MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  paste Structured version   Visualization version   GIF version

Theorem paste 23316
Description: Pasting lemma. If 𝐴 and 𝐵 are closed sets in 𝑋 with 𝐴𝐵 = 𝑋, then any function whose restrictions to 𝐴 and 𝐵 are continuous is continuous on all of 𝑋. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 21-Aug-2015.)
Hypotheses
Ref Expression
paste.1 𝑋 = 𝐽
paste.2 𝑌 = 𝐾
paste.4 (𝜑𝐴 ∈ (Clsd‘𝐽))
paste.5 (𝜑𝐵 ∈ (Clsd‘𝐽))
paste.6 (𝜑 → (𝐴𝐵) = 𝑋)
paste.7 (𝜑𝐹:𝑋𝑌)
paste.8 (𝜑 → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾))
paste.9 (𝜑 → (𝐹𝐵) ∈ ((𝐽t 𝐵) Cn 𝐾))
Assertion
Ref Expression
paste (𝜑𝐹 ∈ (𝐽 Cn 𝐾))

Proof of Theorem paste
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 paste.7 . 2 (𝜑𝐹:𝑋𝑌)
2 paste.6 . . . . . . 7 (𝜑 → (𝐴𝐵) = 𝑋)
32ineq2d 4235 . . . . . 6 (𝜑 → ((𝐹𝑦) ∩ (𝐴𝐵)) = ((𝐹𝑦) ∩ 𝑋))
4 indi 4297 . . . . . . 7 ((𝐹𝑦) ∩ (𝐴𝐵)) = (((𝐹𝑦) ∩ 𝐴) ∪ ((𝐹𝑦) ∩ 𝐵))
51ffund 6750 . . . . . . . 8 (𝜑 → Fun 𝐹)
6 respreima 7097 . . . . . . . . 9 (Fun 𝐹 → ((𝐹𝐴) “ 𝑦) = ((𝐹𝑦) ∩ 𝐴))
7 respreima 7097 . . . . . . . . 9 (Fun 𝐹 → ((𝐹𝐵) “ 𝑦) = ((𝐹𝑦) ∩ 𝐵))
86, 7uneq12d 4186 . . . . . . . 8 (Fun 𝐹 → (((𝐹𝐴) “ 𝑦) ∪ ((𝐹𝐵) “ 𝑦)) = (((𝐹𝑦) ∩ 𝐴) ∪ ((𝐹𝑦) ∩ 𝐵)))
95, 8syl 17 . . . . . . 7 (𝜑 → (((𝐹𝐴) “ 𝑦) ∪ ((𝐹𝐵) “ 𝑦)) = (((𝐹𝑦) ∩ 𝐴) ∪ ((𝐹𝑦) ∩ 𝐵)))
104, 9eqtr4id 2793 . . . . . 6 (𝜑 → ((𝐹𝑦) ∩ (𝐴𝐵)) = (((𝐹𝐴) “ 𝑦) ∪ ((𝐹𝐵) “ 𝑦)))
11 imassrn 6099 . . . . . . . . 9 (𝐹𝑦) ⊆ ran 𝐹
12 dfdm4 5919 . . . . . . . . . 10 dom 𝐹 = ran 𝐹
13 fdm 6755 . . . . . . . . . 10 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
1412, 13eqtr3id 2788 . . . . . . . . 9 (𝐹:𝑋𝑌 → ran 𝐹 = 𝑋)
1511, 14sseqtrid 4055 . . . . . . . 8 (𝐹:𝑋𝑌 → (𝐹𝑦) ⊆ 𝑋)
161, 15syl 17 . . . . . . 7 (𝜑 → (𝐹𝑦) ⊆ 𝑋)
17 dfss2 3988 . . . . . . 7 ((𝐹𝑦) ⊆ 𝑋 ↔ ((𝐹𝑦) ∩ 𝑋) = (𝐹𝑦))
1816, 17sylib 218 . . . . . 6 (𝜑 → ((𝐹𝑦) ∩ 𝑋) = (𝐹𝑦))
193, 10, 183eqtr3rd 2783 . . . . 5 (𝜑 → (𝐹𝑦) = (((𝐹𝐴) “ 𝑦) ∪ ((𝐹𝐵) “ 𝑦)))
2019adantr 480 . . . 4 ((𝜑𝑦 ∈ (Clsd‘𝐾)) → (𝐹𝑦) = (((𝐹𝐴) “ 𝑦) ∪ ((𝐹𝐵) “ 𝑦)))
21 paste.4 . . . . . 6 (𝜑𝐴 ∈ (Clsd‘𝐽))
22 paste.8 . . . . . . 7 (𝜑 → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾))
23 cnclima 23290 . . . . . . 7 (((𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾) ∧ 𝑦 ∈ (Clsd‘𝐾)) → ((𝐹𝐴) “ 𝑦) ∈ (Clsd‘(𝐽t 𝐴)))
2422, 23sylan 579 . . . . . 6 ((𝜑𝑦 ∈ (Clsd‘𝐾)) → ((𝐹𝐴) “ 𝑦) ∈ (Clsd‘(𝐽t 𝐴)))
25 restcldr 23196 . . . . . 6 ((𝐴 ∈ (Clsd‘𝐽) ∧ ((𝐹𝐴) “ 𝑦) ∈ (Clsd‘(𝐽t 𝐴))) → ((𝐹𝐴) “ 𝑦) ∈ (Clsd‘𝐽))
2621, 24, 25syl2an2r 684 . . . . 5 ((𝜑𝑦 ∈ (Clsd‘𝐾)) → ((𝐹𝐴) “ 𝑦) ∈ (Clsd‘𝐽))
27 paste.5 . . . . . 6 (𝜑𝐵 ∈ (Clsd‘𝐽))
28 paste.9 . . . . . . 7 (𝜑 → (𝐹𝐵) ∈ ((𝐽t 𝐵) Cn 𝐾))
29 cnclima 23290 . . . . . . 7 (((𝐹𝐵) ∈ ((𝐽t 𝐵) Cn 𝐾) ∧ 𝑦 ∈ (Clsd‘𝐾)) → ((𝐹𝐵) “ 𝑦) ∈ (Clsd‘(𝐽t 𝐵)))
3028, 29sylan 579 . . . . . 6 ((𝜑𝑦 ∈ (Clsd‘𝐾)) → ((𝐹𝐵) “ 𝑦) ∈ (Clsd‘(𝐽t 𝐵)))
