MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  paste Structured version   Visualization version   GIF version

Theorem paste 22353
Description: Pasting lemma. If 𝐴 and 𝐵 are closed sets in 𝑋 with 𝐴𝐵 = 𝑋, then any function whose restrictions to 𝐴 and 𝐵 are continuous is continuous on all of 𝑋. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 21-Aug-2015.)
Hypotheses
Ref Expression
paste.1 𝑋 = 𝐽
paste.2 𝑌 = 𝐾
paste.4 (𝜑𝐴 ∈ (Clsd‘𝐽))
paste.5 (𝜑𝐵 ∈ (Clsd‘𝐽))
paste.6 (𝜑 → (𝐴𝐵) = 𝑋)
paste.7 (𝜑𝐹:𝑋𝑌)
paste.8 (𝜑 → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾))
paste.9 (𝜑 → (𝐹𝐵) ∈ ((𝐽t 𝐵) Cn 𝐾))
Assertion
Ref Expression
paste (𝜑𝐹 ∈ (𝐽 Cn 𝐾))

Proof of Theorem paste
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 paste.7 . 2 (𝜑𝐹:𝑋𝑌)
2 paste.6 . . . . . . 7 (𝜑 → (𝐴𝐵) = 𝑋)
32ineq2d 4143 . . . . . 6 (𝜑 → ((𝐹𝑦) ∩ (𝐴𝐵)) = ((𝐹𝑦) ∩ 𝑋))
4 indi 4204 . . . . . . 7 ((𝐹𝑦) ∩ (𝐴𝐵)) = (((𝐹𝑦) ∩ 𝐴) ∪ ((𝐹𝑦) ∩ 𝐵))
51ffund 6588 . . . . . . . 8 (𝜑 → Fun 𝐹)
6 respreima 6925 . . . . . . . . 9 (Fun 𝐹 → ((𝐹𝐴) “ 𝑦) = ((𝐹𝑦) ∩ 𝐴))
7 respreima 6925 . . . . . . . . 9 (Fun 𝐹 → ((𝐹𝐵) “ 𝑦) = ((𝐹𝑦) ∩ 𝐵))
86, 7uneq12d 4094 . . . . . . . 8 (Fun 𝐹 → (((𝐹𝐴) “ 𝑦) ∪ ((𝐹𝐵) “ 𝑦)) = (((𝐹𝑦) ∩ 𝐴) ∪ ((𝐹𝑦) ∩ 𝐵)))
95, 8syl 17 . . . . . . 7 (𝜑 → (((𝐹𝐴) “ 𝑦) ∪ ((𝐹𝐵) “ 𝑦)) = (((𝐹𝑦) ∩ 𝐴) ∪ ((𝐹𝑦) ∩ 𝐵)))
104, 9eqtr4id 2798 . . . . . 6 (𝜑 → ((𝐹𝑦) ∩ (𝐴𝐵)) = (((𝐹𝐴) “ 𝑦) ∪ ((𝐹𝐵) “ 𝑦)))
11 imassrn 5969 . . . . . . . . 9 (𝐹𝑦) ⊆ ran 𝐹
12 dfdm4 5793 . . . . . . . . . 10 dom 𝐹 = ran 𝐹
13 fdm 6593 . . . . . . . . . 10 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
1412, 13eqtr3id 2793 . . . . . . . . 9 (𝐹:𝑋𝑌 → ran 𝐹 = 𝑋)
1511, 14sseqtrid 3969 . . . . . . . 8 (𝐹:𝑋𝑌 → (𝐹𝑦) ⊆ 𝑋)
161, 15syl 17 . . . . . . 7 (𝜑 → (𝐹𝑦) ⊆ 𝑋)
17 df-ss 3900 . . . . . . 7 ((𝐹𝑦) ⊆ 𝑋 ↔ ((𝐹𝑦) ∩ 𝑋) = (𝐹𝑦))
1816, 17sylib 217 . . . . . 6 (𝜑 → ((𝐹𝑦) ∩ 𝑋) = (𝐹𝑦))
193, 10, 183eqtr3rd 2787 . . . . 5 (𝜑 → (𝐹𝑦) = (((𝐹𝐴) “ 𝑦) ∪ ((𝐹𝐵) “ 𝑦)))
2019adantr 480 . . . 4 ((𝜑𝑦 ∈ (Clsd‘𝐾)) → (𝐹𝑦) = (((𝐹𝐴) “ 𝑦) ∪ ((𝐹𝐵) “ 𝑦)))
21 paste.4 . . . . . 6 (𝜑𝐴 ∈ (Clsd‘𝐽))
22 paste.8 . . . . . . 7 (𝜑 → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾))
23 cnclima 22327 . . . . . . 7 (((𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾) ∧ 𝑦 ∈ (Clsd‘𝐾)) → ((𝐹𝐴) “ 𝑦) ∈ (Clsd‘(𝐽t 𝐴)))
2422, 23sylan 579 . . . . . 6 ((𝜑𝑦 ∈ (Clsd‘𝐾)) → ((𝐹𝐴) “ 𝑦) ∈ (Clsd‘(𝐽t 𝐴)))
