![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmicrcl | Structured version Visualization version GIF version |
Description: Isomorphism implies the right side is a module. (Contributed by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
lmicrcl | ⊢ (𝑅 ≃𝑚 𝑆 → 𝑆 ∈ LMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brlmic 20679 | . . 3 ⊢ (𝑅 ≃𝑚 𝑆 ↔ (𝑅 LMIso 𝑆) ≠ ∅) | |
2 | n0 4347 | . . 3 ⊢ ((𝑅 LMIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 LMIso 𝑆)) | |
3 | 1, 2 | bitri 275 | . 2 ⊢ (𝑅 ≃𝑚 𝑆 ↔ ∃𝑓 𝑓 ∈ (𝑅 LMIso 𝑆)) |
4 | lmimlmhm 20675 | . . . 4 ⊢ (𝑓 ∈ (𝑅 LMIso 𝑆) → 𝑓 ∈ (𝑅 LMHom 𝑆)) | |
5 | lmhmlmod2 20643 | . . . 4 ⊢ (𝑓 ∈ (𝑅 LMHom 𝑆) → 𝑆 ∈ LMod) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝑓 ∈ (𝑅 LMIso 𝑆) → 𝑆 ∈ LMod) |
7 | 6 | exlimiv 1934 | . 2 ⊢ (∃𝑓 𝑓 ∈ (𝑅 LMIso 𝑆) → 𝑆 ∈ LMod) |
8 | 3, 7 | sylbi 216 | 1 ⊢ (𝑅 ≃𝑚 𝑆 → 𝑆 ∈ LMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1782 ∈ wcel 2107 ≠ wne 2941 ∅c0 4323 class class class wbr 5149 (class class class)co 7409 LModclmod 20471 LMHom clmhm 20630 LMIso clmim 20631 ≃𝑚 clmic 20632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-1o 8466 df-lmhm 20633 df-lmim 20634 df-lmic 20635 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |