![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmfpm | Structured version Visualization version GIF version |
Description: If πΉ converges, then πΉ is a partial function. (Contributed by Mario Carneiro, 23-Dec-2013.) |
Ref | Expression |
---|---|
lmfpm | β’ ((π½ β (TopOnβπ) β§ πΉ(βπ‘βπ½)π) β πΉ β (π βpm β)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . 4 β’ (π½ β (TopOnβπ) β π½ β (TopOnβπ)) | |
2 | 1 | lmbr 22995 | . . 3 β’ (π½ β (TopOnβπ) β (πΉ(βπ‘βπ½)π β (πΉ β (π βpm β) β§ π β π β§ βπ’ β π½ (π β π’ β βπ¦ β ran β€β₯(πΉ βΎ π¦):π¦βΆπ’)))) |
3 | 2 | biimpa 476 | . 2 β’ ((π½ β (TopOnβπ) β§ πΉ(βπ‘βπ½)π) β (πΉ β (π βpm β) β§ π β π β§ βπ’ β π½ (π β π’ β βπ¦ β ran β€β₯(πΉ βΎ π¦):π¦βΆπ’))) |
4 | 3 | simp1d 1141 | 1 β’ ((π½ β (TopOnβπ) β§ πΉ(βπ‘βπ½)π) β πΉ β (π βpm β)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 β§ w3a 1086 β wcel 2105 βwral 3060 βwrex 3069 class class class wbr 5148 ran crn 5677 βΎ cres 5678 βΆwf 6539 βcfv 6543 (class class class)co 7412 βpm cpm 8827 βcc 11114 β€β₯cuz 12829 TopOnctopon 22645 βπ‘clm 22963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-fv 6551 df-ov 7415 df-top 22629 df-topon 22646 df-lm 22966 |
This theorem is referenced by: lmfss 23033 |
Copyright terms: Public domain | W3C validator |