25 restcldr 22233 . . . . . 6 ((𝐴 ∈ (Clsd‘𝐽) ∧ ((𝐹𝐴) “ 𝑦) ∈ (Clsd‘(𝐽t 𝐴))) → ((𝐹𝐴) “ 𝑦) ∈ (Clsd‘𝐽))
2621, 24, 25syl2an2r 681 . . . . 5 ((𝜑𝑦 ∈ (Clsd‘𝐾)) → ((𝐹𝐴) “ 𝑦) ∈ (Clsd‘𝐽))
27 paste.5 . . . . . 6 (𝜑𝐵 ∈ (Clsd‘𝐽))
28 paste.9 . . . . . . 7 (𝜑 → (𝐹𝐵) ∈ ((𝐽t 𝐵) Cn 𝐾))
29 cnclima 22327 . . . . . . 7 (((𝐹𝐵) ∈ ((𝐽t 𝐵) Cn 𝐾) ∧ 𝑦 ∈ (Clsd‘𝐾)) → ((𝐹𝐵) “ 𝑦) ∈ (Clsd‘(𝐽t 𝐵)))
3028, 29sylan 579 . . . . . 6 ((𝜑𝑦 ∈ (Clsd‘𝐾)) → ((𝐹𝐵) “ 𝑦) ∈ (Clsd‘(𝐽t 𝐵)))
31 restcldr 22233 . . . . . 6 ((𝐵 ∈ (Clsd‘𝐽) ∧ ((𝐹𝐵) “ 𝑦) ∈ (Clsd‘(𝐽t 𝐵))) → ((𝐹𝐵) “ 𝑦) ∈ (Clsd‘𝐽))
3227, 30, 31syl2an2r 681 . . . . 5 ((𝜑𝑦 ∈ (Clsd‘𝐾)) → ((𝐹𝐵) “ 𝑦) ∈ (Clsd‘𝐽))
33 uncld 22100 . . . . 5 ((((𝐹𝐴) “ 𝑦) ∈ (Clsd‘𝐽) ∧ ((𝐹𝐵) “ 𝑦) ∈ (Clsd‘𝐽)) → (((𝐹𝐴) “ 𝑦) ∪ ((𝐹𝐵) “ 𝑦)) ∈ (Clsd‘𝐽))
3426, 32, 33syl2anc 583 . . . 4 ((𝜑𝑦 ∈ (Clsd‘𝐾)) → (((𝐹𝐴) “ 𝑦) ∪ ((𝐹𝐵) “ 𝑦)) ∈ (Clsd‘𝐽))
3520, 34eqeltrd 2839 . . 3 ((𝜑𝑦 ∈ (Clsd‘𝐾)) → (𝐹𝑦) ∈ (Clsd‘𝐽))
3635ralrimiva 3107 . 2 (𝜑 → ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))
37 cldrcl 22085 . . . 4 (𝐴 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
3821, 37syl 17 . . 3 (𝜑𝐽 ∈ Top)
39 cntop2 22300 . . . 4 ((𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾) → 𝐾 ∈ Top)
4022, 39syl 17 . . 3 (𝜑𝐾 ∈ Top)
41 paste.1 . . . . 5 𝑋 = 𝐽
4241toptopon 21974 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
43 paste.2 . . . . 5 𝑌 = 𝐾
4443toptopon 21974 . . . 4 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
45 iscncl 22328 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))))
4642, 44, 45syl2anb 597 . . 3 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))))
4738, 40, 46syl2anc 583 . 2 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))))
481, 36, 47mpbir2and 709 1 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  cun 3881  cin 3882  wss 3883   cuni 4836  ccnv 5579  dom cdm 5580  ran crn 5581  cres 5582  cima 5583  Fun wfun 6412  wf 6414  cfv 6418  (class class class)co 7255  t crest 17048  Topctop 21950  TopOnctopon 21967  Clsdccld 22075   Cn ccn 22283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-map 8575  df-en 8692  df-fin 8695  df-fi 9100  df-rest 17050  df-topgen 17071  df-top 21951  df-topon 21968  df-bases 22004  df-cld 22078  df-cn 22286
This theorem is referenced by:  cnmpopc  23997  cvmliftlem10  33156
  Copyright terms: Public domain W3C validator