![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > omlim | Structured version Visualization version GIF version |
Description: Ordinal multiplication with a limit ordinal. Definition 8.15 of [TakeutiZaring] p. 62. Definition 2.5 of [Schloeder] p. 4. (Contributed by NM, 3-Aug-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
Ref | Expression |
---|---|
omlim | โข ((๐ด โ On โง (๐ต โ ๐ถ โง Lim ๐ต)) โ (๐ด ยทo ๐ต) = โช ๐ฅ โ ๐ต (๐ด ยทo ๐ฅ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limelon 6428 | . . 3 โข ((๐ต โ ๐ถ โง Lim ๐ต) โ ๐ต โ On) | |
2 | simpr 485 | . . 3 โข ((๐ต โ ๐ถ โง Lim ๐ต) โ Lim ๐ต) | |
3 | 1, 2 | jca 512 | . 2 โข ((๐ต โ ๐ถ โง Lim ๐ต) โ (๐ต โ On โง Lim ๐ต)) |
4 | rdglim2a 8432 | . . . 4 โข ((๐ต โ On โง Lim ๐ต) โ (rec((๐ฆ โ V โฆ (๐ฆ +o ๐ด)), โ )โ๐ต) = โช ๐ฅ โ ๐ต (rec((๐ฆ โ V โฆ (๐ฆ +o ๐ด)), โ )โ๐ฅ)) | |
5 | 4 | adantl 482 | . . 3 โข ((๐ด โ On โง (๐ต โ On โง Lim ๐ต)) โ (rec((๐ฆ โ V โฆ (๐ฆ +o ๐ด)), โ )โ๐ต) = โช ๐ฅ โ ๐ต (rec((๐ฆ โ V โฆ (๐ฆ +o ๐ด)), โ )โ๐ฅ)) |
6 | omv 8511 | . . . . 5 โข ((๐ด โ On โง ๐ต โ On) โ (๐ด ยทo ๐ต) = (rec((๐ฆ โ V โฆ (๐ฆ +o ๐ด)), โ )โ๐ต)) | |
7 | onelon 6389 | . . . . . . . 8 โข ((๐ต โ On โง ๐ฅ โ ๐ต) โ ๐ฅ โ On) | |
8 | omv 8511 | . . . . . . . 8 โข ((๐ด โ On โง ๐ฅ โ On) โ (๐ด ยทo ๐ฅ) = (rec((๐ฆ โ V โฆ (๐ฆ +o ๐ด)), โ )โ๐ฅ)) | |
9 | 7, 8 | sylan2 593 | . . . . . . 7 โข ((๐ด โ On โง (๐ต โ On โง ๐ฅ โ ๐ต)) โ (๐ด ยทo ๐ฅ) = (rec((๐ฆ โ V โฆ (๐ฆ +o ๐ด)), โ )โ๐ฅ)) |
10 | 9 | anassrs 468 | . . . . . 6 โข (((๐ด โ On โง ๐ต โ On) โง ๐ฅ โ ๐ต) โ (๐ด ยทo ๐ฅ) = (rec((๐ฆ โ V โฆ (๐ฆ +o ๐ด)), โ )โ๐ฅ)) |
11 | 10 | iuneq2dv 5021 | . . . . 5 โข ((๐ด โ On โง ๐ต โ On) โ โช ๐ฅ โ ๐ต (๐ด ยทo ๐ฅ) = โช ๐ฅ โ ๐ต (rec((๐ฆ โ V โฆ (๐ฆ +o ๐ด)), โ )โ๐ฅ)) |
12 | 6, 11 | eqeq12d 2748 | . . . 4 โข ((๐ด โ On โง ๐ต โ On) โ ((๐ด ยทo ๐ต) = โช ๐ฅ โ ๐ต (๐ด ยทo ๐ฅ) โ (rec((๐ฆ โ V โฆ (๐ฆ +o ๐ด)), โ )โ๐ต) = โช ๐ฅ โ ๐ต (rec((๐ฆ โ V โฆ (๐ฆ +o ๐ด)), โ )โ๐ฅ))) |
13 | 12 | adantrr 715 | . . 3 โข ((๐ด โ On โง (๐ต โ On โง Lim ๐ต)) โ ((๐ด ยทo ๐ต) = โช ๐ฅ โ ๐ต (๐ด ยทo ๐ฅ) โ (rec((๐ฆ โ V โฆ (๐ฆ +o ๐ด)), โ )โ๐ต) = โช ๐ฅ โ ๐ต (rec((๐ฆ โ V โฆ (๐ฆ +o ๐ด)), โ )โ๐ฅ))) |
14 | 5, 13 | mpbird 256 | . 2 โข ((๐ด โ On โง (๐ต โ On โง Lim ๐ต)) โ (๐ด ยทo ๐ต) = โช ๐ฅ โ ๐ต (๐ด ยทo ๐ฅ)) |
15 | 3, 14 | sylan2 593 | 1 โข ((๐ด โ On โง (๐ต โ ๐ถ โง Lim ๐ต)) โ (๐ด ยทo ๐ต) = โช ๐ฅ โ ๐ต (๐ด ยทo ๐ฅ)) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โ wb 205 โง wa 396 = wceq 1541 โ wcel 2106 Vcvv 3474 โ c0 4322 โช ciun 4997 โฆ cmpt 5231 Oncon0 6364 Lim wlim 6365 โcfv 6543 (class class class)co 7408 reccrdg 8408 +o coa 8462 ยทo comu 8463 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-omul 8470 |
This theorem is referenced by: omcl 8535 om0r 8538 om1r 8542 omordi 8565 omwordri 8571 omordlim 8576 omlimcl 8577 odi 8578 omass 8579 omeulem1 8581 oeoalem 8595 oeoelem 8597 omabslem 8648 omabs 8649 om0suclim 42016 oaabsb 42034 |
Copyright terms: Public domain | W3C validator |