| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmfss | Structured version Visualization version GIF version | ||
| Description: Inclusion of a function having a limit (used to ensure the limit relation is a set, under our definition). (Contributed by NM, 7-Dec-2006.) (Revised by Mario Carneiro, 23-Dec-2013.) |
| Ref | Expression |
|---|---|
| lmfss | ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝐹 ⊆ (ℂ × 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmfpm 23189 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝐹 ∈ (𝑋 ↑pm ℂ)) | |
| 2 | toponmax 22820 | . . . . 5 ⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) | |
| 3 | cnex 11156 | . . . . 5 ⊢ ℂ ∈ V | |
| 4 | elpmg 8819 | . . . . 5 ⊢ ((𝑋 ∈ 𝐽 ∧ ℂ ∈ V) → (𝐹 ∈ (𝑋 ↑pm ℂ) ↔ (Fun 𝐹 ∧ 𝐹 ⊆ (ℂ × 𝑋)))) | |
| 5 | 2, 3, 4 | sylancl 586 | . . . 4 ⊢ (𝐽 ∈ (TopOn‘𝑋) → (𝐹 ∈ (𝑋 ↑pm ℂ) ↔ (Fun 𝐹 ∧ 𝐹 ⊆ (ℂ × 𝑋)))) |
| 6 | 5 | adantr 480 | . . 3 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → (𝐹 ∈ (𝑋 ↑pm ℂ) ↔ (Fun 𝐹 ∧ 𝐹 ⊆ (ℂ × 𝑋)))) |
| 7 | 1, 6 | mpbid 232 | . 2 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → (Fun 𝐹 ∧ 𝐹 ⊆ (ℂ × 𝑋))) |
| 8 | 7 | simprd 495 | 1 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝐹 ⊆ (ℂ × 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 class class class wbr 5110 × cxp 5639 Fun wfun 6508 ‘cfv 6514 (class class class)co 7390 ↑pm cpm 8803 ℂcc 11073 TopOnctopon 22804 ⇝𝑡clm 23120 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-pm 8805 df-top 22788 df-topon 22805 df-lm 23123 |
| This theorem is referenced by: lmss 23192 |
| Copyright terms: Public domain | W3C validator |