Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lmicrcl | Structured version Visualization version GIF version |
Description: Isomorphism implies the right side is a module. (Contributed by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
lmicrcl | ⊢ (𝑅 ≃𝑚 𝑆 → 𝑆 ∈ LMod) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brlmic 20330 | . . 3 ⊢ (𝑅 ≃𝑚 𝑆 ↔ (𝑅 LMIso 𝑆) ≠ ∅) | |
2 | n0 4280 | . . 3 ⊢ ((𝑅 LMIso 𝑆) ≠ ∅ ↔ ∃𝑓 𝑓 ∈ (𝑅 LMIso 𝑆)) | |
3 | 1, 2 | bitri 274 | . 2 ⊢ (𝑅 ≃𝑚 𝑆 ↔ ∃𝑓 𝑓 ∈ (𝑅 LMIso 𝑆)) |
4 | lmimlmhm 20326 | . . . 4 ⊢ (𝑓 ∈ (𝑅 LMIso 𝑆) → 𝑓 ∈ (𝑅 LMHom 𝑆)) | |
5 | lmhmlmod2 20294 | . . . 4 ⊢ (𝑓 ∈ (𝑅 LMHom 𝑆) → 𝑆 ∈ LMod) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝑓 ∈ (𝑅 LMIso 𝑆) → 𝑆 ∈ LMod) |
7 | 6 | exlimiv 1933 | . 2 ⊢ (∃𝑓 𝑓 ∈ (𝑅 LMIso 𝑆) → 𝑆 ∈ LMod) |
8 | 3, 7 | sylbi 216 | 1 ⊢ (𝑅 ≃𝑚 𝑆 → 𝑆 ∈ LMod) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃wex 1782 ∈ wcel 2106 ≠ wne 2943 ∅c0 4256 class class class wbr 5074 (class class class)co 7275 LModclmod 20123 LMHom clmhm 20281 LMIso clmim 20282 ≃𝑚 clmic 20283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-1o 8297 df-lmhm 20284 df-lmim 20285 df-lmic 20286 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |