MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  paste Structured version   Visualization version   GIF version

Theorem paste 23214
Description: Pasting lemma. If 𝐴 and 𝐵 are closed sets in 𝑋 with 𝐴𝐵 = 𝑋, then any function whose restrictions to 𝐴 and 𝐵 are continuous is continuous on all of 𝑋. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 21-Aug-2015.)
Hypotheses
Ref Expression
paste.1 𝑋 = 𝐽
paste.2 𝑌 = 𝐾
paste.4 (𝜑𝐴 ∈ (Clsd‘𝐽))
paste.5 (𝜑𝐵 ∈ (Clsd‘𝐽))
paste.6 (𝜑 → (𝐴𝐵) = 𝑋)
paste.7 (𝜑𝐹:𝑋𝑌)
paste.8 (𝜑 → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾))
paste.9 (𝜑 → (𝐹𝐵) ∈ ((𝐽t 𝐵) Cn 𝐾))
Assertion
Ref Expression
paste (𝜑𝐹 ∈ (𝐽 Cn 𝐾))

Proof of Theorem paste
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 paste.7 . 2 (𝜑𝐹:𝑋𝑌)
2 paste.6 . . . . . . 7 (𝜑 → (𝐴𝐵) = 𝑋)
32ineq2d 4179 . . . . . 6 (𝜑 → ((𝐹𝑦) ∩ (𝐴𝐵)) = ((𝐹𝑦) ∩ 𝑋))
4 indi 4243 . . . . . . 7 ((𝐹𝑦) ∩ (𝐴𝐵)) = (((𝐹𝑦) ∩ 𝐴) ∪ ((𝐹𝑦) ∩ 𝐵))
51ffund 6674 . . . . . . . 8 (𝜑 → Fun 𝐹)
6 respreima 7020 . . . . . . . . 9 (Fun 𝐹 → ((𝐹𝐴) “ 𝑦) = ((𝐹𝑦) ∩ 𝐴))
7 respreima 7020 . . . . . . . . 9 (Fun 𝐹 → ((𝐹𝐵) “ 𝑦) = ((𝐹𝑦) ∩ 𝐵))
86, 7uneq12d 4128 . . . . . . . 8 (Fun 𝐹 → (((𝐹𝐴) “ 𝑦) ∪ ((𝐹𝐵) “ 𝑦)) = (((𝐹𝑦) ∩ 𝐴) ∪ ((𝐹𝑦) ∩ 𝐵)))
95, 8syl 17 . . . . . . 7 (𝜑 → (((𝐹𝐴) “ 𝑦) ∪ ((𝐹𝐵) “ 𝑦)) = (((𝐹𝑦) ∩ 𝐴) ∪ ((𝐹𝑦) ∩ 𝐵)))
104, 9eqtr4id 2783 . . . . . 6 (𝜑 → ((𝐹𝑦) ∩ (𝐴𝐵)) = (((𝐹𝐴) “ 𝑦) ∪ ((𝐹𝐵) “ 𝑦)))
11 imassrn 6031 . . . . . . . . 9 (𝐹𝑦) ⊆ ran 𝐹
12 dfdm4 5849 . . . . . . . . . 10 dom 𝐹 = ran 𝐹
13 fdm 6679 . . . . . . . . . 10 (𝐹:𝑋𝑌 → dom 𝐹 = 𝑋)
1412, 13eqtr3id 2778 . . . . . . . . 9 (𝐹:𝑋𝑌 → ran 𝐹 = 𝑋)
1511, 14sseqtrid 3986 . . . . . . . 8 (𝐹:𝑋𝑌 → (𝐹𝑦) ⊆ 𝑋)
161, 15syl 17 . . . . . . 7 (𝜑 → (𝐹𝑦) ⊆ 𝑋)
17 dfss2 3929 . . . . . . 7 ((𝐹𝑦) ⊆ 𝑋 ↔ ((𝐹𝑦) ∩ 𝑋) = (𝐹𝑦))
1816, 17sylib 218 . . . . . 6 (𝜑 → ((𝐹𝑦) ∩ 𝑋) = (𝐹𝑦))
193, 10, 183eqtr3rd 2773 . . . . 5 (𝜑 → (𝐹𝑦) = (((𝐹𝐴) “ 𝑦) ∪ ((𝐹𝐵) “ 𝑦)))
2019adantr 480 . . . 4 ((𝜑𝑦 ∈ (Clsd‘𝐾)) → (𝐹𝑦) = (((𝐹𝐴) “ 𝑦) ∪ ((𝐹𝐵) “ 𝑦)))
21 paste.4 . . . . . 6 (𝜑𝐴 ∈ (Clsd‘𝐽))
22 paste.8 . . . . . . 7 (𝜑 → (𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾))
23 cnclima 23188 . . . . . . 7 (((𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾) ∧ 𝑦 ∈ (Clsd‘𝐾)) → ((𝐹𝐴) “ 𝑦) ∈ (Clsd‘(𝐽t 𝐴)))
2422, 23sylan 580 . . . . . 6 ((𝜑𝑦 ∈ (Clsd‘𝐾)) → ((𝐹𝐴) “ 𝑦) ∈ (Clsd‘(𝐽t 𝐴)))
25 restcldr 23094 . . . . . 6 ((𝐴 ∈ (Clsd‘𝐽) ∧ ((𝐹𝐴) “ 𝑦) ∈ (Clsd‘(𝐽t 𝐴))) → ((𝐹𝐴) “ 𝑦) ∈ (Clsd‘𝐽))
2621, 24, 25syl2an2r 685 . . . . 5 ((𝜑𝑦 ∈ (Clsd‘𝐾)) → ((𝐹𝐴) “ 𝑦) ∈ (Clsd‘𝐽))
27 paste.5 . . . . . 6 (𝜑𝐵 ∈ (Clsd‘𝐽))
28 paste.9 . . . . . . 7 (𝜑 → (𝐹𝐵) ∈ ((𝐽t 𝐵) Cn 𝐾))
29 cnclima 23188 . . . . . . 7 (((𝐹𝐵) ∈ ((𝐽t 𝐵) Cn 𝐾) ∧ 𝑦 ∈ (Clsd‘𝐾)) → ((𝐹𝐵) “ 𝑦) ∈ (Clsd‘(𝐽t 𝐵)))
3028, 29sylan 580 . . . . . 6 ((𝜑𝑦 ∈ (Clsd‘𝐾)) → ((𝐹𝐵) “ 𝑦) ∈ (Clsd‘(𝐽t 𝐵)))
31 restcldr 23094 . . . . . 6 ((𝐵 ∈ (Clsd‘𝐽) ∧ ((𝐹𝐵) “ 𝑦) ∈ (Clsd‘(𝐽t 𝐵))) → ((𝐹𝐵) “ 𝑦) ∈ (Clsd‘𝐽))
3227, 30, 31syl2an2r 685 . . . . 5 ((𝜑𝑦 ∈ (Clsd‘𝐾)) → ((𝐹𝐵) “ 𝑦) ∈ (Clsd‘𝐽))
33 uncld 22961 . . . . 5 ((((𝐹𝐴) “ 𝑦) ∈ (Clsd‘𝐽) ∧ ((𝐹𝐵) “ 𝑦) ∈ (Clsd‘𝐽)) → (((𝐹𝐴) “ 𝑦) ∪ ((𝐹𝐵) “ 𝑦)) ∈ (Clsd‘𝐽))
3426, 32, 33syl2anc 584 . . . 4 ((𝜑𝑦 ∈ (Clsd‘𝐾)) → (((𝐹𝐴) “ 𝑦) ∪ ((𝐹𝐵) “ 𝑦)) ∈ (Clsd‘𝐽))
3520, 34eqeltrd 2828 . . 3 ((𝜑𝑦 ∈ (Clsd‘𝐾)) → (𝐹𝑦) ∈ (Clsd‘𝐽))
3635ralrimiva 3125 . 2 (𝜑 → ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))
37 cldrcl 22946 . . . 4 (𝐴 ∈ (Clsd‘𝐽) → 𝐽 ∈ Top)
3821, 37syl 17 . . 3 (𝜑𝐽 ∈ Top)
39 cntop2 23161 . . . 4 ((𝐹𝐴) ∈ ((𝐽t 𝐴) Cn 𝐾) → 𝐾 ∈ Top)
4022, 39syl 17 . . 3 (𝜑𝐾 ∈ Top)
41 paste.1 . . . . 5 𝑋 = 𝐽
4241toptopon 22837 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
43 paste.2 . . . . 5 𝑌 = 𝐾
4443toptopon 22837 . . . 4 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
45 iscncl 23189 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))))
4642, 44, 45syl2anb 598 . . 3 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))))
4738, 40, 46syl2anc 584 . 2 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋𝑌 ∧ ∀𝑦 ∈ (Clsd‘𝐾)(𝐹𝑦) ∈ (Clsd‘𝐽))))
481, 36, 47mpbir2and 713 1 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  cun 3909  cin 3910  wss 3911   cuni 4867  ccnv 5630  dom cdm 5631  ran crn 5632  cres 5633  cima 5634  Fun wfun 6493  wf 6495  cfv 6499  (class class class)co 7369  t crest 17359  Topctop 22813  TopOnctopon 22830  Clsdccld 22936   Cn ccn 23144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-map 8778  df-en 8896  df-fin 8899  df-fi 9338  df-rest 17361  df-topgen 17382  df-top 22814  df-topon 22831  df-bases 22866  df-cld 22939  df-cn 23147
This theorem is referenced by:  cnmpopc  24855  cvmliftlem10  35274
  Copyright terms: Public domain W3C validator