![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmfss | Structured version Visualization version GIF version |
Description: Inclusion of a function having a limit (used to ensure the limit relation is a set, under our definition). (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 23-Dec-2013.) |
Ref | Expression |
---|---|
lmfss | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝐹 ⊆ (ℂ × 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lmfpm 23243 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝐹 ∈ (𝑋 ↑pm ℂ)) | |
2 | toponmax 22872 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
3 | cnex 11221 | . . . . 5 ⊢ ℂ ∈ V | |
4 | elpmg 8862 | . . . . 5 ⊢ ((𝑋 ∈ 𝐽 ∧ ℂ ∈ V) → (𝐹 ∈ (𝑋 ↑pm ℂ) ↔ (Fun 𝐹 ∧ 𝐹 ⊆ (ℂ × 𝑋)))) | |
5 | 2, 3, 4 | sylancl 584 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐹 ∈ (𝑋 ↑pm ℂ) ↔ (Fun 𝐹 ∧ 𝐹 ⊆ (ℂ × 𝑋)))) |
6 | 5 | adantr 479 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → (𝐹 ∈ (𝑋 ↑pm ℂ) ↔ (Fun 𝐹 ∧ 𝐹 ⊆ (ℂ × 𝑋)))) |
7 | 1, 6 | mpbid 231 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → (Fun 𝐹 ∧ 𝐹 ⊆ (ℂ × 𝑋))) |
8 | 7 | simprd 494 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝐹 ⊆ (ℂ × 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∈ wcel 2098 Vcvv 3461 ⊆ wss 3944 class class class wbr 5149 × cxp 5676 Fun wfun 6543 ‘cfv 6549 (class class class)co 7419 ↑pm cpm 8846 ℂcc 11138 TopOnctopon 22856 ⇝𝑡clm 23174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-fv 6557 df-ov 7422 df-oprab 7423 df-mpo 7424 df-pm 8848 df-top 22840 df-topon 22857 df-lm 23177 |
This theorem is referenced by: lmss 23246 |
Copyright terms: Public domain | W3C validator |