MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmicrcl Structured version   Visualization version   GIF version

Theorem lmicrcl 20998
Description: Isomorphism implies the right side is a module. (Contributed by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
lmicrcl (𝑅𝑚 𝑆𝑆 ∈ LMod)

Proof of Theorem lmicrcl
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 brlmic 20995 . . 3 (𝑅𝑚 𝑆 ↔ (𝑅 LMIso 𝑆) ≠ ∅)
2 n0 4301 . . 3 ((𝑅 LMIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 LMIso 𝑆))
31, 2bitri 275 . 2 (𝑅𝑚 𝑆 ↔ ∃𝑓 𝑓 ∈ (𝑅 LMIso 𝑆))
4 lmimlmhm 20991 . . . 4 (𝑓 ∈ (𝑅 LMIso 𝑆) → 𝑓 ∈ (𝑅 LMHom 𝑆))
5 lmhmlmod2 20959 . . . 4 (𝑓 ∈ (𝑅 LMHom 𝑆) → 𝑆 ∈ LMod)
64, 5syl 17 . . 3 (𝑓 ∈ (𝑅 LMIso 𝑆) → 𝑆 ∈ LMod)
76exlimiv 1931 . 2 (∃𝑓 𝑓 ∈ (𝑅 LMIso 𝑆) → 𝑆 ∈ LMod)
83, 7sylbi 217 1 (𝑅𝑚 𝑆𝑆 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wex 1780  wcel 2110  wne 2926  c0 4281   class class class wbr 5089  (class class class)co 7341  LModclmod 20786   LMHom clmhm 20946   LMIso clmim 20947  𝑚 clmic 20948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-ov 7344  df-oprab 7345  df-mpo 7346  df-1st 7916  df-2nd 7917  df-1o 8380  df-lmhm 20949  df-lmim 20950  df-lmic 20951
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator