| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmicrcl | Structured version Visualization version GIF version | ||
| Description: Isomorphism implies the right side is a module. (Contributed by Mario Carneiro, 6-May-2015.) |
| Ref | Expression |
|---|---|
| lmicrcl | ⊢ (𝑅 ≃𝑚 𝑆 → 𝑆 ∈ LMod) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brlmic 20995 | . . 3 ⊢ (𝑅 ≃𝑚 𝑆 ↔ (𝑅 LMIso 𝑆) ≠ ∅) | |
| 2 | n0 4301 | . . 3 ⊢ ((𝑅 LMIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 LMIso 𝑆)) | |
| 3 | 1, 2 | bitri 275 | . 2 ⊢ (𝑅 ≃𝑚 𝑆 ↔ ∃𝑓 𝑓 ∈ (𝑅 LMIso 𝑆)) |
| 4 | lmimlmhm 20991 | . . . 4 ⊢ (𝑓 ∈ (𝑅 LMIso 𝑆) → 𝑓 ∈ (𝑅 LMHom 𝑆)) | |
| 5 | lmhmlmod2 20959 | . . . 4 ⊢ (𝑓 ∈ (𝑅 LMHom 𝑆) → 𝑆 ∈ LMod) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ (𝑓 ∈ (𝑅 LMIso 𝑆) → 𝑆 ∈ LMod) |
| 7 | 6 | exlimiv 1931 | . 2 ⊢ (∃𝑓 𝑓 ∈ (𝑅 LMIso 𝑆) → 𝑆 ∈ LMod) |
| 8 | 3, 7 | sylbi 217 | 1 ⊢ (𝑅 ≃𝑚 𝑆 → 𝑆 ∈ LMod) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1780 ∈ wcel 2110 ≠ wne 2926 ∅c0 4281 class class class wbr 5089 (class class class)co 7341 LModclmod 20786 LMHom clmhm 20946 LMIso clmim 20947 ≃𝑚 clmic 20948 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-oprab 7345 df-mpo 7346 df-1st 7916 df-2nd 7917 df-1o 8380 df-lmhm 20949 df-lmim 20950 df-lmic 20951 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |