MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  paste Structured version   Visualization version   GIF version

Theorem paste 23218
Description: Pasting lemma. If 𝐴 and 𝐵 are closed sets in 𝑋 with 𝐴𝐵 = 𝑋, then any function whose restrictions to 𝐴 and 𝐵 are continuous is continuous on all of 𝑋. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 21-Aug-2015.)
Hypotheses
Ref Expression
paste.1 𝑋 = 𝐽
paste.2 𝑌 = 𝐾
paste.4 (𝜑𝐴 ∈ (Clsd‘𝐽))
paste.5 (𝜑𝐵 ∈ (Clsd‘𝐽))
paste.6 (𝜑 → (𝐴𝐵) = 𝑋)
paste.7 (𝜑𝐹:𝑋𝑌)
paste.8 (𝜑 → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾))
paste.9 (𝜑 → (𝐹𝐵) ∈ ((𝐽t 𝐵) Cn 𝐾))
Assertion
Ref Expression
paste (𝜑𝐹 ∈ (𝐽 Cn 𝐾))

Proof of Theorem paste
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 paste.7 . 2 (𝜑𝐹:𝑋𝑌)
2 paste.6 . . . . . . 7 (𝜑 → (𝐴𝐵) = 𝑋)
32ineq2d 4214 . . . . . 6 (𝜑 → ((𝐹𝑦) ∩ (𝐴𝐵)) = ((𝐹𝑦) ∩ 𝑋))
4 indi 4276 . . . . . . 7 ((𝐹𝑦) ∩ (𝐴𝐵)) = (((𝐹𝑦) ∩ 𝐴) ∪ ((𝐹𝑦) ∩ 𝐵))
51ffund 6731 . . . . . . . 8 (𝜑 → Fun 𝐹)
6 respreima 7080 . . . . . . . . 9 (Fun 𝐹 → ((𝐹𝐴) “ 𝑦) = ((𝐹𝑦) ∩ 𝐴))
7 respreima 7080 . . . . . . . . 9 (Fun 𝐹 → ((𝐹𝐵) “ 𝑦) = ((𝐹𝑦) ∩ 𝐵))
86, 7uneq12d 4165 . . . . . . . 8 (Fun 𝐹 → (((𝐹𝐴) “ 𝑦) ∪ ((𝐹𝐵) “ 𝑦)) = (((𝐹𝑦) ∩ 𝐴) ∪ ((𝐹𝑦) ∩ 𝐵)))
95, 8syl 17 . . . . . . 7 (𝜑 → (((𝐹𝐴) “ 𝑦) ∪ ((𝐹𝐵) “ 𝑦)) = (((𝐹𝑦) ∩ 𝐴) ∪ ((𝐹𝑦) ∩ 𝐵)))
104, 9eqtr4id 2787 . . . . . 6 (𝜑 → ((𝐹𝑦) ∩ (𝐴𝐵)) = (((𝐹𝐴) “ 𝑦) ∪ ((𝐹𝐵) “ 𝑦)))
11 imassrn 6079 . . . . . . . . 9 (𝐹𝑦) ⊆ ran 𝐹
12 dfdm4 5902 . . . . . . . . . 10 dom 𝐹 = ran 𝐹
13 fdm 6736 . . . . . . . . . 10 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
1412, 13eqtr3id 2782 . . . . . . . . 9 (𝐹:𝑋𝑌 → ran 𝐹 = 𝑋)
1511, 14sseqtrid 4034 . . . . . . . 8 (𝐹:𝑋𝑌 → (𝐹𝑦) ⊆ 𝑋)
161, 15syl 17 . . . . . . 7 (𝜑 → (𝐹𝑦) ⊆ 𝑋)
17 df-ss 3966 . . . . . . 7 ((𝐹𝑦) ⊆ 𝑋 ↔ ((𝐹𝑦) ∩ 𝑋) = (𝐹𝑦))
1816, 17sylib 217 . . . . . 6 (𝜑 → ((𝐹𝑦) ∩ 𝑋) = (𝐹𝑦))
193, 10, 183eqtr3rd 2777 . . . . 5 (𝜑 → (𝐹𝑦) = (((𝐹𝐴) “ 𝑦) ∪ ((𝐹𝐵) “ 𝑦)))
2019adantr 479 . . . 4 ((𝜑𝑦 ∈ (Clsd‘𝐾)) → (𝐹𝑦) = (((𝐹𝐴) “ 𝑦) ∪ ((𝐹𝐵) “ 𝑦)))
21 paste.4 . . . . . 6 (𝜑𝐴 ∈ (Clsd‘𝐽))
22 paste.8 . . . . . . 7 (𝜑 → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾))
23 cnclima 23192 . . . . . . 7 (((𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾) ∧ 𝑦 ∈ (Clsd‘𝐾)) → ((𝐹𝐴) “ 𝑦) ∈ (Clsd‘(𝐽t 𝐴)))
2422, 23sylan 578 . . . . . 6 ((𝜑𝑦 ∈ (Clsd‘𝐾)) → ((𝐹𝐴) “ 𝑦) ∈ (Clsd‘(𝐽t 𝐴)))
25 restcldr 23098 . . . . . 6 ((𝐴 ∈ (Clsd‘𝐽) ∧ ((𝐹𝐴) “ 𝑦) ∈ (Clsd‘(𝐽t 𝐴))) → ((𝐹𝐴) “ 𝑦) ∈ (Clsd‘𝐽))
2621, 24, 25syl2an2r 683 . . . . 5 ((𝜑𝑦 ∈ (Clsd‘𝐾)) → ((𝐹𝐴) “ 𝑦) ∈ (Clsd‘𝐽))
27 paste.5 . . . . . 6 (𝜑𝐵 ∈ (Clsd‘𝐽))
28 paste.9 . . . . . . 7 (𝜑 → (𝐹𝐵) ∈ ((𝐽t 𝐵) Cn 𝐾))
29 cnclima 23192 . . . . . . 7 (((𝐹𝐵) ∈ ((𝐽t 𝐵) Cn 𝐾) ∧ 𝑦 ∈ (Clsd‘𝐾)) → ((𝐹𝐵) “ 𝑦) ∈ (Clsd‘(𝐽t 𝐵)))
3028, 29sylan 578 . . . . . 6 ((𝜑𝑦 ∈ (Clsd‘𝐾)) → ((𝐹𝐵) “ 𝑦) ∈ (Clsd‘(𝐽t 𝐵)))
31 restcldr 23098 . . . . . 6 ((𝐵 ∈ (Clsd‘𝐽) ∧ ((𝐹𝐵) “ 𝑦) ∈ (Clsd‘(𝐽t 𝐵))) → ((𝐹𝐵) “ 𝑦) ∈ (Clsd‘𝐽))
3227, 30, 31syl2an2r 683 . . . . 5 ((𝜑𝑦 ∈ (Clsd‘𝐾)) → ((𝐹𝐵) “ 𝑦) ∈ (Clsd‘𝐽))
33 uncld 22965 . . . . 5 ((((𝐹𝐴) “ 𝑦) ∈ (Clsd‘𝐽) ∧ ((𝐹𝐵) “ 𝑦) ∈ (Clsd‘𝐽)) → (((𝐹𝐴) “ 𝑦) ∪ ((𝐹𝐵) “ 𝑦)) ∈ (Clsd‘𝐽))
3426, 32, 33syl2anc 582 . . . 4 ((𝜑𝑦 ∈ (Clsd‘𝐾)) → (((𝐹𝐴) “ 𝑦) ∪ ((𝐹𝐵) “ 𝑦)) ∈ (Clsd‘𝐽))
3520, 34eqeltrd 2829 . . 3 ((𝜑𝑦 ∈ (Clsd‘𝐾)) → (𝐹𝑦) ∈ (Clsd‘𝐽))
3635ralrimiva 3143 . 2 (𝜑 → ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))
37 cldrcl 22950 . . . 4 (𝐴 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
3821, 37syl 17 . . 3 (𝜑𝐽 ∈ Top)
39 cntop2 23165 . . . 4 ((𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾) → 𝐾 ∈ Top)
4022, 39syl 17 . . 3 (𝜑𝐾 ∈ Top)
41 paste.1 . . . . 5 𝑋 = 𝐽
4241toptopon 22839 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
43 paste.2 . . . . 5 𝑌 = 𝐾
4443toptopon 22839 . . . 4 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
45 iscncl 23193 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))))
4642, 44, 45syl2anb 596 . . 3 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))))
4738, 40, 46syl2anc 582 . 2 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))))
481, 36, 47mpbir2and 711 1 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wral 3058  cun 3947  cin 3948  wss 3949   cuni 4912  ccnv 5681  dom cdm 5682  ran crn 5683  cres 5684  cima 5685  Fun wfun 6547  wf 6549  cfv 6553  (class class class)co 7426  t crest 17409  Topctop 22815  TopOnctopon 22832  Clsdccld 22940   Cn ccn 23148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-map 8853  df-en 8971  df-fin 8974  df-fi 9442  df-rest 17411  df-topgen 17432  df-top 22816  df-topon 22833  df-bases 22869  df-cld 22943  df-cn 23151
This theorem is referenced by:  cnmpopc  24869  cvmliftlem10  34937
  Copyright terms: Public domain W3C validator