MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfindsg2 Structured version   Visualization version   GIF version

Theorem tfindsg2 7862
Description: Transfinite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last three are the basis, the induction step for successors, and the induction step for limit ordinals. The basis of this version is an arbitrary ordinal suc 𝐵 instead of zero. (Contributed by NM, 5-Jan-2005.) Remove unnecessary distinct variable conditions. (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
tfindsg2.1 (𝑥 = suc 𝐵 → (𝜑𝜓))
tfindsg2.2 (𝑥 = 𝑦 → (𝜑𝜒))
tfindsg2.3 (𝑥 = suc 𝑦 → (𝜑𝜃))
tfindsg2.4 (𝑥 = 𝐴 → (𝜑𝜏))
tfindsg2.5 (𝐵 ∈ On → 𝜓)
tfindsg2.6 ((𝑦 ∈ On ∧ 𝐵𝑦) → (𝜒𝜃))
tfindsg2.7 ((Lim 𝑥𝐵𝑥) → (∀𝑦𝑥 (𝐵𝑦𝜒) → 𝜑))
Assertion
Ref Expression
tfindsg2 ((𝐴 ∈ On ∧ 𝐵𝐴) → 𝜏)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem tfindsg2
StepHypRef Expression
1 onelon 6382 . . 3 ((𝐴 ∈ On ∧ 𝐵𝐴) → 𝐵 ∈ On)
2 onsucb 7816 . . 3 (𝐵 ∈ On ↔ suc 𝐵 ∈ On)
31, 2sylib 218 . 2 ((𝐴 ∈ On ∧ 𝐵𝐴) → suc 𝐵 ∈ On)
4 eloni 6367 . . . 4 (𝐴 ∈ On → Ord 𝐴)
5 ordsucss 7817 . . . 4 (Ord 𝐴 → (𝐵𝐴 → suc 𝐵𝐴))
64, 5syl 17 . . 3 (𝐴 ∈ On → (𝐵𝐴 → suc 𝐵𝐴))
76imp 406 . 2 ((𝐴 ∈ On ∧ 𝐵𝐴) → suc 𝐵𝐴)
8 tfindsg2.1 . . . . 5 (𝑥 = suc 𝐵 → (𝜑𝜓))
9 tfindsg2.2 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜒))
10 tfindsg2.3 . . . . 5 (𝑥 = suc 𝑦 → (𝜑𝜃))
11 tfindsg2.4 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜏))
12 tfindsg2.5 . . . . . 6 (𝐵 ∈ On → 𝜓)
132, 12sylbir 235 . . . . 5 (suc 𝐵 ∈ On → 𝜓)
14 eloni 6367 . . . . . . . . . 10 (𝑦 ∈ On → Ord 𝑦)
15 ordelsuc 7819 . . . . . . . . . 10 ((𝐵 ∈ On ∧ Ord 𝑦) → (𝐵𝑦 ↔ suc 𝐵𝑦))
1614, 15sylan2 593 . . . . . . . . 9 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵𝑦 ↔ suc 𝐵𝑦))
1716ancoms 458 . . . . . . . 8 ((𝑦 ∈ On ∧ 𝐵 ∈ On) → (𝐵𝑦 ↔ suc 𝐵𝑦))
18 tfindsg2.6 . . . . . . . . . 10 ((𝑦 ∈ On ∧ 𝐵𝑦) → (𝜒𝜃))
1918ex 412 . . . . . . . . 9 (𝑦 ∈ On → (𝐵𝑦 → (𝜒𝜃)))
2019adantr 480 . . . . . . . 8 ((𝑦 ∈ On ∧ 𝐵 ∈ On) → (𝐵𝑦 → (𝜒𝜃)))
2117, 20sylbird 260 . . . . . . 7 ((𝑦 ∈ On ∧ 𝐵 ∈ On) → (suc 𝐵𝑦 → (𝜒𝜃)))
222, 21sylan2br 595 . . . . . 6 ((𝑦 ∈ On ∧ suc 𝐵 ∈ On) → (suc 𝐵𝑦 → (𝜒𝜃)))
2322imp 406 . . . . 5 (((𝑦 ∈ On ∧ suc 𝐵 ∈ On) ∧ suc 𝐵𝑦) → (𝜒𝜃))
24 tfindsg2.7 . . . . . . . . . 10 ((Lim 𝑥𝐵𝑥) → (∀𝑦𝑥 (𝐵𝑦𝜒) → 𝜑))
2524ex 412 . . . . . . . . 9 (Lim 𝑥 → (𝐵𝑥 → (∀𝑦𝑥 (𝐵𝑦𝜒) → 𝜑)))
