Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rdglim | Structured version Visualization version GIF version |
Description: The value of the recursive definition generator at a limit ordinal. (Contributed by NM, 23-Apr-1995.) (Revised by Mario Carneiro, 14-Nov-2014.) |
Ref | Expression |
---|---|
rdglim | ⊢ ((𝐵 ∈ 𝐶 ∧ Lim 𝐵) → (rec(𝐹, 𝐴)‘𝐵) = ∪ (rec(𝐹, 𝐴) “ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limelon 6237 | . . 3 ⊢ ((𝐵 ∈ 𝐶 ∧ Lim 𝐵) → 𝐵 ∈ On) | |
2 | rdgfnon 8070 | . . . 4 ⊢ rec(𝐹, 𝐴) Fn On | |
3 | fndm 6441 | . . . 4 ⊢ (rec(𝐹, 𝐴) Fn On → dom rec(𝐹, 𝐴) = On) | |
4 | 2, 3 | ax-mp 5 | . . 3 ⊢ dom rec(𝐹, 𝐴) = On |
5 | 1, 4 | eleqtrrdi 2863 | . 2 ⊢ ((𝐵 ∈ 𝐶 ∧ Lim 𝐵) → 𝐵 ∈ dom rec(𝐹, 𝐴)) |
6 | rdglimg 8077 | . 2 ⊢ ((𝐵 ∈ dom rec(𝐹, 𝐴) ∧ Lim 𝐵) → (rec(𝐹, 𝐴)‘𝐵) = ∪ (rec(𝐹, 𝐴) “ 𝐵)) | |
7 | 5, 6 | sylancom 591 | 1 ⊢ ((𝐵 ∈ 𝐶 ∧ Lim 𝐵) → (rec(𝐹, 𝐴)‘𝐵) = ∪ (rec(𝐹, 𝐴) “ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∪ cuni 4801 dom cdm 5528 “ cima 5531 Oncon0 6174 Lim wlim 6175 Fn wfn 6335 ‘cfv 6340 reccrdg 8061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-wrecs 7963 df-recs 8024 df-rdg 8062 |
This theorem is referenced by: rdglim2 8084 rdgprc 33298 |
Copyright terms: Public domain | W3C validator |