MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmiclcl Structured version   Visualization version   GIF version

Theorem lmiclcl 20658
Description: Isomorphism implies the left side is a module. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
lmiclcl (𝑅𝑚 𝑆𝑅 ∈ LMod)

Proof of Theorem lmiclcl
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brlmic 20656 . . 3 (𝑅𝑚 𝑆 ↔ (𝑅 LMIso 𝑆) ≠ ∅)
2 n0 4344 . . 3 ((𝑅 LMIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 LMIso 𝑆))
31, 2bitri 275 . 2 (𝑅𝑚 𝑆 ↔ ∃𝑓 𝑓 ∈ (𝑅 LMIso 𝑆))
4 lmimlmhm 20652 . . . 4 (𝑓 ∈ (𝑅 LMIso 𝑆) → 𝑓 ∈ (𝑅 LMHom 𝑆))
5 lmhmlmod1 20621 . . . 4 (𝑓 ∈ (𝑅 LMHom 𝑆) → 𝑅 ∈ LMod)
64, 5syl 17 . . 3 (𝑓 ∈ (𝑅 LMIso 𝑆) → 𝑅 ∈ LMod)
76exlimiv 1934 . 2 (∃𝑓 𝑓 ∈ (𝑅 LMIso 𝑆) → 𝑅 ∈ LMod)
83, 7sylbi 216 1 (𝑅𝑚 𝑆𝑅 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1782  wcel 2107  wne 2941  c0 4320   class class class wbr 5144  (class class class)co 7396  LModclmod 20448   LMHom clmhm 20607   LMIso clmim 20608  𝑚 clmic 20609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5295  ax-nul 5302  ax-pr 5423  ax-un 7712
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4905  df-iun 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-suc 6362  df-iota 6487  df-fun 6537  df-fn 6538  df-f 6539  df-f1 6540  df-fo 6541  df-f1o 6542  df-fv 6543  df-ov 7399  df-oprab 7400  df-mpo 7401  df-1st 7962  df-2nd 7963  df-1o 8453  df-lmhm 20610  df-lmim 20611  df-lmic 20612
This theorem is referenced by:  lmisfree  21370
  Copyright terms: Public domain W3C validator