝑥 (suc 𝐵𝑦𝜒) → 𝜑)))
4032, 39imbi12d 345 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → ((𝐵𝑥 → (∀𝑦𝑥 (𝐵𝑦𝜒) → 𝜑)) ↔ (suc 𝐵𝑥 → (∀𝑦𝑥 (suc 𝐵𝑦𝜒) → 𝜑))))
4129, 40sylan2 594 . . . . . . . . 9 ((𝐵 ∈ On ∧ Lim 𝑥) → ((𝐵𝑥 → (∀𝑦𝑥 (𝐵𝑦𝜒) → 𝜑)) ↔ (suc 𝐵𝑥 → (∀𝑦𝑥 (suc 𝐵𝑦𝜒) → 𝜑))))
4241ancoms 460 . . . . . . . 8 ((Lim 𝑥𝐵 ∈ On) → ((𝐵𝑥 → (∀𝑦𝑥 (𝐵𝑦𝜒) → 𝜑)) ↔ (suc 𝐵𝑥 → (∀𝑦𝑥 (suc 𝐵𝑦𝜒) → 𝜑))))
4326, 42mpbid 231 . . . . . . 7 ((Lim 𝑥𝐵 ∈ On) → (suc 𝐵𝑥 → (∀𝑦𝑥 (suc 𝐵𝑦𝜒) → 𝜑)))
442, 43sylan2br 596 . . . . . 6 ((Lim 𝑥 ∧ suc 𝐵 ∈ On) → (suc 𝐵𝑥 → (∀𝑦𝑥 (suc 𝐵𝑦𝜒) → 𝜑)))
4544imp 408 . . . . 5 (((Lim 𝑥 ∧ suc 𝐵 ∈ On) ∧ suc 𝐵𝑥) → (∀𝑦𝑥 (suc 𝐵𝑦𝜒) → 𝜑))
468, 9, 10, 11, 13, 23, 45tfindsg 7802 . . . 4 (((𝐴 ∈ On ∧ suc 𝐵 ∈ On) ∧ suc 𝐵𝐴) → 𝜏)
4746expl 459 . . 3 (𝐴 ∈ On → ((suc 𝐵 ∈ On ∧ suc 𝐵𝐴) → 𝜏))
4847adantr 482 . 2 ((𝐴 ∈ On ∧ 𝐵𝐴) → ((suc 𝐵 ∈ On ∧ suc 𝐵𝐴) → 𝜏))
493, 7, 48mp2and 698 1 ((𝐴 ∈ On ∧ 𝐵𝐴) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wral 3065  Vcvv 3448  wss 3915  Ord word 6321  Oncon0 6322  Lim wlim 6323  suc csuc 6324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-tr 5228  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328
This theorem is referenced by:  oeordi  8539
  Copyright terms: Public domain W3C validator