MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tfindsg2 Structured version   Visualization version   GIF version

Theorem tfindsg2 7781
Description: Transfinite Induction (inference schema), using implicit substitutions. The first four hypotheses establish the substitutions we need. The last three are the basis, the induction step for successors, and the induction step for limit ordinals. The basis of this version is an arbitrary ordinal suc 𝐵 instead of zero. (Contributed by NM, 5-Jan-2005.) Remove unnecessary distinct variable conditions. (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
tfindsg2.1 (𝑥 = suc 𝐵 → (𝜑𝜓))
tfindsg2.2 (𝑥 = 𝑦 → (𝜑𝜒))
tfindsg2.3 (𝑥 = suc 𝑦 → (𝜑𝜃))
tfindsg2.4 (𝑥 = 𝐴 → (𝜑𝜏))
tfindsg2.5 (𝐵 ∈ On → 𝜓)
tfindsg2.6 ((𝑦 ∈ On ∧ 𝐵𝑦) → (𝜒𝜃))
tfindsg2.7 ((Lim 𝑥𝐵𝑥) → (∀𝑦𝑥 (𝐵𝑦𝜒) → 𝜑))
Assertion
Ref Expression
tfindsg2 ((𝐴 ∈ On ∧ 𝐵𝐴) → 𝜏)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐴(𝑦)

Proof of Theorem tfindsg2
StepHypRef Expression
1 onelon 6332 . . 3 ((𝐴 ∈ On ∧ 𝐵𝐴) → 𝐵 ∈ On)
2 sucelon 7735 . . 3 (𝐵 ∈ On ↔ suc 𝐵 ∈ On)
31, 2sylib 217 . 2 ((𝐴 ∈ On ∧ 𝐵𝐴) → suc 𝐵 ∈ On)
4 eloni 6317 . . . 4 (𝐴 ∈ On → Ord 𝐴)
5 ordsucss 7736 . . . 4 (Ord 𝐴 → (𝐵𝐴 → suc 𝐵𝐴))
64, 5syl 17 . . 3 (𝐴 ∈ On → (𝐵𝐴 → suc 𝐵𝐴))
76imp 408 . 2 ((𝐴 ∈ On ∧ 𝐵𝐴) → suc 𝐵𝐴)
8 tfindsg2.1 . . . . 5 (𝑥 = suc 𝐵 → (𝜑𝜓))
9 tfindsg2.2 . . . . 5 (𝑥 = 𝑦 → (𝜑𝜒))
10 tfindsg2.3 . . . . 5 (𝑥 = suc 𝑦 → (𝜑𝜃))
11 tfindsg2.4 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜏))
12 tfindsg2.5 . . . . . 6 (𝐵 ∈ On → 𝜓)
132, 12sylbir 234 . . . . 5 (suc 𝐵 ∈ On → 𝜓)
14 eloni 6317 . . . . . . . . . 10 (𝑦 ∈ On → Ord 𝑦)
15 ordelsuc 7738 . . . . . . . . . 10 ((𝐵 ∈ On ∧ Ord 𝑦) → (𝐵𝑦 ↔ suc 𝐵𝑦))
1614, 15sylan2 594 . . . . . . . . 9 ((𝐵 ∈ On ∧ 𝑦 ∈ On) → (𝐵𝑦 ↔ suc 𝐵𝑦))
1716ancoms 460 . . . . . . . 8 ((𝑦 ∈ On ∧ 𝐵 ∈ On) → (𝐵𝑦 ↔ suc 𝐵𝑦))
18 tfindsg2.6 . . . . . . . . . 10 ((𝑦 ∈ On ∧ 𝐵𝑦) → (𝜒𝜃))
1918ex 414 . . . . . . . . 9 (𝑦 ∈ On → (𝐵𝑦 → (𝜒𝜃)))
2019adantr 482 . . . . . . . 8 ((𝑦 ∈ On ∧ 𝐵 ∈ On) → (𝐵𝑦 → (𝜒𝜃)))
2117, 20sylbird 260 . . . . . . 7 ((𝑦 ∈ On ∧ 𝐵 ∈ On) → (suc 𝐵𝑦 → (𝜒𝜃)))
222, 21sylan2br 596 . . . . . 6 ((𝑦 ∈ On ∧ suc 𝐵 ∈ On) → (suc 𝐵𝑦 → (𝜒𝜃)))
2322imp 408 . . . . 5 (((𝑦 ∈ On ∧ suc 𝐵 ∈ On) ∧ suc 𝐵𝑦) → (𝜒𝜃))
24 tfindsg2.7 . . . . . . . . . 10 ((Lim 𝑥𝐵𝑥) → (∀𝑦𝑥 (𝐵𝑦𝜒) → 𝜑))
2524ex 414 . . . . . . . . 9 (Lim 𝑥 → (𝐵𝑥 → (∀𝑦𝑥 (𝐵𝑦𝜒) → 𝜑)))
2625adantr 482 . . . . . . . 8 ((Lim 𝑥𝐵 ∈ On) → (𝐵𝑥 → (∀𝑦𝑥 (𝐵𝑦𝜒) → 𝜑)))
27 vex 3446 . . . . . . . . . . 11 𝑥 ∈ V
28 limelon 6370 . . . . . . . . . . 11 ((𝑥 ∈ V ∧ Lim 𝑥) → 𝑥 ∈ On)