2625adantr 480 . . . . . . . 8 ((Lim 𝑥𝐵 ∈ On) → (𝐵𝑥 → (∀𝑦𝑥 (𝐵𝑦𝜒) → 𝜑)))
27 vex 3468 . . . . . . . . . . 11 𝑥 ∈ V
28 limelon 6422 . . . . . . . . . . 11 ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On)
2927, 28mpan 690 . . . . . . . . . 10 (Lim 𝑥𝑥 ∈ On)
30 eloni 6367 . . . . . . . . . . . 12 (𝑥 ∈ On → Ord 𝑥)
31 ordelsuc 7819 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ Ord 𝑥) → (𝐵𝑥 ↔ suc 𝐵𝑥))
3230, 31sylan2 593 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → (𝐵𝑥 ↔ suc 𝐵𝑥))
33 onelon 6382 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
3433, 14syl 17 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ 𝑦𝑥) → Ord 𝑦)
3534, 15sylan2 593 . . . . . . . . . . . . . . 15 ((𝐵 ∈ On ∧ (𝑥 ∈ On ∧ 𝑦𝑥)) → (𝐵𝑦 ↔ suc 𝐵𝑦))
3635anassrs 467 . . . . . . . . . . . . . 14 (((𝐵 ∈ On ∧ 𝑥 ∈ On) ∧ 𝑦𝑥) → (𝐵𝑦 ↔ suc 𝐵𝑦))
3736imbi1d 341 . . . . . . . . . . . . 13 (((𝐵 ∈ On ∧ 𝑥 ∈ On) ∧ 𝑦𝑥) → ((𝐵𝑦𝜒) ↔ (suc 𝐵𝑦𝜒)))
3837ralbidva 3162 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → (∀𝑦𝑥 (𝐵𝑦𝜒) ↔ ∀𝑦𝑥 (suc 𝐵𝑦𝜒)))
3938imbi1d 341 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → ((∀𝑦𝑥 (𝐵𝑦𝜒) → 𝜑) ↔ (∀𝑦𝑥 (suc 𝐵𝑦𝜒) → 𝜑)))
4032, 39imbi12d 344 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → ((𝐵𝑥 → (∀𝑦𝑥 (𝐵𝑦𝜒) → 𝜑)) ↔ (suc 𝐵𝑥 → (∀𝑦𝑥 (suc 𝐵𝑦𝜒) → 𝜑))))
4129, 40sylan2 593 . . . . . . . . 9 ((𝐵 ∈ On ∧ Lim 𝑥) → ((𝐵𝑥 → (∀𝑦𝑥 (𝐵𝑦𝜒) → 𝜑)) ↔ (suc 𝐵𝑥 → (∀𝑦𝑥 (suc 𝐵𝑦𝜒) → 𝜑))))
4241ancoms 458 . . . . . . . 8 ((Lim 𝑥𝐵 ∈ On) → ((𝐵𝑥 → (∀𝑦𝑥 (𝐵𝑦𝜒) → 𝜑)) ↔ (suc 𝐵𝑥 → (∀𝑦𝑥 (suc 𝐵𝑦𝜒) → 𝜑))))
4326, 42mpbid 232 . . . . . . 7 ((Lim 𝑥𝐵 ∈ On) → (suc 𝐵𝑥 → (∀𝑦𝑥 (suc 𝐵𝑦𝜒) → 𝜑)))
442, 43sylan2br 595 . . . . . 6 ((Lim 𝑥 ∧ suc 𝐵 ∈ On) → (suc 𝐵𝑥 → (∀𝑦𝑥 (suc 𝐵𝑦𝜒) → 𝜑)))
4544imp 406 . . . . 5 (((Lim 𝑥 ∧ suc 𝐵 ∈ On) ∧ suc 𝐵𝑥) → (∀𝑦𝑥 (suc 𝐵𝑦𝜒) → 𝜑))
468, 9, 10, 11, 13, 23, 45tfindsg 7861 . . . 4 (((𝐴 ∈ On ∧ suc 𝐵 ∈ On) ∧ suc 𝐵𝐴) → 𝜏)
4746expl 457 . . 3 (𝐴 ∈ On → ((suc 𝐵 ∈ On ∧ suc 𝐵𝐴) → 𝜏))
4847adantr 480 . 2 ((𝐴 ∈ On ∧ 𝐵𝐴) → ((suc 𝐵 ∈ On ∧ suc 𝐵𝐴) → 𝜏))
493, 7, 48mp2and 699 1 ((𝐴 ∈ On ∧ 𝐵𝐴) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3052  Vcvv 3464  wss 3931  Ord word 6356  Oncon0 6357  Lim wlim 6358  suc csuc 6359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-tr 5235  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363
This theorem is referenced by:  oeordi  8604
  Copyright terms: Public domain W3C validator