31 restcldr 23196 . . . . . 6 ((𝐵 ∈ (Clsd‘𝐽) ∧ ((𝐹𝐵) “ 𝑦) ∈ (Clsd‘(𝐽t 𝐵))) → ((𝐹𝐵) “ 𝑦) ∈ (Clsd‘𝐽))
3227, 30, 31syl2an2r 684 . . . . 5 ((𝜑𝑦 ∈ (Clsd‘𝐾)) → ((𝐹𝐵) “ 𝑦) ∈ (Clsd‘𝐽))
33 uncld 23063 . . . . 5 ((((𝐹𝐴) “ 𝑦) ∈ (Clsd‘𝐽) ∧ ((𝐹𝐵) “ 𝑦) ∈ (Clsd‘𝐽)) → (((𝐹𝐴) “ 𝑦) ∪ ((𝐹𝐵) “ 𝑦)) ∈ (Clsd‘𝐽))
3426, 32, 33syl2anc 583 . . . 4 ((𝜑𝑦 ∈ (Clsd‘𝐾)) → (((𝐹𝐴) “ 𝑦) ∪ ((𝐹𝐵) “ 𝑦)) ∈ (Clsd‘𝐽))
3520, 34eqeltrd 2838 . . 3 ((𝜑𝑦 ∈ (Clsd‘𝐾)) → (𝐹𝑦) ∈ (Clsd‘𝐽))
3635ralrimiva 3148 . 2 (𝜑 → ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))
37 cldrcl 23048 . . . 4 (𝐴 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
3821, 37syl 17 . . 3 (𝜑𝐽 ∈ Top)
39 cntop2 23263 . . . 4 ((𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾) → 𝐾 ∈ Top)
4022, 39syl 17 . . 3 (𝜑𝐾 ∈ Top)
41 paste.1 . . . . 5 𝑋 = 𝐽
4241toptopon 22937 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
43 paste.2 . . . . 5 𝑌 = 𝐾
4443toptopon 22937 . . . 4 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
45 iscncl 23291 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))))
4642, 44, 45syl2anb 597 . . 3 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))))
4738, 40, 46syl2anc 583 . 2 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))))
481, 36, 47mpbir2and 712 1 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2103  wral 3063  cun 3968  cin 3969  wss 3970   cuni 4931  ccnv 5698  dom cdm 5699  ran crn 5700  cres 5701  cima 5702  Fun wfun 6566  wf 6568  cfv 6572  (class class class)co 7445  t crest 17475  Topctop 22913  TopOnctopon 22930  Clsdccld 23038   Cn ccn 23246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-rep 5306  ax-sep 5320  ax-nul 5327  ax-pow 5386  ax-pr 5450  ax-un 7766
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ne 2943  df-ral 3064  df-rex 3073  df-reu 3384  df-rab 3439  df-v 3484  df-sbc 3799  df-csb 3916  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-pss 3990  df-nul 4348  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4973  df-iun 5021  df-iin 5022  df-br 5170  df-opab 5232  df-mpt 5253  df-tr 5287  df-id 5597  df-eprel 5603  df-po 5611  df-so 5612  df-fr 5654  df-we 5656  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-ima 5712  df-ord 6397  df-on 6398  df-lim 6399  df-suc 6400  df-iota 6524  df-fun 6574  df-fn 6575  df-f 6576  df-f1 6577  df-fo 6578  df-f1o 6579  df-fv 6580  df-ov 7448  df-oprab 7449  df-mpo 7450  df-om 7900  df-1st 8026  df-2nd 8027  df-map 8882  df-en 9000  df-fin 9003  df-fi 9476  df-rest 17477  df-topgen 17498  df-top 22914  df-topon 22931  df-bases 22967  df-cld 23041  df-cn 23249
This theorem is referenced by:  cnmpopc  24967  cvmliftlem10  35254
  Copyright terms: Public domain W3C validator