MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omlim Structured version   Visualization version   GIF version

Theorem omlim 8454
Description: Ordinal multiplication with a limit ordinal. Definition 8.15 of [TakeutiZaring] p. 62. Definition 2.5 of [Schloeder] p. 4. (Contributed by NM, 3-Aug-2004.) (Revised by Mario Carneiro, 8-Sep-2013.)
Assertion
Ref Expression
omlim ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐴 ·o 𝐵) = 𝑥𝐵 (𝐴 ·o 𝑥))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem omlim
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 limelon 6376 . . 3 ((𝐵𝐶 ∧ Lim 𝐵) → 𝐵 ∈ On)
2 simpr 484 . . 3 ((𝐵𝐶 ∧ Lim 𝐵) → Lim 𝐵)
31, 2jca 511 . 2 ((𝐵𝐶 ∧ Lim 𝐵) → (𝐵 ∈ On ∧ Lim 𝐵))
4 rdglim2a 8358 . . . 4 ((𝐵 ∈ On ∧ Lim 𝐵) → (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝐵) = 𝑥𝐵 (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥))
54adantl 481 . . 3 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) → (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝐵) = 𝑥𝐵 (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥))
6 omv 8433 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 ·o 𝐵) = (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝐵))
7 onelon 6336 . . . . . . . 8 ((𝐵 ∈ On ∧ 𝑥𝐵) → 𝑥 ∈ On)
8 omv 8433 . . . . . . . 8 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴 ·o 𝑥) = (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥))
97, 8sylan2 593 . . . . . . 7 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ 𝑥𝐵)) → (𝐴 ·o 𝑥) = (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥))
109anassrs 467 . . . . . 6 (((𝐴 ∈ On ∧ 𝐵 ∈ On) ∧ 𝑥𝐵) → (𝐴 ·o 𝑥) = (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥))
1110iuneq2dv 4966 . . . . 5 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝑥𝐵 (𝐴 ·o 𝑥) = 𝑥𝐵 (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥))
126, 11eqeq12d 2749 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → ((𝐴 ·o 𝐵) = 𝑥𝐵 (𝐴 ·o 𝑥) ↔ (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝐵) = 𝑥𝐵 (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥)))
1312adantrr 717 . . 3 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) → ((𝐴 ·o 𝐵) = 𝑥𝐵 (𝐴 ·o 𝑥) ↔ (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝐵) = 𝑥𝐵 (rec((𝑦 ∈ V ↦ (𝑦 +o 𝐴)), ∅)‘𝑥)))
145, 13mpbird 257 . 2 ((𝐴 ∈ On ∧ (𝐵 ∈ On ∧ Lim 𝐵)) → (𝐴 ·o 𝐵) = 𝑥𝐵 (𝐴 ·o 𝑥))
153, 14sylan2 593 1 ((𝐴 ∈ On ∧ (𝐵𝐶 ∧ Lim 𝐵)) → (𝐴 ·o 𝐵) = 𝑥𝐵 (𝐴 ·o 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  c0 4282   ciun 4941  cmpt 5174  Oncon0 6311  Lim wlim 6312  cfv 6486  (class class class)co 7352  reccrdg 8334   +o coa 8388   ·o comu 8389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-omul 8396
This theorem is referenced by:  omcl  8457  om0r  8460  om1r  8464  omordi  8487  omwordri  8493  omordlim  8498  omlimcl  8499  odi  8500  omass  8501  omeulem1  8503  oeoalem  8517  oeoelem  8519  omabslem  8571  omabs  8572  om0suclim  43394  oaabsb  43412
  Copyright terms: Public domain W3C validator