MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omlim Structured version   Visualization version   GIF version

Theorem omlim 8458
Description: Ordinal multiplication with a limit ordinal. Definition 8.15 of [TakeutiZaring] p. 62. Definition 2.5 of [Schloeder] p. 4. (Contributed by NM, 3-Aug-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
omlim ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐴 ·o 𝐵) = 𝑥𝐵 (𝐴 ·o 𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem omlim
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 limelon 6376 . . 3 ((𝐵𝐶 ∧ Lim 𝐵) → 𝐵 ∈ On)
2 simpr 484 . . 3 ((𝐵𝐶 ∧ Lim 𝐵) → Lim 𝐵)
31, 2jca 511 . 2 ((𝐵𝐶 ∧ Lim 𝐵) → (𝐵 ∈ On ∧ Lim 𝐵))
4 rdglim2a 8362 . . . 4 ((𝐵 ∈ On ∧ Lim 𝐵) → (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝐵) = 𝑥𝐵 (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥))
54adantl 481 . . 3 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) → (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝐵) = 𝑥𝐵 (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥))
6 omv 8437 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) = (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝐵))
7 onelon 6336 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝑥𝐵) → 𝑥 ∈ On)
8 omv 8437 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ·o 𝑥) = (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥))
97, 8sylan2 593 . . . . . . 7 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑥𝐵)) → (𝐴 ·o 𝑥) = (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥))
109anassrs 467 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑥𝐵) → (𝐴 ·o 𝑥) = (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥))
1110iuneq2dv 4969 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝑥𝐵 (𝐴 ·o 𝑥) = 𝑥𝐵 (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥))
126, 11eqeq12d 2745 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) = 𝑥𝐵 (𝐴 ·o 𝑥) ↔ (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝐵) = 𝑥𝐵 (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥)))
1312adantrr 717 . . 3 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) → ((𝐴 ·o 𝐵) = 𝑥𝐵 (𝐴 ·o 𝑥) ↔ (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝐵) = 𝑥𝐵 (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥)))
145, 13mpbird 257 . 2 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) → (𝐴 ·o 𝐵) = 𝑥𝐵 (𝐴 ·o 𝑥))
153, 14sylan2 593 1 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐴 ·o 𝐵) = 𝑥𝐵 (𝐴 ·o 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  c0 4286   ciun 4944  cmpt 5176  Oncon0 6311  Lim wlim 6312  cfv 6486  (class class class)co 7353  reccrdg 8338   +o coa 8392   ·o comu 8393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-omul 8400
This theorem is referenced by:  omcl  8461  om0r  8464  om1r  8468  omordi  8491  omwordri  8497  omordlim  8502  omlimcl  8503  odi  8504  omass  8505  omeulem1  8507  oeoalem  8521  oeoelem  8523  omabslem  8575  omabs  8576  om0suclim  43252  oaabsb  43270
  Copyright terms: Public domain W3C validator