2927, 28mpan 688 . . . . . . . . . 10 (Lim 𝑥𝑥 ∈ On)
30 eloni 6317 . . . . . . . . . . . 12 (𝑥 ∈ On → Ord 𝑥)
31 ordelsuc 7738 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ Ord 𝑥) → (𝐵𝑥 ↔ suc 𝐵𝑥))
3230, 31sylan2 594 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → (𝐵𝑥 ↔ suc 𝐵𝑥))
33 onelon 6332 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ On ∧ 𝑦𝑥) → 𝑦 ∈ On)
3433, 14syl 17 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ On ∧ 𝑦𝑥) → Ord 𝑦)
3534, 15sylan2 594 . . . . . . . . . . . . . . 15 ((𝐵 ∈ On ∧ (𝑥 ∈ On ∧ 𝑦𝑥)) → (𝐵𝑦 ↔ suc 𝐵𝑦))
3635anassrs 469 . . . . . . . . . . . . . 14 (((𝐵 ∈ On ∧ 𝑥 ∈ On) ∧ 𝑦𝑥) → (𝐵𝑦 ↔ suc 𝐵𝑦))
3736imbi1d 342 . . . . . . . . . . . . 13 (((𝐵 ∈ On ∧ 𝑥 ∈ On) ∧ 𝑦𝑥) → ((𝐵𝑦𝜒) ↔ (suc 𝐵𝑦𝜒)))
3837ralbidva 3169 . . . . . . . . . . . 12 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → (∀𝑦𝑥 (𝐵𝑦𝜒) ↔ ∀𝑦𝑥 (suc 𝐵𝑦𝜒)))
3938imbi1d 342 . . . . . . . . . . 11 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → ((∀𝑦𝑥 (𝐵𝑦𝜒) → 𝜑) ↔ (∀𝑦𝑥 (suc 𝐵𝑦𝜒) → 𝜑)))
4032, 39imbi12d 345 . . . . . . . . . 10 ((𝐵 ∈ On ∧ 𝑥 ∈ On) → ((𝐵𝑥 → (∀𝑦𝑥 (𝐵𝑦𝜒) → 𝜑)) ↔ (suc 𝐵𝑥 → (∀𝑦𝑥 (suc 𝐵𝑦𝜒) → 𝜑))))
4129, 40sylan2 594 . . . . . . . . 9 ((𝐵 ∈ On ∧ Lim 𝑥) → ((𝐵𝑥 → (∀𝑦𝑥 (𝐵𝑦𝜒) → 𝜑)) ↔ (suc 𝐵𝑥 → (∀𝑦𝑥 (suc 𝐵𝑦𝜒) → 𝜑))))
4241ancoms 460 . . . . . . . 8 ((Lim 𝑥𝐵 ∈ On) → ((𝐵𝑥 → (∀𝑦𝑥 (𝐵𝑦𝜒) → 𝜑)) ↔ (suc 𝐵𝑥 → (∀𝑦𝑥 (suc 𝐵𝑦𝜒) → 𝜑))))
4326, 42mpbid 231 . . . . . . 7 ((Lim 𝑥𝐵 ∈ On) → (suc 𝐵𝑥 → (∀𝑦𝑥 (suc 𝐵𝑦𝜒) → 𝜑)))
442, 43sylan2br 596 . . . . . 6 ((Lim 𝑥 ∧ suc 𝐵 ∈ On) → (suc 𝐵𝑥 → (∀𝑦𝑥 (suc 𝐵𝑦𝜒) → 𝜑)))
4544imp 408 . . . . 5 (((Lim 𝑥 ∧ suc 𝐵 ∈ On) ∧ suc 𝐵𝑥) → (∀𝑦𝑥 (suc 𝐵𝑦𝜒) → 𝜑))
468, 9, 10, 11, 13, 23, 45tfindsg 7780 . . . 4 (((𝐴 ∈ On ∧ suc 𝐵 ∈ On) ∧ suc 𝐵𝐴) → 𝜏)
4746expl 459 . . 3 (𝐴 ∈ On → ((suc 𝐵 ∈ On ∧ suc 𝐵𝐴) → 𝜏))
4847adantr 482 . 2 ((𝐴 ∈ On ∧ 𝐵𝐴) → ((suc 𝐵 ∈ On ∧ suc 𝐵𝐴) → 𝜏))
493, 7, 48mp2and 697 1 ((𝐴 ∈ On ∧ 𝐵𝐴) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1541  wcel 2106  wral 3062  Vcvv 3442  wss 3902  Ord word 6306  Oncon0 6307  Lim wlim 6308  suc csuc 6309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5248  ax-nul 5255  ax-pr 5377  ax-un 7655
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3444  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3921  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-br 5098  df-opab 5160  df-tr 5215  df-eprel 5529  df-po 5537  df-so 5538  df-fr 5580  df-we 5582  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313
This theorem is referenced by:  oeordi  8494
  Copyright terms: Public domain W3C validator