| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omlim | Structured version Visualization version GIF version | ||
| Description: Ordinal multiplication with a limit ordinal. Definition 8.15 of [TakeutiZaring] p. 62. Definition 2.5 of [Schloeder] p. 4. (Contributed by NM, 3-Aug-2004.) (Revised by Mario Carneiro, 8-Sep-2013.) |
| Ref | Expression |
|---|---|
| omlim | ⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) → (𝐴 ·o 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 ·o 𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limelon 6376 | . . 3 ⊢ ((𝐵 ∈ 𝐶 ∧ Lim 𝐵) → 𝐵 ∈ On) | |
| 2 | simpr 484 | . . 3 ⊢ ((𝐵 ∈ 𝐶 ∧ Lim 𝐵) → Lim 𝐵) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ ((𝐵 ∈ 𝐶 ∧ Lim 𝐵) → (𝐵 ∈ On ∧ Lim 𝐵)) |
| 4 | rdglim2a 8358 | . . . 4 ⊢ ((𝐵 ∈ On ∧ Lim 𝐵) → (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝐵) = ∪ 𝑥 ∈ 𝐵 (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥)) | |
| 5 | 4 | adantl 481 | . . 3 ⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) → (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝐵) = ∪ 𝑥 ∈ 𝐵 (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥)) |
| 6 | omv 8433 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) = (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝐵)) | |
| 7 | onelon 6336 | . . . . . . . 8 ⊢ ((𝐵 ∈ On ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ On) | |
| 8 | omv 8433 | . . . . . . . 8 ⊢ ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ·o 𝑥) = (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥)) | |
| 9 | 7, 8 | sylan2 593 | . . . . . . 7 ⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑥 ∈ 𝐵)) → (𝐴 ·o 𝑥) = (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥)) |
| 10 | 9 | anassrs 467 | . . . . . 6 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑥 ∈ 𝐵) → (𝐴 ·o 𝑥) = (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥)) |
| 11 | 10 | iuneq2dv 4966 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ∪ 𝑥 ∈ 𝐵 (𝐴 ·o 𝑥) = ∪ 𝑥 ∈ 𝐵 (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥)) |
| 12 | 6, 11 | eqeq12d 2749 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 ·o 𝑥) ↔ (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝐵) = ∪ 𝑥 ∈ 𝐵 (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥))) |
| 13 | 12 | adantrr 717 | . . 3 ⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) → ((𝐴 ·o 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 ·o 𝑥) ↔ (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝐵) = ∪ 𝑥 ∈ 𝐵 (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥))) |
| 14 | 5, 13 | mpbird 257 | . 2 ⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) → (𝐴 ·o 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 ·o 𝑥)) |
| 15 | 3, 14 | sylan2 593 | 1 ⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ 𝐶 ∧ Lim 𝐵)) → (𝐴 ·o 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 ·o 𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∅c0 4282 ∪ ciun 4941 ↦ cmpt 5174 Oncon0 6311 Lim wlim 6312 ‘cfv 6486 (class class class)co 7352 reccrdg 8334 +o coa 8388 ·o comu 8389 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-omul 8396 |
| This theorem is referenced by: omcl 8457 om0r 8460 om1r 8464 omordi 8487 omwordri 8493 omordlim 8498 omlimcl 8499 odi 8500 omass 8501 omeulem1 8503 oeoalem 8517 oeoelem 8519 omabslem 8571 omabs 8572 om0suclim 43394 oaabsb 43412 |
| Copyright terms: Public domain | W3C validator |