| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmiclcl | Structured version Visualization version GIF version | ||
| Description: Isomorphism implies the left side is a module. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
| Ref | Expression |
|---|---|
| lmiclcl | ⊢ (𝑅 ≃𝑚 𝑆 → 𝑅 ∈ LMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brlmic 21011 | . . 3 ⊢ (𝑅 ≃𝑚 𝑆 ↔ (𝑅 LMIso 𝑆) ≠ ∅) | |
| 2 | n0 4326 | . . 3 ⊢ ((𝑅 LMIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 LMIso 𝑆)) | |
| 3 | 1, 2 | bitri 275 | . 2 ⊢ (𝑅 ≃𝑚 𝑆 ↔ ∃𝑓 𝑓 ∈ (𝑅 LMIso 𝑆)) |
| 4 | lmimlmhm 21007 | . . . 4 ⊢ (𝑓 ∈ (𝑅 LMIso 𝑆) → 𝑓 ∈ (𝑅 LMHom 𝑆)) | |
| 5 | lmhmlmod1 20976 | . . . 4 ⊢ (𝑓 ∈ (𝑅 LMHom 𝑆) → 𝑅 ∈ LMod) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝑓 ∈ (𝑅 LMIso 𝑆) → 𝑅 ∈ LMod) |
| 7 | 6 | exlimiv 1929 | . 2 ⊢ (∃𝑓 𝑓 ∈ (𝑅 LMIso 𝑆) → 𝑅 ∈ LMod) |
| 8 | 3, 7 | sylbi 217 | 1 ⊢ (𝑅 ≃𝑚 𝑆 → 𝑅 ∈ LMod) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1778 ∈ wcel 2107 ≠ wne 2931 ∅c0 4306 class class class wbr 5116 (class class class)co 7399 LModclmod 20802 LMHom clmhm 20962 LMIso clmim 20963 ≃𝑚 clmic 20964 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 ax-un 7723 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-iun 4966 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-ov 7402 df-oprab 7403 df-mpo 7404 df-1st 7982 df-2nd 7983 df-1o 8474 df-lmhm 20965 df-lmim 20966 df-lmic 20967 |
| This theorem is referenced by: lmisfree 21787 |
| Copyright terms: Public domain | W3C validator |