![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rdglim | Structured version Visualization version GIF version |
Description: The value of the recursive definition generator at a limit ordinal. (Contributed by NM, 23-Apr-1995.) (Revised by Mario Carneiro, 14-Nov-2014.) |
Ref | Expression |
---|---|
rdglim | ⊢ ((𝐵 ∈ 𝐶 ∧ Lim 𝐵) → (rec(𝐹, 𝐴)‘𝐵) = ∪ (rec(𝐹, 𝐴) “ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limelon 6129 | . . 3 ⊢ ((𝐵 ∈ 𝐶 ∧ Lim 𝐵) → 𝐵 ∈ On) | |
2 | rdgfnon 7906 | . . . 4 ⊢ rec(𝐹, 𝐴) Fn On | |
3 | fndm 6325 | . . . 4 ⊢ (rec(𝐹, 𝐴) Fn On → dom rec(𝐹, 𝐴) = On) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ dom rec(𝐹, 𝐴) = On |
5 | 1, 4 | syl6eleqr 2894 | . 2 ⊢ ((𝐵 ∈ 𝐶 ∧ Lim 𝐵) → 𝐵 ∈ dom rec(𝐹, 𝐴)) |
6 | rdglimg 7913 | . 2 ⊢ ((𝐵 ∈ dom rec(𝐹, 𝐴) ∧ Lim 𝐵) → (rec(𝐹, 𝐴)‘𝐵) = ∪ (rec(𝐹, 𝐴) “ 𝐵)) | |
7 | 5, 6 | sylancom 588 | 1 ⊢ ((𝐵 ∈ 𝐶 ∧ Lim 𝐵) → (rec(𝐹, 𝐴)‘𝐵) = ∪ (rec(𝐹, 𝐴) “ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1522 ∈ wcel 2081 ∪ cuni 4745 dom cdm 5443 “ cima 5446 Oncon0 6066 Lim wlim 6067 Fn wfn 6220 ‘cfv 6225 reccrdg 7897 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-wrecs 7798 df-recs 7860 df-rdg 7898 |
This theorem is referenced by: rdglim2 7920 rdgprc 32648 |
Copyright terms: Public domain | W3C validator |