MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmicrcl Structured version   Visualization version   GIF version

Theorem lmicrcl 20682
Description: Isomorphism implies the right side is a module. (Contributed by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
lmicrcl (𝑅𝑚 𝑆𝑆 ∈ LMod)

Proof of Theorem lmicrcl
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brlmic 20679 . . 3 (𝑅𝑚 𝑆 ↔ (𝑅 LMIso 𝑆) ≠ ∅)
2 n0 4347 . . 3 ((𝑅 LMIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 LMIso 𝑆))
31, 2bitri 275 . 2 (𝑅𝑚 𝑆 ↔ ∃𝑓 𝑓 ∈ (𝑅 LMIso 𝑆))
4 lmimlmhm 20675 . . . 4 (𝑓 ∈ (𝑅 LMIso 𝑆) → 𝑓 ∈ (𝑅 LMHom 𝑆))
5 lmhmlmod2 20643 . . . 4 (𝑓 ∈ (𝑅 LMHom 𝑆) → 𝑆 ∈ LMod)
64, 5syl 17 . . 3 (𝑓 ∈ (𝑅 LMIso 𝑆) → 𝑆 ∈ LMod)
76exlimiv 1934 . 2 (∃𝑓 𝑓 ∈ (𝑅 LMIso 𝑆) → 𝑆 ∈ LMod)
83, 7sylbi 216 1 (𝑅𝑚 𝑆𝑆 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1782  wcel 2107  wne 2941  c0 4323   class class class wbr 5149  (class class class)co 7409  LModclmod 20471   LMHom clmhm 20630   LMIso clmim 20631  𝑚 clmic 20632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-1o 8466  df-lmhm 20633  df-lmim 20634  df-lmic 20635
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator