MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmiclcl Structured version   Visualization version   GIF version

Theorem lmiclcl 21014
Description: Isomorphism implies the left side is a module. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
lmiclcl (𝑅𝑚 𝑆𝑅 ∈ LMod)

Proof of Theorem lmiclcl
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brlmic 21012 . . 3 (𝑅𝑚 𝑆 ↔ (𝑅 LMIso 𝑆) ≠ ∅)
2 n0 4304 . . 3 ((𝑅 LMIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 LMIso 𝑆))
31, 2bitri 275 . 2 (𝑅𝑚 𝑆 ↔ ∃𝑓 𝑓 ∈ (𝑅 LMIso 𝑆))
4 lmimlmhm 21008 . . . 4 (𝑓 ∈ (𝑅 LMIso 𝑆) → 𝑓 ∈ (𝑅 LMHom 𝑆))
5 lmhmlmod1 20977 . . . 4 (𝑓 ∈ (𝑅 LMHom 𝑆) → 𝑅 ∈ LMod)
64, 5syl 17 . . 3 (𝑓 ∈ (𝑅 LMIso 𝑆) → 𝑅 ∈ LMod)
76exlimiv 1931 . 2 (∃𝑓 𝑓 ∈ (𝑅 LMIso 𝑆) → 𝑅 ∈ LMod)
83, 7sylbi 217 1 (𝑅𝑚 𝑆𝑅 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1780  wcel 2113  wne 2930  c0 4284   class class class wbr 5095  (class class class)co 7355  LModclmod 20803   LMHom clmhm 20963   LMIso clmim 20964  𝑚 clmic 20965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-1o 8394  df-lmhm 20966  df-lmim 20967  df-lmic 20968
This theorem is referenced by:  lmisfree  21789
  Copyright terms: Public domain W3C validator