| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmfss | Structured version Visualization version GIF version | ||
| Description: Inclusion of a function having a limit (used to ensure the limit relation is a set, under our definition). (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 23-Dec-2013.) |
| Ref | Expression |
|---|---|
| lmfss | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝐹 ⊆ (ℂ × 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmfpm 23304 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝐹 ∈ (𝑋 ↑pm ℂ)) | |
| 2 | toponmax 22933 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
| 3 | cnex 11237 | . . . . 5 ⊢ ℂ ∈ V | |
| 4 | elpmg 8884 | . . . . 5 ⊢ ((𝑋 ∈ 𝐽 ∧ ℂ ∈ V) → (𝐹 ∈ (𝑋 ↑pm ℂ) ↔ (Fun 𝐹 ∧ 𝐹 ⊆ (ℂ × 𝑋)))) | |
| 5 | 2, 3, 4 | sylancl 586 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐹 ∈ (𝑋 ↑pm ℂ) ↔ (Fun 𝐹 ∧ 𝐹 ⊆ (ℂ × 𝑋)))) |
| 6 | 5 | adantr 480 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → (𝐹 ∈ (𝑋 ↑pm ℂ) ↔ (Fun 𝐹 ∧ 𝐹 ⊆ (ℂ × 𝑋)))) |
| 7 | 1, 6 | mpbid 232 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → (Fun 𝐹 ∧ 𝐹 ⊆ (ℂ × 𝑋))) |
| 8 | 7 | simprd 495 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝐹 ⊆ (ℂ × 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2107 Vcvv 3479 ⊆ wss 3950 class class class wbr 5142 × cxp 5682 Fun wfun 6554 ‘cfv 6560 (class class class)co 7432 ↑pm cpm 8868 ℂcc 11154 TopOnctopon 22917 ⇝𝑡clm 23235 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-fv 6568 df-ov 7435 df-oprab 7436 df-mpo 7437 df-pm 8870 df-top 22901 df-topon 22918 df-lm 23238 |
| This theorem is referenced by: lmss 23307 |
| Copyright terms: Public domain | W3C validator |